1
|
Choudhuri S, Garg NJ. Hepatocyte Nuclear Factor 4 Alpha: A Key Regulator of Liver Disease Pathology and Haemostatic Disorders. Liver Int 2025; 45:e16245. [PMID: 40387433 DOI: 10.1111/liv.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 05/20/2025]
Abstract
OBJECTIVE Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of hepatocyte differentiation in fetal and adult liver and exerts its transcriptional role in determining physiological functions of the liver. The objective of this review is to address the current knowledge of molecular mechanisms involved in HNF4α regulation in multiple aspects of liver disease pathogenesis. METHODS Based on available literature, this review summarises the current state of knowledge onthe mechanism of HNF4α dysregulation, and the role of HNF4α activity inregulating early to advanced stages of various liver diseases. RESULTS Patients with deranged HNF4α expression are at higher risk for the development of liver diseases such as viral hepatitis, alcoholic/nonalcoholic fatty liver disease, hepatocellular carcinoma, and haematological disorders such as coagulopathy and bleeding disorders. DISCUSSION HNF4α interactions with nuclear receptors and target genes promote liver disease pathology by regulating various metabolic pathways. The strong correlation between deranged HNF4α expression and the severity of liver diseases suggests that targeting HNF4α expression can offer potential therapeutic strategy in the prevention of liver disease pathology and haemostatic disorders.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
- Institute for Human Infections and Immunity (IHII), University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| |
Collapse
|
2
|
Fang P, Wilson E, Stubben C, Kabir A, Affolter K, Zhang X, Snyder EL. Differential control of growth and identity by HNF4α isoforms in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646428. [PMID: 40236142 PMCID: PMC11996449 DOI: 10.1101/2025.03.31.646428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Although transcriptomic studies have stratified pancreatic ductal adenocarcinoma (PDAC) into clinically relevant subtypes, classical or basal-like, further research is needed to identify the transcriptional regulators of each subtype. Previous studies identified HNF4α as a key regulator of the classical subtype, but the distinct contributions of its isoforms (P1 and P2), which display dichotomous functions in normal development and gastrointestinal malignancies, remain unexplored. Objective The objective of this study is to investigate the role of HNF4α P1 and P2 isoforms in regulating growth and differentiation. Design We performed functional, transcriptomic, and epigenetic analysis after exogenous expression in HNF4α-negative models or CRISPRi-mediated knockdown of endogenous isoforms. Results We characterized the variable expression of P1 isoforms in HNF4α-positive tumors. We demonstrate that P1 isoforms are less compatible with growth than P2 isoforms. Despite sharing a common DNA binding domain, we show that P1 isoforms are stronger transcriptional regulators. Conclusions Our study characterizes the functional roles of HNF4α P1 and P2 isoforms in PDAC and highlights the necessity of considering different isoforms when studying molecular regulators.
Collapse
|
3
|
Liu X, Shi L, Zhang S, Zhou A. Exploring potential plasma drug targets for cholelithiasis through multiancestry Mendelian randomization. Int J Surg 2025; 111:302-310. [PMID: 38976909 PMCID: PMC11745627 DOI: 10.1097/js9.0000000000001925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Cholelithiasis poses significant health and economic burdens, necessitating novel pharmacological targets to enhance treatment efficacy. METHOD Based on genome-wide association analysis studies, the authors performed a two-sample Mendelian randomization (MR) analysis based on plasma proteomics to explore potential drug targets in European (n Case =40 191 and n Control =361 641) and Asian (n Case =9305 and n Control =168 253) populations. The authors confirmed the directionality and robust correlation of the drug targets with the results through reverse MR analysis, Steiger filtering, Bayesian colocalization, phenotype scanning, and replication in multiple databases. Further exploration of the safety and possible mechanisms of action of phenome-wide MR analysis and protein-protein interactions (PPIs) as individual drug targets was performed. RESULTS Our proteomics-based MR analyses suggested that FUT3 (OR=0.87; 95% CI: 0.84-0.89; P =4.70×10 -32 ), NOE1 (OR=0.58; 95% CI: 0.52-0.66; P =4.21×10 -23 ), UGT1A6 (OR=0.68; 95% CI: 0.64-0.73; P =9.58×10 -30 ), and FKBP52 (OR=1.75; 95% CI: 1.37-2.24; P =8.61×10 -6 ) were potential drug targets in Europeans, whereas KLB (OR=1.11; 95% CI: 1.07-1.16; P =7.59×10 -7 ) and FGFR4 (OR=0.94; 95% CI: 0.91-0.96; P =4.07×10 -6 ) were valid targets in East Asians. There was no reverse causality for these drug targets. Evidence from Bayesian colocalization analyses supported that exposure and outcome shared consistent genetic variables. Phenome-wide MR analysis suggested the potential deleterious effects of NOE1 and FGFR4. PPI analysis confirmed the pathways associated with the potential targets involved in bile acid metabolism. CONCLUSIONS Genetically predicted levels of the plasma proteins FUT3, NOE1, UGT1A6, and FKBP52 have the potential as prospective targets in Europeans. Moreover, the plasma levels of KLB and FGFR4 may serve as potential targets for the treatment of cholelithiasis in East Asians.
Collapse
Affiliation(s)
- Xiaoduo Liu
- Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders
| | - Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing Digestive Disease Center, National Clinical Research Center for Digestive Diseases, Beijing, People’s Republic of China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing Digestive Disease Center, National Clinical Research Center for Digestive Diseases, Beijing, People’s Republic of China
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing Digestive Disease Center, National Clinical Research Center for Digestive Diseases, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Dubois V, Lefebvre P, Staels B, Eeckhoute J. Nuclear receptors: pathophysiological mechanisms and drug targets in liver disease. Gut 2024; 73:1562-1569. [PMID: 38862216 DOI: 10.1136/gutjnl-2023-331741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver development and function. As a consequence, NRs have emerged as attractive drug targets in a wide range of liver diseases. However, liver dysfunction and failure are linked to loss of hepatocyte identity characterised by deficient NR expression and activities. This might at least partly explain why several pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in advanced stages of diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss the contribution of multiomic approaches to our understanding of their role in the molecular organisation of an intricated transcriptional regulatory network, as well as in liver intercellular dialogues and interorgan cross-talks. We discuss the potential benefit of novel therapeutic approaches simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and restore hepatocyte identity but also impact intercellular and interorgan interplays whose importance to control liver functions is further defined. Finally, we highlight the need of considering individual parameters such as sex and disease stage in the development of NR-based clinical strategies.
Collapse
Affiliation(s)
- Vanessa Dubois
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Gent, Belgium
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Jerome Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
5
|
Ng NHJ, Ghosh S, Bok CM, Ching C, Low BSJ, Chen JT, Lim E, Miserendino MC, Tan YS, Hoon S, Teo AKK. HNF4A and HNF1A exhibit tissue specific target gene regulation in pancreatic beta cells and hepatocytes. Nat Commun 2024; 15:4288. [PMID: 38909044 PMCID: PMC11193738 DOI: 10.1038/s41467-024-48647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/08/2024] [Indexed: 06/24/2024] Open
Abstract
HNF4A and HNF1A encode transcription factors that are important for the development and function of the pancreas and liver. Mutations in both genes have been directly linked to Maturity Onset Diabetes of the Young (MODY) and type 2 diabetes (T2D) risk. To better define the pleiotropic gene regulatory roles of HNF4A and HNF1A, we generated a comprehensive genome-wide map of their binding targets in pancreatic and hepatic cells using ChIP-Seq. HNF4A was found to bind and regulate known (ACY3, HAAO, HNF1A, MAP3K11) and previously unidentified (ABCD3, CDKN2AIP, USH1C, VIL1) loci in a tissue-dependent manner. Functional follow-up highlighted a potential role for HAAO and USH1C as regulators of beta cell function. Unlike the loss-of-function HNF4A/MODY1 variant I271fs, the T2D-associated HNF4A variant (rs1800961) was found to activate AKAP1, GAD2 and HOPX gene expression, potentially due to changes in DNA-binding affinity. We also found HNF1A to bind to and regulate GPR39 expression in beta cells. Overall, our studies provide a rich resource for uncovering downstream molecular targets of HNF4A and HNF1A that may contribute to beta cell or hepatic cell (dys)function, and set up a framework for gene discovery and functional validation.
Collapse
Affiliation(s)
- Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Chek Mei Bok
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Blaise Su Jun Low
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Juin Ting Chen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Euodia Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - María Clara Miserendino
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, IMCB, A*STAR, Singapore, 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
- Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
6
|
Kaci A, Solheim MH, Silgjerd T, Hjaltadottir J, Hornnes LH, Molnes J, Madsen A, Sjøholt G, Bellanné-Chantelot C, Caswell R, Sagen JV, Njølstad PR, Aukrust I, Bjørkhaug L. Functional characterization of HNF4A gene variants identify promoter and cell line specific transactivation effects. Hum Mol Genet 2024; 33:894-904. [PMID: 38433330 PMCID: PMC11070132 DOI: 10.1093/hmg/ddae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and β-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.
Collapse
Affiliation(s)
- Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Kalnesveien 300, Grålum 1714, Norway
| | - Marie Holm Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
| | - Trine Silgjerd
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Jorunn Hjaltadottir
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Lorentze Hope Hornnes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Andre Madsen
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, Bergen 5020, Norway
| | - Gry Sjøholt
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Christine Bellanné-Chantelot
- Départment of Medical Genetics, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtriére, 21 rue de l'école de médecine, 75006 Paris, France
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Children and Youth Clinic, Haukeland University Hospital, Haukelandsbakken 1, Bergen 5021, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| |
Collapse
|
7
|
Hatziapostolou M, Koutsioumpa M, Zaitoun AM, Polytarchou C, Edderkaoui M, Mahurkar-Joshi S, Vadakekolathu J, D'Andrea D, Lay AR, Christodoulou N, Pham T, Yau TO, Vorvis C, Chatterji S, Pandol SJ, Poultsides GA, Dawson DW, Lobo DN, Iliopoulos D. Promoter Methylation Leads to Hepatocyte Nuclear Factor 4A Loss and Pancreatic Cancer Aggressiveness. GASTRO HEP ADVANCES 2024; 3:687-702. [PMID: 39165427 PMCID: PMC11330932 DOI: 10.1016/j.gastha.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/15/2024] [Indexed: 08/22/2024]
Abstract
Background and Aims Decoding pancreatic ductal adenocarcinoma heterogeneity and the consequent therapeutic selection remains a challenge. We aimed to characterize epigenetically regulated pathways involved in pancreatic ductal adenocarcinoma progression. Methods Global DNA methylation analysis in pancreatic cancer patient tissues and cell lines was performed to identify differentially methylated genes. Targeted bisulfite sequencing and in vitro methylation reporter assays were employed to investigate the direct link between site-specific methylation and transcriptional regulation. A series of in vitro loss-of-function and gain-of function studies and in vivo xenograft and the KPC (LSL-Kras G12D/+ ; LSL-Trp53 R172H/+ ; Pdx1-Cre) mouse models were used to assess pancreatic cancer cell properties. Gene and protein expression analyses were performed in 3 different cohorts of pancreatic cancer patients and correlated to clinicopathological parameters. Results We identify Hepatocyte Nuclear Factor 4A (HNF4A) as a novel target of hypermethylation in pancreatic cancer and demonstrate that site-specific proximal promoter methylation drives HNF4A transcriptional repression. Expression analyses in patients indicate the methylation-associated suppression of HNF4A expression in pancreatic cancer tissues. In vitro and in vivo studies reveal that HNF4A is a novel tumor suppressor in pancreatic cancer, regulating cancer growth and aggressiveness. As evidenced in both the KPC mouse model and human pancreatic cancer tissues, HNF4A expression declines significantly in the early stages of the disease. Most importantly, HNF4 loss correlates with poor overall patient survival. Conclusion HNF4A silencing, mediated by promoter DNA methylation, drives pancreatic cancer development and aggressiveness leading to poor patient survival.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Marina Koutsioumpa
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Abed M. Zaitoun
- Department of Cellular Pathology, Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals and University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Swapna Mahurkar-Joshi
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jayakumar Vadakekolathu
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Daniel D'Andrea
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anna Rose Lay
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Niki Christodoulou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Thuy Pham
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Tung-On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Christina Vorvis
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Suchit Chatterji
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Stephen J. Pandol
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - George A. Poultsides
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Dileep N. Lobo
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals and University of Nottingham, Queen’s Medical Centre, Nottingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| | - Dimitrios Iliopoulos
- Vatche and Tamar Manoukian Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
8
|
Morikawa S, Ko HL, Ren EC, Hara K, Kaneko N, Hishimura N, Nakamura A, Manabe A. Functional Analysis of a Novel HNF4A Variant Identified in a Patient With MODY1. J Endocr Soc 2024; 8:bvae090. [PMID: 38745825 PMCID: PMC11091833 DOI: 10.1210/jendso/bvae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 05/16/2024] Open
Abstract
Context HNF4A-maturity-onset diabetes of the young (MODY1) is a relatively rare subtype of monogenic diabetes caused by loss of function of the HNF4A gene, which encodes the transcription factor HNF4α. HNF4α is known to form heterodimers, and the various combinations of isoforms that make up these heterodimers have been reported to result in a diversity of targeted genes. However, the function of individual HNF4α variant isoforms and the heterodimers comprising both wild-type (WT) and variant HNF4α have not yet been assessed. Objective In this study, we analyzed the functional consequence of the HNF4A D248Y variant in vitro. Methods We investigated the case of a 12-year-old Japanese girl who developed diabetes at age 11 years. Genetic sequencing detected a novel heterozygous missense HNF4A variant (c.742G > T, p.Asp248Tyr; referred as "D248Y") in the patient and her relatives who presented with diabetes. Results Although the WT HNF4α isoforms (HNF4α2, HNF4α3, HNF4α8, HNF4α9) enhanced the INS gene promoter activity in HepG2 cells, the promoter activity of D248Y was consistently low across all isoforms. The presence of D248Y in homodimers and heterodimers, comprising either HNF4α8 or HNF4α3 or a combination of both isoforms, also reduced the INS promoter activity in Panc-1 cells. Conclusion We report the clinical course of a patient with HNF4A-MODY and the functional analysis of novel HNF4A variants, with a focus on the isoforms and heterodimers they form. Our results serve to improve the understanding of the dominant-negative effects of pathogenic HNF4A variants.
Collapse
Affiliation(s)
- Shuntaro Morikawa
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Hui Ling Ko
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Kazuya Hara
- Department of Pediatrics, Chitose City Hospital, Chitose, 066-0033, Japan
| | - Naoya Kaneko
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Nozomi Hishimura
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Akie Nakamura
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| |
Collapse
|
9
|
Rastinejad F. The protein architecture and allosteric landscape of HNF4α. Front Endocrinol (Lausanne) 2023; 14:1219092. [PMID: 37732120 PMCID: PMC10507258 DOI: 10.3389/fendo.2023.1219092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) is a multi-faceted nuclear receptor responsible for governing the development and proper functioning of liver and pancreatic islet cells. Its transcriptional functions encompass the regulation of vital metabolic processes including cholesterol and fatty acid metabolism, and glucose sensing and control. Various genetic mutations and alterations in HNF4α are associated with diabetes, metabolic disorders, and cancers. From a structural perspective, HNF4α is one of the most comprehensively understood nuclear receptors due to its crystallographically observed architecture revealing interconnected DNA binding domains (DBDs) and ligand binding domains (LBDs). This review discusses key properties of HNF4α, including its mode of homodimerization, its binding to fatty acid ligands, the importance of post-translational modifications, and the mechanistic basis for allosteric functions. The surfaces linking HNF4α's DBDs and LBDs create a convergence zone that allows signals originating from any one domain to influence distant domains. The HNF4α-DNA complex serves as a prime illustration of how nuclear receptors utilize individual domains for specific functions, while also integrating these domains to create cohesive higher-order architectures that allow signal responsive functions.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Nuffield Department of Medicine, Target Discovery Institute (NDMRB), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Vemuri K, Radi SH, Sladek FM, Verzi MP. Multiple roles and regulatory mechanisms of the transcription factor HNF4 in the intestine. Front Endocrinol (Lausanne) 2023; 14:1232569. [PMID: 37635981 PMCID: PMC10450339 DOI: 10.3389/fendo.2023.1232569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α) drives a complex array of transcriptional programs across multiple organs. Beyond its previously documented function in the liver, HNF4α has crucial roles in the kidney, intestine, and pancreas. In the intestine, a multitude of functions have been attributed to HNF4 and its accessory transcription factors, including but not limited to, intestinal maturation, differentiation, regeneration, and stem cell renewal. Functional redundancy between HNF4α and its intestine-restricted paralog HNF4γ, and co-regulation with other transcription factors drive these functions. Dysregulated expression of HNF4 results in a wide range of disease manifestations, including the development of a chronic inflammatory state in the intestine. In this review, we focus on the multiple molecular mechanisms of HNF4 in the intestine and explore translational opportunities. We aim to introduce new perspectives in understanding intestinal genetics and the complexity of gastrointestinal disorders through the lens of HNF4 transcription factors.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sarah H. Radi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
11
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
12
|
Martinez-Calle M, Courbon G, Hunt-Tobey B, Francis C, Spindler J, Wang X, dos Reis LM, Martins CS, Salusky IB, Malluche H, Nickolas TL, Moyses RM, Martin A, David V. Transcription factor HNF4α2 promotes osteogenesis and prevents bone abnormalities in mice with renal osteodystrophy. J Clin Invest 2023; 133:e159928. [PMID: 37079387 PMCID: PMC10231994 DOI: 10.1172/jci159928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Renal osteodystrophy (ROD) is a disorder of bone metabolism that affects virtually all patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes including fractures, cardiovascular events, and death. In this study, we showed that hepatocyte nuclear factor 4α (HNF4α), a transcription factor mostly expressed in the liver, is also expressed in bone, and that osseous HNF4α expression was dramatically reduced in patients and mice with ROD. Osteoblast-specific deletion of Hnf4α resulted in impaired osteogenesis in cells and mice. Using multi-omics analyses of bones and cells lacking or overexpressing Hnf4α1 and Hnf4α2, we showed that HNF4α2 is the main osseous Hnf4α isoform that regulates osteogenesis, cell metabolism, and cell death. As a result, osteoblast-specific overexpression of Hnf4α2 prevented bone loss in mice with CKD. Our results showed that HNF4α2 is a transcriptional regulator of osteogenesis, implicated in the development of ROD.
Collapse
Affiliation(s)
- Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Connor Francis
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luciene M. dos Reis
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Carolina S.W. Martins
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Isidro B. Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hartmut Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas L. Nickolas
- Department of Medicine, Columbia Irving University Medical Center, New York, New York, USA
| | - Rosa M.A. Moyses
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
13
|
Colombo E, Di Dario M, Menon R, Valente MM, Bassani C, Sarno N, Mazza D, Montini F, Moiola L, Comi G, Martinelli V, Farina C. HNF4α, SP1 and c-myc are master regulators of CNS autoimmunity. J Autoimmun 2023; 138:103053. [PMID: 37236124 DOI: 10.1016/j.jaut.2023.103053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Hepatocyte nuclear factor 4 α (HNF4α), a transcription factor (TF) essential for embryonic development, has been recently shown to regulate the expression of inflammatory genes. To characterize HNF4a function in immunity, we measured the effect of HNF4α antagonists on immune cell responses in vitro and in vivo. HNF4α blockade reduced immune activation in vitro and disease severity in the experimental model of multiple sclerosis (MS). Network biology studies of human immune transcriptomes unraveled HNF4α together with SP1 and c-myc as master TF regulating differential expression at all MS stages. TF expression was boosted by immune cell activation, regulated by environmental MS risk factors and higher in MS immune cells compared to controls. Administration of compounds targeting TF expression or function demonstrated non-synergic, interdependent transcriptional control of CNS autoimmunity in vitro and in vivo. Collectively, we identified a coregulatory transcriptional network sustaining neuroinflammation and representing an attractive therapeutic target for MS and other inflammatory disorders.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Marco Di Dario
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Ramesh Menon
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Maria Maddalena Valente
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Claudia Bassani
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Nicole Sarno
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Federico Montini
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Lucia Moiola
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Vittorio Martinelli
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS Scientific Institute San Raffaele, Milan, Italy.
| |
Collapse
|
14
|
Abstract
Hepatocyte nuclear factor 4 α (HNF4α) is a highly conserved member of the nuclear receptor superfamily expressed at high levels in the liver, kidney, pancreas, and gut. In the liver, HNF4α is exclusively expressed in hepatocytes, where it is indispensable for embryonic and postnatal liver development and for normal liver function in adults. It is considered a master regulator of hepatic differentiation because it regulates a significant number of genes involved in hepatocyte-specific functions. Loss of HNF4α expression and function is associated with the progression of chronic liver disease. Further, HNF4α is a target of chemical-induced liver injury. In this review, we discuss the role of HNF4α in liver pathophysiology and highlight its potential use as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
15
|
Heppert JK, Lickwar CR, Tillman MC, Davis BR, Davison JM, Lu HY, Chen W, Busch-Nentwich EM, Corcoran DL, Rawls JF. Conserved roles for Hnf4 family transcription factors in zebrafish development and intestinal function. Genetics 2022; 222:iyac133. [PMID: 36218393 PMCID: PMC9713462 DOI: 10.1093/genetics/iyac133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Transcription factors play important roles in the development of the intestinal epithelium and its ability to respond to endocrine, nutritional, and microbial signals. Hepatocyte nuclear factor 4 family nuclear receptors are liganded transcription factors that are critical for the development and function of multiple digestive organs in vertebrates, including the intestinal epithelium. Zebrafish have 3 hepatocyte nuclear factor 4 homologs, of which, hnf4a was previously shown to mediate intestinal responses to microbiota in zebrafish larvae. To discern the functions of other hepatocyte nuclear factor 4 family members in zebrafish development and intestinal function, we created and characterized mutations in hnf4g and hnf4b. We addressed the possibility of genetic redundancy amongst these factors by creating double and triple mutants which showed different rates of survival, including apparent early lethality in hnf4a; hnf4b double mutants and triple mutants. RNA sequencing performed on digestive tracts from single and double mutant larvae revealed extensive changes in intestinal gene expression in hnf4a mutants that were amplified in hnf4a; hnf4g mutants, but limited in hnf4g mutants. Changes in hnf4a and hnf4a; hnf4g mutants were reminiscent of those seen in mice including decreased expression of genes involved in intestinal function and increased expression of cell proliferation genes, and were validated using transgenic reporters and EdU labeling in the intestinal epithelium. Gnotobiotics combined with RNA sequencing also showed hnf4g has subtler roles than hnf4a in host responses to microbiota. Overall, phenotypic changes in hnf4a single mutants were strongly enhanced in hnf4a; hnf4g double mutants, suggesting a conserved partial genetic redundancy between hnf4a and hnf4g in the vertebrate intestine.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew C Tillman
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Briana R Davis
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - James M Davison
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Chen
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - David L Corcoran
- Center for Genomics and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
16
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
17
|
Zhang Y, Lu L, Hu Z, Dai Y, Ahmad NJB, Ng JL, Chan CY, Hossain MZ, Loh AHL, Ward JM, Tan PH, Davila S, Kumar V, Hunziker W, Lin H, Yap HK, Ng KH. Angiomotin mutation causes glomerulopathy and renal cysts by upregulating hepatocyte nuclear factor transcriptional activity. Clin Transl Med 2022; 12:e904. [PMID: 35696543 PMCID: PMC9191868 DOI: 10.1002/ctm2.904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yaochun Zhang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Liangjian Lu
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Zhenhua Hu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yu Dai
- Department of Pharmacy, National University of Singapore, Singapore
| | - Nurul Jannah Binti Ahmad
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Jun Li Ng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Chang Yien Chan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Sonia Davila
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore.,Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Walter Hunziker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Haishu Lin
- Department of Pharmacy, National University of Singapore, Singapore
| | - Hui Kim Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Kar Hui Ng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| |
Collapse
|
18
|
Thymiakou E, Xenikaki E, Kardassis D. Intestine-specific ablation of the Hepatocyte Nuclear Factor 4a (Hnf4a) gene in mice has minimal impact on serum lipids and ileum gene expression profile due to upregulation of its paralog Hnf4g. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159108. [PMID: 34973414 DOI: 10.1016/j.bbalip.2021.159108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/21/2023]
Abstract
Ablation of the gene encoding the nuclear receptor Hepatocyte Nuclear Factor 4a (Hnf4a) in the liver strongly affects HDL concentration, structure and functionality but the role of this receptor in the intestine, the second organ contributing to serum HDL levels, has been overlooked. In the present study we show that mice with intestine-specific ablation of Hnf4a (H4IntKO) had undetectable levels of ΗΝF4A in ileum, proximal and distal colon but normal expression in liver. H4IntKO mice presented normal serum lipid levels, HDL-C and particle size (α1-α3). The expression of the major HDL biogenesis genes Apoa1, Abca1, Lcat was not affected but there was significant increase in Apoc3 as well as in Hnf4g, a paralog of Hnf4a. RNA-sequencing identified metabolic pathways significantly affected by Hnf4a ablation such as type II diabetes, glycolysis, gluconeogenesis and p53 signaling. Chromatin immunoprecipitation assays showed that HNF4G bound to various apolipoprotein gene promoters in control mice but its binding affinity was reduced in the ileum of H4IntKO mice suggesting a redundancy but also a cooperation between the two factors. In the distal colon of H4IntKO mice, where both HNF4A and HNF4G are absent and in a mouse model of DSS-induced colitis presenting decreased levels of HNF4A, most lipoprotein genes were strongly downregulated. In conclusion, Hnf4a ablation in mice does not significantly affect serum lipid levels or lipoprotein gene expression in ileum possibly due to compensatory effects by its paralog Hnf4g in this tissue.
Collapse
Affiliation(s)
- Efstathia Thymiakou
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece
| | - Efsevia Xenikaki
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece.
| |
Collapse
|
19
|
Barth R, Ruoso C, Ferreira SM, de Ramos FC, Lima FB, Boschero AC, Santos GJD. Hepatocyte Nuclear Factor 4-α (HNF4α) controls the insulin resistance-induced pancreatic β-cell mass expansion. Life Sci 2022; 289:120213. [PMID: 34902439 DOI: 10.1016/j.lfs.2021.120213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Regardless of the etiology, any type of DM presents a reduction of insulin-secreting cell mass, so it is important to investigate pathways that induce the increase of this cell mass. AIM Based on the fact that (1) HNF4α is crucial for β-cell proliferation, (2) DEX-induced IR promotes β-cell mass expansion, and (3) the stimulation of β-cell mass expansion may be an important target for DM therapies, we aimed to investigate whether DEX-induced proliferation of β pancreatic cells is dependent on HNF4α. METHODS We used WildType (WT) and Knockout (KO) mice for HNF4-α, treated or not with 100 mg/Kg/day of DEX, for 5 consecutive days. One day after the last injection of DEX the IR was confirmed by ipITT and the mice were euthanized for pancreas removal. RESULTS In comparison to WT, KO mice presented increased glucose tolerance, lower fasting glucose and increased glucose-stimulates insulin secretion (GSIS). DEX induced IR in both KO and WT mice. In addition, DEX-induced β-cell mass expansion and an increase in the Ki67 immunostaining were observed only in WT mice, evidencing that IR-induced β-cell mass expansion is dependent on HNF4α. Also, we observed that DEX-treatment, in an HNF4α-dependent way, promoted an increase in PDX1, PAX4 and NGN3 gene expression. CONCLUSIONS Our results strongly suggest that DEX-induced IR promotes β-cell mass expansion through processes of proliferation and neogenesis that depend on the HNF4α activity, pointing to HNF4α as a possible therapeutic target in DM treatment.
Collapse
Affiliation(s)
- Robson Barth
- Islet Biology and Metabolism Lab - I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis 88040-900, Santa Catarina, Brazil; Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Carolina Ruoso
- Islet Biology and Metabolism Lab - I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis 88040-900, Santa Catarina, Brazil; Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Sandra Mara Ferreira
- Laboratory of endocrine pancreas and metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, 13083-862 Campinas, Brazil
| | - Francieli Caroline de Ramos
- Islet Biology and Metabolism Lab - I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis 88040-900, Santa Catarina, Brazil; Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Fernanda Barbosa Lima
- Islet Biology and Metabolism Lab - I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis 88040-900, Santa Catarina, Brazil; Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Antônio Carlos Boschero
- Laboratory of endocrine pancreas and metabolism - LAPEM, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, 13083-862 Campinas, Brazil
| | - Gustavo Jorge Dos Santos
- Islet Biology and Metabolism Lab - I.B.M. Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis 88040-900, Santa Catarina, Brazil; Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
20
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
21
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
22
|
Diaz-Aragon R, Coard MC, Amirneni S, Faccioli L, Haep N, Malizio MR, Motomura T, Kocas-Kilicarslan ZN, Ostrowska A, Florentino RM, Frau C. Therapeutic Potential of HNF4α in End-stage Liver Disease. Organogenesis 2021; 17:126-135. [PMID: 35114889 DOI: 10.1080/15476278.2021.1994273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The prevalence of end-stage liver disease (ESLD) in the US is increasing at an alarming rate. It can be caused by several factors; however, one of the most common routes begins with nonalcoholic fatty liver disease (NAFLD). ESLD is diagnosed by the presence of irreversible damage to the liver. Currently, the only definitive treatment for ESLD is orthotopic liver transplantation (OLT). Nevertheless, OLT is limited due to a shortage of donor livers. Several promising alternative treatment options are under investigation. Researchers have focused on the effect of liver-enriched transcription factors (LETFs) on disease progression. Specifically, hepatocyte nuclear factor 4-alpha (HNF4α) has been reported to reset the liver transcription network and possibly play a role in the regression of fibrosis and cirrhosis. In this review, we describe the function of HNF4α, along with its regulation at various levels. In addition, we summarize the role of HNF4α in ESLD and its potential as a therapeutic target in the treatment of ESLD.
Collapse
Affiliation(s)
- Ricardo Diaz-Aragon
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael C Coard
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sriram Amirneni
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lanuza Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle R Malizio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takashi Motomura
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Carla Frau
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Pan G, Cavalli M, Wadelius C. Polymorphisms rs55710213 and rs56334587 regulate SCD1 expression by modulating HNF4A binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194724. [PMID: 34171462 DOI: 10.1016/j.bbagrm.2021.194724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The stearoyl-CoA desaturase 1 (SCD1) gene at 10q24.31 encodes the rate limiting enzyme SCD1 that catalyzes the biosynthesis of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). Dysregulated SCD1 activity has been observed in many human diseases including non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and several types of cancer. HNF4A is a central regulator of glucose and lipid metabolism and previous studies suggested that it is deeply involved in regulating the SCD1 activity in the liver. However, the underlying mechanisms on whether and how SCD1 is regulated by HNF4A have not been explored in detail. In this study, we found that HNF4A regulates SCD1 expression by directly binding to the key regulatory regions in the SCD1 locus. Knocking down of HNF4A significantly downregulated the expression of SCD1. Variants rs55710213 and rs56334587 in intron 5 of SCD1 directly reside in a canonical HNF4A binding site. The GG haplotype of rs55710213 and rs56334587 is associated with decreased SCD1 activity by disrupting the binding of HNF4A, which further decreased the enhancer activity and SCD1 expression. In conclusion, our study demonstrated that SCD1 is directly regulated by HNF4A, which may be helpful in the understanding of the altered metabolic pathways in many diseases associated with dysregulated SCD1 or HNF4A or both.
Collapse
Affiliation(s)
- Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
24
|
Almeida-Oliveira F, Tuthill BF, Gondim KC, Majerowicz D, Musselman LP. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103569. [PMID: 33753225 DOI: 10.1016/j.ibmb.2021.103569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The fly genome contains a single ortholog of the evolutionarily conserved transcription factor hepatocyte nuclear factor 4 (HNF4), a broadly and constitutively expressed member of the nuclear receptor superfamily. Like its mammalian orthologs, Drosophila HNF4 (dHNF4) acts as a critical regulator of fatty acid and glucose homeostasis. Because of its role in energy storage and catabolism, the insect fat body controls non-autonomous organs including the ovaries, where lipid metabolism is essential for oogenesis. The present paper used dHNF4 overexpression (OE) in the fat bodies and ovaries to investigate its potential roles in lipid homeostasis and oogenesis. When the developing fat body overexpressed dHNF4, animals exhibited reduced size and failed to pupariate, but no changes in body composition were observed. Conditional OE of dHNF4 in the adult fat body produced a reduction in triacylglycerol content and reduced oogenesis. Ovary-specific dHNF4 OE increased oogenesis and egg-laying, but reduced the number of adult offspring. The phenotypic effects on oogenesis that arise upon dHNF4 OE in the fat body or ovary may be due to its function in controlling lipid utilization.
Collapse
Affiliation(s)
- Fernanda Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Department of Biological Sciences, Binghamton University, USA
| | - Bryon F Tuthill
- Department of Biological Sciences, Binghamton University, USA
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - David Majerowicz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil; Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil.
| | | |
Collapse
|
25
|
A Review of Functional Characterization of Single Amino Acid Change Mutations in HNF Transcription Factors in MODY Pathogenesis. Protein J 2021; 40:348-360. [PMID: 33950347 DOI: 10.1007/s10930-021-09991-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Mutations in HNF transcription factor genes cause the most common subtypes of maturity-onset of diabetes of youth (MODY), a monogenic form of diabetes mellitus. Mutations in the HNF1-α, HNF4-α, and HNF1-β genes are primarily considered as the cause of MODY3, MODY1, and MODY5 subtypes, respectively. Although patients with different subtypes display similar symptoms, they may develop distinct diabetes-related complications and require different treatments depending on the type of the mutation. Genetic analysis of MODY patients revealed more than 400 missense/nonsense mutations in HNF1-α, HNF4-α, and HNF1-β genes, however only a small portion of them are functionally characterized. Evaluation of nonsense mutations are more direct as they lead to premature stop codons and mostly in mRNA decay or nonfunctional truncated proteins. However, interpretation of the single amino acid change (missense) mutation is not such definite, as effect of the variant may vary depending on the location and also the substituted amino acid. Mutations with benign effect on the protein function may not be the pathologic variant and further genetic testing may be required. Here, we discuss the functional characterization analysis of single amino acid change mutations identified in HNF1-α, HNF4-α, and HNF1-β genes and evaluate their roles in MODY pathogenesis. This review will contribute to comprehend HNF nuclear family-related molecular mechanisms and to develop more accurate diagnosis and treatment based on correct evaluation of pathologic effects of the variants.
Collapse
|
26
|
Camolotto SA, Belova VK, Torre-Healy L, Vahrenkamp JM, Berrett KC, Conway H, Shea J, Stubben C, Moffitt R, Gertz J, Snyder EL. Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular subtype by HNF4α and SIX1/4. Gut 2021; 70:900-914. [PMID: 32826305 PMCID: PMC7945295 DOI: 10.1136/gutjnl-2020-321316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival of less than 5%. Transcriptomic analysis has identified two clinically relevant molecular subtypes of PDAC: classical and basal-like. The classical subtype is characterised by a more favourable prognosis and better response to chemotherapy than the basal-like subtype. The classical subtype also expresses higher levels of lineage specifiers that regulate endodermal differentiation, including the nuclear receptor hepatocyte nuclear factor 4 α (HNF4α). The objective of this study is to evaluate the role of HNF4α, SIX4 and SIX1 in regulating the growth and molecular subtype of PDAC. DESIGN We manipulate the expression of HNF4α, SIX4 and SIX1 in multiple in vitro and in vivo PDAC models. We determine the consequences of manipulating these genes on PDAC growth, differentiation and molecular subtype using functional assays, gene expression analysis and cross-species comparisons with human datasets. RESULTS We show that HNF4α restrains tumour growth and drives tumour cells toward an epithelial identity. Gene expression analysis of murine models and human tumours shows that HNF4α activates expression of genes associated with the classical subtype. HNF4α also directly represses SIX4 and SIX1, two mesodermal/neuronal lineage specifiers expressed in the basal-like subtype. Finally, SIX4 and SIX1 drive proliferation and regulate differentiation in HNF4α-negative PDAC. CONCLUSION Our data show that HNF4α regulates the growth and molecular subtype of PDAC by multiple mechanisms, including activation of the classical gene expression programme and repression of SIX4 and SIX1, which may represent novel dependencies of the basal-like subtype.
Collapse
Affiliation(s)
- Soledad A Camolotto
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Veronika K Belova
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Luke Torre-Healy
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Kristofer C Berrett
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Hannah Conway
- HCI Clinical Trials Operations, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Chris Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Richard Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| | - Eric L Snyder
- Department of Pathology, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
27
|
Ni Z, Lu W, Li Q, Han C, Yuan T, Sun N, Shi Y. Analysis of the HNF4A isoform-regulated transcriptome identifies CCL15 as a downstream target in gastric carcinogenesis. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0131. [PMID: 33710810 PMCID: PMC8185874 DOI: 10.20892/j.issn.2095-3941.2020.0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Hepatocyte nuclear factor 4α (HNF4A) has been demonstrated to be an oncogene in gastric cancer (GC). However, the roles of different HNF4A isoforms derived from the 2 different promoters (P1 and P2) and the underlying mechanisms remain obscure. METHODS The expression and prognostic values of P1- and P2-HNF4A were evaluated in The Cancer Genome Atlas (TCGA) databases and GC tissues. Then, functional assays of P1- and P2-HNF4A were conducted both in vivo and in vitro. High-throughput RNA-seq was employed to profile downstream pathways in P1- and P2-HNF4A-overexpressing GC cells. The expression and gene regulation network of the candidate target genes identified by RNA-seq were characterized based on data mining and functional assays. RESULTS HNF4A amplification was a key characteristic of GC in TCGA databases, especially for the intestinal type and early stage. Moreover, P1-HNF4A expression was significantly higher in tumor tissues than in adjacent non-tumor tissues (P < 0.05), but no significant differences were found in P2-HNF4A expression (P > 0.05). High P1-HNF4A expression indicated poor prognoses in GC patients (P < 0.01). Furthermore, P1-HNF4A overexpression significantly promoted SGC7901 and BGC823 cell proliferation, invasion and migration in vitro (P < 0.01). Murine xenograft experiments showed that P1-HNF4A overexpression promoted tumor growth (P < 0.05). Mechanistically, RNA-seq showed that the cytokine-cytokine receptor interactions pathway was mostly enriched in P1-HNF4A-overexpressing GC cells. Finally, chemokine (C-C motif) ligand 15 was identified as a direct target of P1-HNF4A in GC tissues. CONCLUSIONS P1-HNF4A was the main oncogene during GC progression. The cytokine-cytokine receptor interaction pathway played a pivotal role and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Zhen Ni
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University of PLA, Xi’an 710032, China
- Department of Gastroenterology, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wenquan Lu
- Department of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Li
- Department of Endocrinology, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Chuan Han
- Department of Endocrinology, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Ting Yuan
- Department of Gastroenterology, 989 Hospital of the People’s Liberation Army, Luoyang 471003, China
| | - Nina Sun
- Department of Gastroenterology, First Affiliated Hospital of Xi’an Medical College, Xi’an 710038, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University of PLA, Xi’an 710032, China
| |
Collapse
|
28
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Marchesin V, Pérez-Martí A, Le Meur G, Pichler R, Grand K, Klootwijk ED, Kesselheim A, Kleta R, Lienkamp S, Simons M. Molecular Basis for Autosomal-Dominant Renal Fanconi Syndrome Caused by HNF4A. Cell Rep 2020; 29:4407-4421.e5. [PMID: 31875549 PMCID: PMC6941224 DOI: 10.1016/j.celrep.2019.11.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022] Open
Abstract
HNF4A is a nuclear hormone receptor that binds DNA as an obligate homodimer. While all known human heterozygous mutations are associated with the autosomal-dominant diabetes form MODY1, one particular mutation (p.R85W) in the DNA-binding domain (DBD) causes additional renal Fanconi syndrome (FRTS). Here, we find that expression of the conserved fly ortholog dHNF4 harboring the FRTS mutation in Drosophila nephrocytes caused nuclear depletion and cytosolic aggregation of a wild-type dHNF4 reporter protein. While the nuclear depletion led to mitochondrial defects and lipid droplet accumulation, the cytosolic aggregates triggered the expansion of the endoplasmic reticulum (ER), autophagy, and eventually cell death. The latter effects could be fully rescued by preventing nuclear export through interfering with serine phosphorylation in the DBD. Our data describe a genomic and a non-genomic mechanism for FRTS in HNF4A-associated MODY1 with important implications for the renal proximal tubule and the regulation of other nuclear hormone receptors. HNF4 controls lipid metabolism in Drosophila nephrocytes The kidney disease mutation R85W shows dominant-negative effects in nephrocytes Dephosphorylation at S87 prevents the dominant-negative effects R85W mutation causes mitochondrial dysfunction in reprogrammed renal epithelial cells
Collapse
Affiliation(s)
- Valentina Marchesin
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Albert Pérez-Martí
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Gwenn Le Meur
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Roman Pichler
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Kelli Grand
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Enriko D Klootwijk
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Anne Kesselheim
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Robert Kleta
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | - Soeren Lienkamp
- Renal Division, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Matias Simons
- INSERM UMR1163, Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, 75015 Paris, France.
| |
Collapse
|
30
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
31
|
Lambert É, Babeu JP, Simoneau J, Raisch J, Lavergne L, Lévesque D, Jolibois É, Avino M, Scott MS, Boudreau F, Boisvert FM. Human Hepatocyte Nuclear Factor 4-α Encodes Isoforms with Distinct Transcriptional Functions. Mol Cell Proteomics 2020; 19:808-827. [PMID: 32123031 PMCID: PMC7196586 DOI: 10.1074/mcp.ra119.001909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Indexed: 01/02/2023] Open
Abstract
HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.
Collapse
Affiliation(s)
- Élie Lambert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Philippe Babeu
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Joël Simoneau
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jennifer Raisch
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Laurie Lavergne
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Émilie Jolibois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Francois-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
32
|
Song H, Li D, Wang X, Fang E, Yang F, Hu A, Wang J, Guo Y, Liu Y, Li H, Chen Y, Huang K, Zheng L, Tong Q. HNF4A-AS1/hnRNPU/CTCF axis as a therapeutic target for aerobic glycolysis and neuroblastoma progression. J Hematol Oncol 2020; 13:24. [PMID: 32216806 PMCID: PMC7098112 DOI: 10.1186/s13045-020-00857-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aerobic glycolysis is a hallmark of metabolic reprogramming that contributes to tumor progression. However, the mechanisms regulating expression of glycolytic genes in neuroblastoma (NB), the most common extracranial solid tumor in childhood, still remain elusive. METHODS Crucial transcriptional regulators and their downstream glycolytic genes were identified by integrative analysis of a publicly available expression profiling dataset. In vitro and in vivo assays were undertaken to explore the biological effects and underlying mechanisms of transcriptional regulators in NB cells. Survival analysis was performed by using Kaplan-Meier method and log-rank test. RESULTS Hepatocyte nuclear factor 4 alpha (HNF4A) and its derived long noncoding RNA (HNF4A-AS1) promoted aerobic glycolysis and NB progression. Gain- and loss-of-function studies indicated that HNF4A and HNF4A-AS1 facilitated the glycolysis process, glucose uptake, lactate production, and ATP levels of NB cells. Mechanistically, transcription factor HNF4A increased the expression of hexokinase 2 (HK2) and solute carrier family 2 member 1 (SLC2A1), while HNF4A-AS1 bound to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with CCCTC-binding factor (CTCF), resulting in transactivation of CTCF and transcriptional alteration of HNF4A and other genes associated with tumor progression. Administration of a small peptide blocking HNF4A-AS1-hnRNPU interaction or lentivirus-mediated short hairpin RNA targeting HNF4A-AS1 significantly suppressed aerobic glycolysis, tumorigenesis, and aggressiveness of NB cells. In clinical NB cases, high expression of HNF4A-AS1, hnRNPU, CTCF, or HNF4A was associated with poor survival of patients. CONCLUSIONS These findings suggest that therapeutic targeting of HNF4A-AS1/hnRNPU/CTCF axis inhibits aerobic glycolysis and NB progression.
Collapse
Affiliation(s)
- Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| |
Collapse
|
33
|
Karagianni P, Moulos P, Schmidt D, Odom DT, Talianidis I. Bookmarking by Non-pioneer Transcription Factors during Liver Development Establishes Competence for Future Gene Activation. Cell Rep 2020; 30:1319-1328.e6. [PMID: 32023452 PMCID: PMC7003066 DOI: 10.1016/j.celrep.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 01/01/2023] Open
Abstract
Transcription factor binding to enhancer and promoter regions critical for homeostatic adult gene activation is established during development. To understand how cell-specific gene expression patterns are generated, we study the developmental timing of association of two prominent hepatic transcription factors with gene regulatory regions. Most individual binding events display extraordinarily high temporal variations during liver development. Early and persistent binding is necessary, but not sufficient, for gene activation. Stable gene expression patterns are the result of combinatorial activity of multiple transcription factors, which mark regulatory regions long before activation and promote progressive broadening of active chromatin domains. Both temporally stable and dynamic, short-lived binding events contribute to the developmental maturation of active promoter configurations. The results reveal a developmental bookmarking function of master regulators and illuminate remarkable parallels between the principles employed for gene activation during development, during evolution, and upon mitotic exit.
Collapse
Affiliation(s)
- Panagiota Karagianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Herakleion, Crete, Greece; Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | - Panagiotis Moulos
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Duncan T Odom
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Herakleion, Crete, Greece.
| |
Collapse
|
34
|
Cebola I. Liver gene regulatory networks: Contributing factors to nonalcoholic fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1480. [PMID: 32020788 DOI: 10.1002/wsbm.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Metabolic diseases such as nonalcoholic fatty liver disease (NAFLD) result from complex interactions between intrinsic and extrinsic factors, including genetics and exposure to obesogenic environments. These risk factors converge in aberrant gene expression patterns in the liver, which are underlined by altered cis-regulatory networks. In homeostasis and in disease states, liver cis-regulatory networks are established by coordinated action of liver-enriched transcription factors (TFs), which define enhancer landscapes, activating broad gene programs with spatiotemporal resolution. Recent advances in DNA sequencing have dramatically expanded our ability to map active transcripts, enhancers and TF cistromes, and to define the 3D chromatin topology that contains these elements. Deployment of these technologies has allowed investigation of the molecular processes that regulate liver development and metabolic homeostasis. Moreover, genomic studies of NAFLD patients and NAFLD models have demonstrated that the liver undergoes pervasive regulatory rewiring in NAFLD, which is reflected by aberrant gene expression profiles. We have therefore achieved an unprecedented level of detail in the understanding of liver cis-regulatory networks, particularly in physiological conditions. Future studies should aim to map active regulatory elements with added levels of resolution, addressing how the chromatin landscapes of different cell lineages contribute to and are altered in NAFLD and NAFLD-associated metabolic states. Such efforts would provide additional clues into the molecular factors that trigger this disease. This article is categorized under: Biological Mechanisms > Metabolism Biological Mechanisms > Regulatory Biology Laboratory Methods and Technologies > Genetic/Genomic Methods.
Collapse
Affiliation(s)
- Inês Cebola
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, UK
| |
Collapse
|
35
|
Tunçer S, Sade-Memişoğlu A, Keşküş AG, Sheraj I, Güner G, Akyol A, Banerjee S. Enhanced expression of HNF4α during intestinal epithelial differentiation is involved in the activation of ER stress. FEBS J 2019; 287:2504-2523. [PMID: 31762160 DOI: 10.1111/febs.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 01/19/2023]
Abstract
Intestinal epithelial cells are derived from stem cells at the crypts that undergo differentiation into transit-amplifying cells, which in turn form terminally differentiated enterocytes as these cells reach the villus. Extensive alterations in both transcriptional and translational programs occur during differentiation, which can induce the activation of cellular stress responses such as ER stress-related unfolded protein response (UPR) and autophagy, particularly in the cells that are already committed to becoming absorptive cells. Using an epithelial cell model of enterocyte differentiation, we report a mechanistic study connecting enterocyte differentiation to UPR and autophagy. We report that differentiated colon epithelial cells showed increased cytosolic Ca2+ levels and activation of all three pathways of UPR: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase, and activating transcription factor 6 (ATF6) compared to the undifferentiated cells. Enhanced UPR in the differentiated cells was accompanied by the induction of autophagy as evidenced by increased ratio of light chain 3 II/I, upregulation of Beclin-1, and downregulation of p62. We show for the first time that mechanistically, the upregulation of hepatocyte nuclear factor 4α (HNF4α) during differentiation led to increased promoter binding and transcriptional upregulation of two major proteins of UPR: X-box binding protein-1 and ATF6, implicating HNF4α as a key regulator of UPR response during differentiation. Integrating wet-lab with in silico analyses, the present study links differentiation to cellular stress responses, and highlights the importance of transcription factor signaling and cross-talk between the cellular events in the regulation of intestinal cell differentiation.
Collapse
Affiliation(s)
- Sinem Tunçer
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Aslı Sade-Memişoğlu
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ayşe Gökçe Keşküş
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Güneş Güner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey.,Department of Biological Sciences and Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi, Ankara, Turkey
| |
Collapse
|
36
|
Pan Y, Ke Z, Ye H, Sun L, Ding X, Shen Y, Zhang R, Yuan J. Saikosaponin C exerts anti-HBV effects by attenuating HNF1α and HNF4α expression to suppress HBV pgRNA synthesis. Inflamm Res 2019; 68:1025-1034. [PMID: 31531682 PMCID: PMC7079752 DOI: 10.1007/s00011-019-01284-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Saikosaponin c (SSc), a compound purified from the traditional Chinese herb of Radix Bupleuri was previously identified to exhibit anti-HBV replication activity. However, the mechanism through which SSc acts against HBV remains unknown. In this study, we investigated the mechanism of SSc mediated anti-HBV activity. Methods HepG2.2.15 cells were cultured at 37 ℃ in the presence of 1–40 μg/mL of SSc or DMSO as a control. The expression profile of HBV markers, cytokines, HNF1α and HNF4α were investigated by real-time quantitative PCR, Elisa, Western blot and Dot blotting. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells was mediated by two small siRNAs specifically targeting HNF1α or HNF4α. Results We found that SSc stimulates IL-6 expression, leading to attenuated HNF1α and HNF4α expression, which further mediates suppression of HBV pgRNA synthesis. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells by RNA interference abrogates SSc’s anti-HBV role. Moreover, SSc is effective to both wild-type and drug-resistant HBV mutants. Conclusion SSc inhibits pgRNA synthesis by targeting HNF1α and HNF4α. These results indicate that SSc acts as a promising compound for modulating pgRNA transcription in the therapeutic strategies against HBV infection. Electronic supplementary material The online version of this article (10.1007/s00011-019-01284-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanchao Pan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Zhiyi Ke
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Hong Ye
- Anhui Academy of Medical Sciences, Hefei, 230061, China
| | - Lina Sun
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaoyan Ding
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yun Shen
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Runze Zhang
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Jing Yuan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| |
Collapse
|