1
|
Verschuren J, van Schendel R, van Bostelen I, Verkennis AEE, Knipscheer P, Tijsterman M. FAN1-mediated translesion synthesis and POLQ/HELQ-mediated end joining generate interstrand crosslink-induced mutations. Nat Commun 2025; 16:2495. [PMID: 40082407 PMCID: PMC11906846 DOI: 10.1038/s41467-025-57764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
To counteract the damaging effects of DNA interstrand crosslinks (ICLs), cells have evolved various specialized ICL repair pathways. However, how ICL repair impacts genetic integrity remains incompletely understood. Here, we determined the mutagenic consequences of psoralen ICL repair in the animal model C. elegans and identify two mutagenic repair mechanisms: (i) translesion synthesis through POLH and REV1/3-mediated bypass, leading to single nucleotide polymorphisms (SNVs), and (ii) end joining via POLQ or HELQ action resulting in deletions. While we found no role for the Fanconi anemia genes FANCD2 and FANCI, disruption of TRAIP, which triggers unloading of the CMG helicase at sites of blocked replication, led to a strikingly altered repair profile, suggesting a role for DNA replication in the etiology of ICL-induced deletions. TRAIP deficiency did not affect SNV formation; instead, we found these SNVs to depend on the functionality of the Fanconi anemia-associated nuclease FAN1.
Collapse
Affiliation(s)
- Jip Verschuren
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ivo van Bostelen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alex E E Verkennis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Puck Knipscheer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Kutz J, Schmietendorf H, Rahman SA, Opel F, Pospiech H. HROB Is Implicated in DNA Replication. Genes (Basel) 2024; 15:1587. [PMID: 39766854 PMCID: PMC11675949 DOI: 10.3390/genes15121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair. We identified HROB independently as a nuclear protein whose expression is co-regulated with various DNA replication factors. Accordingly, the HROB protein level showed a maximum in S phase and a downregulation in quiescence. Structural prediction and homology searches revealed that HROB is a largely intrinsically disordered protein bearing a helix-rich region and a canonical oligonucleotide/oligosaccharide-binding-fold motif that originated early in eukaryotic evolution. Employing a flow cytometry Förster resonance energy transfer (FRET) assay, we detected associations between HROB and proteins of the DNA replication machinery. Moreover, ectopic expression of HROB protein led to an almost complete shutdown of DNA replication. The available data imply a function for HROB during DNA replication across barriers such as ICLs.
Collapse
Affiliation(s)
- Julia Kutz
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Hannes Schmietendorf
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Sheikh Anika Rahman
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Franz Opel
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Department of Medical Engineering and Biotechnology, Ernst-Abbe University of Applied Sciences, D-07745 Jena, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
- Department of Obstetrics and Gynecology, University Hospital Düsseldorf and Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Jahjah T, Singh JK, Gottifredi V, Quinet A. Tolerating DNA damage by repriming: Gap filling in the spotlight. DNA Repair (Amst) 2024; 142:103758. [PMID: 39236419 DOI: 10.1016/j.dnarep.2024.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Timely and accurate DNA replication is critical for safeguarding genome integrity and ensuring cell viability. Yet, this process is challenged by DNA damage blocking the progression of the replication machinery. To counteract replication fork stalling, evolutionary conserved DNA damage tolerance (DDT) mechanisms promote DNA damage bypass and fork movement. One of these mechanisms involves "skipping" DNA damage through repriming downstream of the lesion, leaving single-stranded DNA (ssDNA) gaps behind the advancing forks (also known as post-replicative gaps). In vertebrates, repriming in damaged leading templates is proposed to be mainly promoted by the primase and polymerase PRIMPOL. In this review, we discuss recent advances towards our understanding of the physiological and pathological conditions leading to repriming activation in human models, revealing a regulatory network of PRIMPOL activity. Upon repriming by PRIMPOL, post-replicative gaps formed can be filled-in by the DDT mechanisms translesion synthesis and template switching. We discuss novel findings on how these mechanisms are regulated and coordinated in time to promote gap filling. Finally, we discuss how defective gap filling and aberrant gap expansion by nucleases underlie the cytotoxicity associated with post-replicative gap accumulation. Our increasing knowledge of this repriming mechanism - from gap formation to gap filling - is revealing that targeting the last step of this pathway is a promising approach to exploit post-replicative gaps in anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Tiya Jahjah
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France
| | - Jenny K Singh
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France
| | - Vanesa Gottifredi
- Fundación Instituto Leloir, IIBBA, CONICET, Buenos Aires 1405, Argentina
| | - Annabel Quinet
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses F-92265, France.
| |
Collapse
|
4
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
5
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
6
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
7
|
Liu Z, Jiang H, Lee SY, Kong N, Chan YW. FANCM promotes PARP inhibitor resistance by minimizing ssDNA gap formation and counteracting resection inhibition. Cell Rep 2024; 43:114464. [PMID: 38985669 DOI: 10.1016/j.celrep.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.
Collapse
Affiliation(s)
- Zeyuan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Yuen Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
8
|
Arakawa J, Kondoh H, Matsushita T, Ogino Y, Asai M, Tanuma SI, Uchiumi F. Induction of the human CDC45 gene promoter activity by natural compound trans‑resveratrol. Mol Med Rep 2024; 29:92. [PMID: 38577929 PMCID: PMC11025027 DOI: 10.3892/mmr.2024.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
GGAA motifs in the human TP53 and HELB gene promoters play a part in responding to trans‑resveratrol (Rsv) in HeLa S3 cells. This sequence is also present in the 5'‑upstream region of the human CDC45 gene, which encodes a component of CMG DNA helicase protein complex. The cells were treated with Rsv (20 µM), then transcripts and the translated protein were analyzed by quantitative RT‑PCR and western blotting, respectively. The results showed that the CDC45 gene and protein expression levels were induced after the treatment. To examine whether they were due to the activation of transcription, a 5'‑upstream 556‑bp of the CDC45 gene was cloned and inserted into a multi‑cloning site of the Luciferase (Luc) expression vector. In the present study, various deletion/point mutation‑introduced Luc expression plasmids were constructed and they were used for the transient transfection assay. The results showed that the GGAA motif, which is included in a putative RELB protein recognizing sequence, plays a part in the promoter activity with response to Rsv in HeLa S3 cells.
Collapse
Affiliation(s)
- Jun Arakawa
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hikaru Kondoh
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Tokiyoshi Matsushita
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoko Ogino
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masashi Asai
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Laboratory of Kampo Pharmacology, Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama, Kanagawa 245-0066, Japan
| | - Sei-Ichi Tanuma
- Genomic Medicinal Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
9
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. The Response of the Replication Apparatus to Leading Template Strand Blocks. Cells 2023; 12:2607. [PMID: 37998342 PMCID: PMC10670059 DOI: 10.3390/cells12222607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Duplication of the genome requires the replication apparatus to overcome a variety of impediments, including covalent DNA adducts, the most challenging of which is on the leading template strand. Replisomes consist of two functional units, a helicase to unwind DNA and polymerases to synthesize it. The helicase is a multi-protein complex that encircles the leading template strand and makes the first contact with a leading strand adduct. The size of the channel in the helicase would appear to preclude transit by large adducts such as DNA: protein complexes (DPC). Here we discuss some of the extensively studied pathways that support replication restart after replisome encounters with leading template strand adducts. We also call attention to recent work that highlights the tolerance of the helicase for adducts ostensibly too large to pass through the central channel.
Collapse
Affiliation(s)
| | | | | | | | - Michael M. Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (M.A.B.)
| |
Collapse
|
10
|
Hashimoto Y, Sadano K, Miyata N, Ito H, Tanaka H. Novel role of DONSON in CMG helicase assembly during vertebrate DNA replication initiation. EMBO J 2023; 42:e114131. [PMID: 37458194 PMCID: PMC10476173 DOI: 10.15252/embj.2023114131] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023] Open
Abstract
CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system. We found that DONSON was essential for the replisome assembly. In vertebrates, DONSON physically interacted with GINS and Polε via its conserved N-terminal PGY and NPF motifs, and the DONSON-GINS interaction contributed to the replisome assembly. DONSON's chromatin association during replication initiation required the pre-replicative complex, TopBP1, and kinase activities of S-CDK and DDK. Both S-CDK and DDK required DONSON to trigger replication initiation. Moreover, human DONSON could substitute for the Xenopus protein in a cell-free system. These findings indicate that vertebrate DONSON is a novel initiator protein essential for CMG helicase assembly.
Collapse
Affiliation(s)
- Yoshitami Hashimoto
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kota Sadano
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Nene Miyata
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Haruka Ito
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Hirofumi Tanaka
- School of Life SciencesTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
11
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
12
|
Airik M, Phua YL, Huynh AB, McCourt BT, Rush BM, Tan RJ, Vockley J, Murray SL, Dorman A, Conlon PJ, Airik R. Persistent DNA damage underlies tubular cell polyploidization and progression to chronic kidney disease in kidneys deficient in the DNA repair protein FAN1. Kidney Int 2022; 102:1042-1056. [PMID: 35931300 PMCID: PMC9588672 DOI: 10.1016/j.kint.2022.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Defective DNA repair pathways contribute to the development of chronic kidney disease (CKD) in humans. However, the molecular mechanisms underlying DNA damage-induced CKD pathogenesis are not well understood. Here, we investigated the role of tubular cell DNA damage in the pathogenesis of CKD using mice in which the DNA repair protein Fan1 was knocked out. The phenotype of these mice is orthologous to the human DNA damage syndrome, karyomegalic interstitial nephritis (KIN). Inactivation of Fan1 in kidney proximal tubule cells sensitized the kidneys to genotoxic and obstructive injury characterized by replication stress and persistent DNA damage response activity. Accumulation of DNA damage in Fan1 tubular cells induced epithelial dedifferentiation and tubular injury. Characteristic to KIN, cells with chronic DNA damage failed to complete mitosis and underwent polyploidization. In vitro and in vivo studies showed that polyploidization was caused by the overexpression of DNA replication factors CDT1 and CDC6 in FAN1 deficient cells. Mechanistically, inhibiting DNA replication with Roscovitine reduced tubular injury, blocked the development of KIN and mitigated kidney function in these Fan1 knockout mice. Thus, our data delineate a mechanistic pathway by which persistent DNA damage in the kidney tubular cells leads to kidney injury and development of CKD. Furthermore, therapeutic modulation of cell cycle activity may provide an opportunity to mitigate the DNA damage response induced CKD progression.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Leng Phua
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy B Huynh
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Blake T McCourt
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Susan L Murray
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anthony Dorman
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology, Beaumont Hospital and Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
13
|
Zhang Y, Li J, Zhou Y, Li Z, Peng C, Pei H, Zhu W. And-1 Coordinates with the FANCM Complex to Regulate Fanconi Anemia Signaling and Cisplatin Resistance. Cancer Res 2022; 82:3249-3262. [PMID: 35867033 PMCID: PMC9481708 DOI: 10.1158/0008-5472.can-22-0769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
The Fanconi anemia (FA) pathway is essential for repairing DNA interstrand crosslinks (ICL). ICLs induce stalled DNA replication forks and trigger activation of the FA pathway by promoting recruitment of the FANCM/FAAP24/MHF complex to ICL sites. Given that stalled replication forks are proximal to ICL sites, fork-associated proteins may coordinate with FA factors to rapidly sense ICLs for activation of FA signaling. Here we report that And-1, a replisome protein, is critical for activation of the FA pathway by sensing ICL-stalled forks and recruiting the FANCM/FAAP24 complex to ICLs. In response to ICLs, And-1 rapidly accumulated at ICL-stalled forks in a manner dependent on ataxia telangiectasia and Rad3-related protein-induced phosphorylation at T826. And-1 phosphorylation triggered an intramolecular change that promoted the interaction of And-1 with FANCM/FAAP24, resulting in recruitment of the FANCM/FAAP24 complex to ICLs. Furthermore, p-T826 And-1 was elevated in cisplatin-resistant ovarian cancer cells, and activated And-1 contributed to cisplatin resistance. Collectively, these studies elucidate a mechanism by which And-1 regulates FA signaling and identify And-1 as a potential target for developing therapeutic approaches to treat platinum-resistant ovarian cancer. SIGNIFICANCE This work shows that phosphorylation of And-1 by ATR activates Fanconi anemia signaling at interstrand crosslink-stalled replication forks by recruiting the FANCM/FAAP24 complex, revealing And-1 as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Jing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Yuan Zhou
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Huadong Pei
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
14
|
Yang N, Lu X, Jiang Y, Zhao L, Wang D, Wei Y, Yu Y, Kim MO, Laster KV, Li X, Yuan B, Dong Z, Liu K. Arbidol inhibits human esophageal squamous cell carcinoma growth in vitro and in vivo through suppressing ataxia telangiectasia and Rad3-related protein kinase. eLife 2022; 11:73953. [PMID: 36082941 PMCID: PMC9512399 DOI: 10.7554/elife.73953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
Human esophageal cancer has a global impact on human health due to its high incidence and mortality. Therefore, there is an urgent need to develop new drugs to treat or prevent the prominent pathological subtype of esophageal cancer, esophageal squamous cell carcinoma (ESCC). Based upon the screening of drugs approved by the Food and Drug Administration, we discovered that Arbidol could effectively inhibit the proliferation of human ESCC in vitro. Next, we conducted a series of cell-based assays and found that Arbidol treatment inhibited the proliferation and colony formation ability of ESCC cells and promoted G1-phase cell cycle arrest. Phosphoproteomics experiments, in vitro kinase assays and pull-down assays were subsequently performed in order to identify the underlying growth inhibitory mechanism. We verified that Arbidol is a potential ataxia telangiectasia and Rad3-related (ATR) inhibitor via binding to ATR kinase to reduce the phosphorylation and activation of minichromosome maintenance protein 2 at Ser108. Finally, we demonstrated Arbidol had the inhibitory effect of ESCC in vivo by a patient-derived xenograft model. All together, Arbidol inhibits the proliferation of ESCC in vitro and in vivo through the DNA replication pathway and is associated with the cell cycle.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pathophysiology, Zhengzhou University
| | - Xuebo Lu
- Department of Pathophysiology, Zhengzhou University
| | - Yanan Jiang
- Department of Pathophysiology, Zhengzhou University
| | - Lili Zhao
- Department of Pathophysiology, Zhengzhou University
| | - Donghao Wang
- Department of Pathophysiology, Zhengzhou University
| | - Yaxing Wei
- Department of Pathophysiology, Zhengzhou University
| | - Yin Yu
- Department of Pathophysiology, Zhengzhou University
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University
| | | | - Xin Li
- Department of Pathophysiology, Zhengzhou University
| | - Baoyin Yuan
- Department of Pathophysiology, Zhengzhou University
| | - Zigang Dong
- Department of Pathophysiology, Zhengzhou University
| | - Kangdong Liu
- Department of Pathophysiology, Zhengzhou University
| |
Collapse
|
15
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
16
|
Elango R, Panday A, Lach FP, Willis NA, Nicholson K, Duffey EE, Smogorzewska A, Scully R. The structure-specific endonuclease complex SLX4-XPF regulates Tus-Ter-induced homologous recombination. Nat Struct Mol Biol 2022; 29:801-812. [PMID: 35941380 PMCID: PMC9941964 DOI: 10.1038/s41594-022-00812-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/05/2022] [Indexed: 02/08/2023]
Abstract
Vertebrate replication forks arrested at interstrand DNA cross-links (ICLs) engage the Fanconi anemia pathway to incise arrested forks, 'unhooking' the ICL and forming a double strand break (DSB) that is repaired by homologous recombination (HR). The FANCP product, SLX4, in complex with the XPF (also known as FANCQ or ERCC4)-ERCC1 endonuclease, mediates ICL unhooking. Whether this mechanism operates at replication fork barriers other than ICLs is unknown. Here, we study the role of mouse SLX4 in HR triggered by a site-specific chromosomal DNA-protein replication fork barrier formed by the Escherichia coli-derived Tus-Ter complex. We show that SLX4-XPF is required for Tus-Ter-induced HR but not for error-free HR induced by a replication-independent DSB. We additionally uncover a role for SLX4-XPF in DSB-induced long-tract gene conversion, an error-prone HR pathway related to break-induced replication. Notably, Slx4 and Xpf mutants that are defective for Tus-Ter-induced HR are hypersensitive to ICLs and also to the DNA-protein cross-linking agents 5-aza-2'-deoxycytidine and zebularine. Collectively, these findings show that SLX4-XPF can process DNA-protein fork barriers for HR and that the Tus-Ter system recapitulates this process.
Collapse
Affiliation(s)
- Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kaitlin Nicholson
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Erin E Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY, USA
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
A Small Molecule That Promotes Cellular Senescence Prevents Fibrogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23126852. [PMID: 35743290 PMCID: PMC9224374 DOI: 10.3390/ijms23126852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
Uncontrolled proliferative diseases, such as fibrosis or cancer, can be fatal. We previously found that a compound containing the chromone scaffold (CS), ONG41008, had potent antifibrogenic effects associated with EMT or cell-cycle control resembling tumorigenesis. We investigated the effects of ONG41008 on tumor cells and compared these effects with those in pathogenic myofibroblasts. Stimulation of A549 (lung carcinoma epithelial cells) or PANC1 (pancreatic ductal carcinoma cells) with ONG41008 resulted in robust cellular senescence, indicating that dysregulated cell proliferation is common to fibrotic cells and tumor cells. The senescence was followed by multinucleation, a manifestation of mitotic slippage. There was significant upregulation of expression and rapid nuclear translocation of p-TP53 and p16 in the treated cancer cells, which thereafter died after 72 h confirmed by 6 day live imaging. ONG41008 exhibited a comparable senogenic potential to that of dasatinib. Interestingly, ONG41008 was only able to activate caspase-3, 7 in comparison with quercetin and fisetin, also containing CS in PANC1. ONG41008 did not seem to be essentially toxic to normal human lung fibroblasts or primary prostate epithelial cells, suggesting ONG41008 can distinguish the intracellular microenvironment between normal cells and aged or diseased cells. This effect might occur as a result of the increased NAD/NADH ratio, because ONG41008 restored this important metabolic ratio in cancer cells. Taken together, this is the first study to demonstrate that a small molecule can arrest uncontrolled proliferation during fibrogenesis or tumorigenesis via both senogenic and senolytic potential. ONG41008 could be a potential drug for a broad range of fibrotic or tumorigenic diseases.
Collapse
|
18
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
19
|
Thakur BL, Baris AM, Fu H, Redon CE, Pongor L, Mosavarpour S, Gross J, Jang SM, Sebastian R, Utani K, Jenkins L, Indig F, Aladjem M. Convergence of SIRT1 and ATR signaling to modulate replication origin dormancy. Nucleic Acids Res 2022; 50:5111-5128. [PMID: 35524559 PMCID: PMC9122590 DOI: 10.1093/nar/gkac299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2023] Open
Abstract
During routine genome duplication, many potential replication origins remain inactive or 'dormant'. Such origin dormancy is achieved, in part, by an interaction with the metabolic sensor SIRT1 deacetylase. We report here that dormant origins are a group of consistent, pre-determined genomic sequences that are distinguished from baseline (i.e. ordinarily active) origins by their preferential association with two phospho-isoforms of the helicase component MCM2. During normal unperturbed cell growth, baseline origins, but not dormant origins, associate with a form of MCM2 that is phosphorylated by DBF4-dependent kinase (DDK) on serine 139 (pS139-MCM2). This association facilitates the initiation of DNA replication from baseline origins. Concomitantly, SIRT1 inhibits Ataxia Telangiectasia and Rad3-related (ATR)-kinase-mediated phosphorylation of MCM2 on serine 108 (pS108-MCM2) by deacetylating the ATR-interacting protein DNA topoisomerase II binding protein 1 (TOPBP1), thereby preventing ATR recruitment to chromatin. In cells devoid of SIRT1 activity, or challenged by replication stress, this inhibition is circumvented, enabling ATR-mediated S108-MCM2 phosphorylation. In turn, pS108-MCM2 enables DDK-mediated phosphorylation on S139-MCM2 and facilitates replication initiation at dormant origins. These observations suggest that replication origin dormancy and activation are regulated by distinct post-translational MCM modifications that reflect a balance between SIRT1 activity and ATR signaling.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Adrian M Baris
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sara Mosavarpour
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Jacob M Gross
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA
| |
Collapse
|
20
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
21
|
Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel) 2021; 12:genes12121960. [PMID: 34946909 PMCID: PMC8701046 DOI: 10.3390/genes12121960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Accurate and complete genome replication is a fundamental cellular process for the proper transfer of genetic material to cell progenies, normal cell growth, and genome stability. However, a plethora of extrinsic and intrinsic factors challenge individual DNA replication forks and cause replication stress (RS), a hallmark of cancer. When challenged by RS, cells deploy an extensive range of mechanisms to safeguard replicating genomes and limit the burden of DNA damage. Prominent among those is homologous recombination (HR). Although fundamental to cell division, evidence suggests that cancer cells exploit and manipulate these RS responses to fuel their evolution and gain resistance to therapeutic interventions. In this review, we focused on recent insights into HR-mediated protection of stress-induced DNA replication intermediates, particularly the repair and protection of daughter strand gaps (DSGs) that arise from discontinuous replication across a damaged DNA template. Besides mechanistic underpinnings of this process, which markedly differ depending on the extent and duration of RS, we highlight the pathophysiological scenarios where DSG repair is naturally silenced. Finally, we discuss how such pathophysiological events fuel rampant mutagenesis, promoting cancer evolution, but also manifest in adaptative responses that can be targeted for cancer therapy.
Collapse
|
22
|
Akter J, Katai Y, Sultana P, Takenobu H, Haruta M, Sugino RP, Mukae K, Satoh S, Wada T, Ohira M, Ando K, Kamijo T. Loss of p53 suppresses replication stress-induced DNA damage in ATRX-deficient neuroblastoma. Oncogenesis 2021; 10:73. [PMID: 34743173 PMCID: PMC8572175 DOI: 10.1038/s41389-021-00363-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic aberrations are present in the ATRX gene in older high-risk neuroblastoma (NB) patients with very poor clinical outcomes. Its loss-of-function (LoF) facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells and is strongly linked to replication stress (RS) and DNA damage through G-quadruplex (G4) DNA secondary structures. However, limited information is available on ATRX alteration-related NB tumorigenesis. We herein knocked out (KO) ATRX in MYCN-amplified (NGP) and MYCN single copy (SK-N-AS) NB cells with wild-type (wt) and truncated TP53 at the C terminus, respectively, using CRISPR/Cas9 technologies. The loss of ATRX increased DNA damage and G4 formation related to RS in TP53 wt isogenic ATRX KO NGP cells, but not in SK-N-AS clones. A gene set enrichment analysis (GSEA) showed that the gene sets related to DNA double-strand break repair, negative cell cycle regulation, the G2M checkpoint, and p53 pathway activation were enriched in NGP clones. The accumulation of DNA damage activated the ATM/CHK2/p53 pathway, leading to cell cycle arrest in NGP clones. Interestingly, ATRX loss did not induce RS related to DNA damage response (DDR) in TP53-truncated SK-N-AS cells. p53 inactivation abrogated cell cycle arrest and reduced G4 accumulation in NGP clones. The loss of p53 also induced G4 DNA helicases or Fanconi anemia group D2 protein (FANCD2) with ATRX deficiency, suggesting that ATRX maintained genome integrity and p53 deficiency attenuated RS-induced DNA damage in NB cells featuring inactivated ATRX by regulating DNA repair mechanisms and replication fork stability.
Collapse
Affiliation(s)
- Jesmin Akter
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Yutaka Katai
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Parvin Sultana
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan.,Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ryuichi P Sugino
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Shunpei Satoh
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Tomoko Wada
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan. .,Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| |
Collapse
|
23
|
Yoshida K, Fujita M. DNA damage responses that enhance resilience to replication stress. Cell Mol Life Sci 2021; 78:6763-6773. [PMID: 34463774 PMCID: PMC11072782 DOI: 10.1007/s00018-021-03926-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
During duplication of the genome, eukaryotic cells may experience various exogenous and endogenous replication stresses that impede progression of DNA replication along chromosomes. Chemical alterations in template DNA, imbalances of deoxynucleotide pools, repetitive sequences, tight DNA-protein complexes, and conflict with transcription can negatively affect the replication machineries. If not properly resolved, stalled replication forks can cause chromosome breaks leading to genomic instability and tumor development. Replication stress is enhanced in cancer cells due, for example, to the loss of DNA repair genes or replication-transcription conflict caused by activation of oncogenic pathways. To prevent these serious consequences, cells are equipped with diverse mechanisms that enhance the resilience of replication machineries to replication stresses. This review describes DNA damage responses activated at stressed replication forks and summarizes current knowledge on the pathways that promote faithful chromosome replication and protect chromosome integrity, including ATR-dependent replication checkpoint signaling, DNA cross-link repair, and SLX4-mediated responses to tight DNA-protein complexes that act as barriers. This review also focuses on the relevance of replication stress responses to selective cancer chemotherapies.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Katsuki Y, Abe M, Park SY, Wu W, Yabe H, Yabe M, van Attikum H, Nakada S, Ohta T, Seidman MM, Kim Y, Takata M. RNF168 E3 ligase participates in ubiquitin signaling and recruitment of SLX4 during DNA crosslink repair. Cell Rep 2021; 37:109879. [PMID: 34706224 PMCID: PMC11388903 DOI: 10.1016/j.celrep.2021.109879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/24/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
SLX4/FANCP is a key Fanconi anemia (FA) protein and a DNA repair scaffold for incision around a DNA interstrand crosslink (ICL) by its partner XPF nuclease. The tandem UBZ4 ubiquitin-binding domains of SLX4 are critical for the recruitment of SLX4 to damage sites, likely by binding to K63-linked polyubiquitin chains. However, the identity of the ubiquitin E3 ligase that mediates SLX4 recruitment remains unknown. Using small interfering RNA (siRNA) screening with a GFP-tagged N-terminal half of SLX4 (termed SLX4-N), we identify the RNF168 E3 ligase as a critical factor for mitomycin C (MMC)-induced SLX4 foci formation. RNF168 and GFP-SLX4-N colocalize in MMC-induced ubiquitin foci. Accumulation of SLX4-N at psoralen-laser ICL tracks or of endogenous SLX4 at Digoxigenin-psoralen/UVA ICL is dependent on RNF168. Finally, we find that RNF168 is epistatic with SLX4 in promoting MMC tolerance. We conclude that RNF168 is a critical component of the signal transduction that recruits SLX4 to ICL damage.
Collapse
Affiliation(s)
- Yoko Katsuki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Masako Abe
- The Core Facility, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
25
|
Zhang J, Bellani MA, Huang J, James RC, Pokharel D, Gichimu J, Gali H, Stewart G, Seidman MM. Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin. Front Cell Dev Biol 2021; 9:729265. [PMID: 34532320 PMCID: PMC8438199 DOI: 10.3389/fcell.2021.729265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Replisomes follow a schedule in which replication of DNA in euchromatin is early in S phase while sequences in heterochromatin replicate late. Impediments to DNA replication, referred to as replication stress, can stall replication forks triggering activation of the ATR kinase and downstream pathways. While there is substantial literature on the local consequences of replisome stalling-double strand breaks, reversed forks, or genomic rearrangements-there is limited understanding of the determinants of replisome stalling vs. continued progression. Although many proteins are recruited to stalled replisomes, current models assume a single species of "stressed" replisome, independent of genomic location. Here we describe our approach to visualizing replication fork encounters with the potent block imposed by a DNA interstrand crosslink (ICL) and our discovery of an unexpected pathway of replication restart (traverse) past an intact ICL. Additionally, we found two biochemically distinct replisomes distinguished by activity in different stages of S phase and chromatin environment. Each contains different proteins that contribute to ICL traverse.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Institute for Advanced Study, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Marina A. Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, China
| | - Ryan C. James
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Durga Pokharel
- Horizon Discovery Group plc, Lafayette, CO, United States
| | - Julia Gichimu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Himabindu Gali
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Grant Stewart
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, United Kingdom
| | - Michael M. Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
26
|
Scully R, Elango R, Panday A, Willis NA. Recombination and restart at blocked replication forks. Curr Opin Genet Dev 2021; 71:154-162. [PMID: 34464818 DOI: 10.1016/j.gde.2021.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 01/07/2023]
Abstract
Replication fork stalling occurs when the replisome encounters a barrier to normal fork progression. Replisome stalling events are common during scheduled DNA synthesis, but vary in their severity. At one extreme, a lesion may induce only temporary pausing of a DNA polymerase; at the other, it may present a near-absolute barrier to the replicative helicase and effectively block fork progression. Many alternative pathways have evolved to respond to these different types of replication stress. Among these, the homologous recombination (HR) pathway plays an important role, protecting the stalled fork and processing it for repair. Here, we review recent advances in our understanding of how blocked replication forks in vertebrate cells can be processed for recombination and for replication restart.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
27
|
Ninou AH, Lehto J, Chioureas D, Stigsdotter H, Schelzig K, Åkerlund E, Gudoityte G, Joneborg U, Carlson J, Jonkers J, Seashore-Ludlow B, Gustafsson NMS. PFKFB3 Inhibition Sensitizes DNA Crosslinking Chemotherapies by Suppressing Fanconi Anemia Repair. Cancers (Basel) 2021; 13:cancers13143604. [PMID: 34298817 PMCID: PMC8306909 DOI: 10.3390/cancers13143604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary DNA-damaging chemotherapeutics, such as platinum drugs, are cornerstones in cancer treatment. The efficacy of such treatment is intimately linked to the DNA repair capacity of the cancer cells, as DNA damage above a tolerable threshold culminates in cell death. Cancer cells often have deregulated DNA repair mechanisms, making them initially more sensitive to DNA-damaging chemotherapies. Unfortunately, over time, cancer cells often develop resistance to such treatments by rewiring their DNA damage response pathways. Here, we identify that targeting the recognized anti-cancer target 6-phosphofructo-2-kinase/fructose-2,6,-bisphophatase 3 (PFKFB3), commonly overexpressed in cancer, with the small molecule inhibitor KAN0438757, selectively sensitizes cancer cells to platinum drugs, including treatment-resistant cancer cells, while sparing normal cells. Mechanistically, PFKFB3 promotes tolerance to and the repair of platinum-induced DNA interstrand crosslinks (ICLs) through modulation of the Fanconi anemia (FA) DNA repair pathway. Thus targeting PFKFB3 opens up therapeutic possibilities to improve the efficacy of ICL-inducing cancer treatments. Abstract Replicative repair of interstrand crosslinks (ICL) generated by platinum chemotherapeutics is orchestrated by the Fanconi anemia (FA) repair pathway to ensure resolution of stalled replication forks and the maintenance of genomic integrity. Here, we identify novel regulation of FA repair by the cancer-associated glycolytic enzyme PFKFB3 that has functional consequences for replication-associated ICL repair and cancer cell survival. Inhibition of PFKFB3 displays a cancer-specific synergy with platinum compounds in blocking cell viability and restores sensitivity in treatment-resistant models. Notably, the synergies are associated with DNA-damage-induced chromatin association of PFKFB3 upon cancer transformation, which further increases upon platinum resistance. FA pathway activation triggers the PFKFB3 assembly into nuclear foci in an ATR- and FANCM-dependent manner. Blocking PFKFB3 activity disrupts the assembly of key FA repair factors and consequently prevents fork restart. This results in an incapacity to replicate cells to progress through S-phase, an accumulation of DNA damage in replicating cells, and fork collapse. We further validate PFKFB3-dependent regulation of FA repair in ex vivo cultures from cancer patients. Collectively, targeting PFKFB3 opens up therapeutic possibilities to improve the efficacy of ICL-inducing cancer treatments.
Collapse
Affiliation(s)
- Anna Huguet Ninou
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
- Kancera AB, Karolinska Science Park, 171 48 Solna, Sweden
| | - Jemina Lehto
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
- Kancera AB, Karolinska Science Park, 171 48 Solna, Sweden
| | - Dimitrios Chioureas
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
| | - Hannah Stigsdotter
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
| | - Korbinian Schelzig
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
| | - Emma Åkerlund
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
| | - Greta Gudoityte
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
| | - Ulrika Joneborg
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 21 Stockholm, Sweden;
| | - Joseph Carlson
- Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden;
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jos Jonkers
- Oncode Institute and Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands;
| | - Brinton Seashore-Ludlow
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
| | - Nina Marie Susanne Gustafsson
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 21 Stockholm, Sweden; (A.H.N.); (J.L.); (D.C.); (H.S.); (K.S.); (E.Å.); (G.G.); (B.S.-L.)
- Correspondence:
| |
Collapse
|
28
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
29
|
González-Acosta D, Blanco-Romero E, Ubieto-Capella P, Mutreja K, Míguez S, Llanos S, García F, Muñoz J, Blanco L, Lopes M, Méndez J. PrimPol-mediated repriming facilitates replication traverse of DNA interstrand crosslinks. EMBO J 2021; 40:e106355. [PMID: 34128550 PMCID: PMC8280817 DOI: 10.15252/embj.2020106355] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) induced by endogenous aldehydes or chemotherapeutic agents interfere with essential processes such as replication and transcription. ICL recognition and repair by the Fanconi Anemia pathway require the formation of an X‐shaped DNA structure that may arise from convergence of two replication forks at the crosslink or traversing of the lesion by a single replication fork. Here, we report that ICL traverse strictly requires DNA repriming events downstream of the lesion, which are carried out by PrimPol, the second primase‐polymerase identified in mammalian cells after Polα/Primase. The recruitment of PrimPol to the vicinity of ICLs depends on its interaction with RPA, but not on FANCM translocase or the BLM/TOP3A/RMI1‐2 (BTR) complex that also participate in ICL traverse. Genetic ablation of PRIMPOL makes cells more dependent on the fork convergence mechanism to initiate ICL repair, and PRIMPOL KO cells and mice display hypersensitivity to ICL‐inducing drugs. These results open the possibility of targeting PrimPol activity to enhance the efficacy of chemotherapy based on DNA crosslinking agents.
Collapse
Affiliation(s)
- Daniel González-Acosta
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Patricia Ubieto-Capella
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Karun Mutreja
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Samuel Míguez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Susana Llanos
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fernando García
- Proteomics Unit-ProteoRed-ISCIII, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit-ProteoRed-ISCIII, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
30
|
Abstract
DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
Collapse
Affiliation(s)
- Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31
|
Panday A, Willis NA, Elango R, Menghi F, Duffey EE, Liu ET, Scully R. FANCM regulates repair pathway choice at stalled replication forks. Mol Cell 2021; 81:2428-2444.e6. [PMID: 33882298 DOI: 10.1016/j.molcel.2021.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023]
Abstract
Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Erin E Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
32
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
33
|
James RC, Bellani MA, Zhang J, Huang J, Shaik A, Pokharel D, Gali H, Gichimu J, Thazhathveetil AK, Seidman MM. Visualizing replication fork encounters with DNA interstrand crosslinks. Methods Enzymol 2021; 661:53-75. [PMID: 34776223 PMCID: PMC10035509 DOI: 10.1016/bs.mie.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Replication forks encounter numerous challenges as they move through eu- and hetero-chromatin during S phase in mammalian cells. These include a variety of impediments to the unwinding of DNA by the replicative helicase such as alternate DNA structures, transcription complexes and R-loops, DNA-protein complexes, and DNA chemical adducts. Much of our knowledge of these events is based on analysis of markers of the replication stress and DNA Damage Response that follow stalling of replisomes. To examine consequences for the replisomes more directly, we developed an approach for imaging collisions of replication forks with the potent block presented by an interstrand crosslink (ICL). The strategy is based on the visualization on DNA fibers of the encounter of replication tracts and an antigen tagged ICL. Our studies revealed an unexpected restart of DNA synthesis past an intact ICL. In addition, and also unexpected, we found two distinct versions of the replisome, one biased toward euchromatin and the other more prominent in heterochromatin. Here, we present details of our experimental procedures that led to these observations.
Collapse
Affiliation(s)
- Ryan C James
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | | | - Himabindu Gali
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Julia Gichimu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | | | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| |
Collapse
|
34
|
Baddock HT, Yosaatmadja Y, Newman JA, Schofield CJ, Gileadi O, McHugh PJ. The SNM1A DNA repair nuclease. DNA Repair (Amst) 2020; 95:102941. [PMID: 32866775 PMCID: PMC7607226 DOI: 10.1016/j.dnarep.2020.102941] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
Unrepaired, or misrepaired, DNA damage can contribute to the pathogenesis of a number of conditions, or disease states; thus, DNA damage repair pathways, and the proteins within them, are required for the safeguarding of the genome. Human SNM1A is a 5'-to-3' exonuclease that plays a role in multiple DNA damage repair processes. To date, most data suggest a role of SNM1A in primarily ICL repair: SNM1A deficient cells exhibit hypersensitivity to ICL-inducing agents (e.g. mitomycin C and cisplatin); and both in vivo and in vitro experiments demonstrate SNM1A and XPF-ERCC1 can function together in the 'unhooking' step of ICL repair. SNM1A further interacts with a number of other proteins that contribute to genome integrity outside canonical ICL repair (e.g. PCNA and CSB), and these may play a role in regulating SNM1As function, subcellular localisation, and post-translational modification state. These data also provide further insight into other DNA repair pathways to which SNM1A may contribute. This review aims to discuss all aspects of the exonuclease, SNM1A, and its contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | | | - Joseph A Newman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, UK
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK.
| |
Collapse
|
35
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
36
|
Wang C, Chen Z, Su D, Tang M, Nie L, Zhang H, Feng X, Wang R, Shen X, Srivastava M, McLaughlin ME, Hart T, Li L, Chen J. C17orf53 is identified as a novel gene involved in inter-strand crosslink repair. DNA Repair (Amst) 2020; 95:102946. [PMID: 32853826 DOI: 10.1016/j.dnarep.2020.102946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023]
Abstract
Ataxia Telangiectasia and Rad3-Related kinase (ATR) is a master regulator of genome maintenance, and participates in DNA replication and various DNA repair pathways. In a genome-wide screen for ATR-dependent fitness genes, we identified a previously uncharacterized gene, C17orf53, whose loss led to hypersensitivity to ATR inhibition. C17orf53 is conserved in vertebrates and is required for efficient cell proliferation. Loss of C17orf53 slowed down DNA replication and led to pronounced interstrand crosslink (ICL) repair defect. We showed that C17orf53 is a ssDNA- and RPA-binding protein and both characteristics are important for its functions in the cell. In addition, using multiple omics methods, we found that C17orf53 works with MCM8/9 to promote cell survival in response to ICL lesions. Taken together, our data suggest that C17orf53 is a novel component involved in ICL repair pathway.
Collapse
Affiliation(s)
- Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan E McLaughlin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Joseph SA, Taglialatela A, Leuzzi G, Huang JW, Cuella-Martin R, Ciccia A. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair (Amst) 2020; 95:102943. [PMID: 32971328 DOI: 10.1016/j.dnarep.2020.102943] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Over the course of DNA replication, DNA lesions, transcriptional intermediates and protein-DNA complexes can impair the progression of replication forks, thus resulting in replication stress. Failure to maintain replication fork integrity in response to replication stress leads to genomic instability and predisposes to the development of cancer and other genetic disorders. Multiple DNA damage and repair pathways have evolved to allow completion of DNA replication following replication stress, thus preserving genomic integrity. One of the processes commonly induced in response to replication stress is fork reversal, which consists in the remodeling of stalled replication forks into four-way DNA junctions. In normal conditions, fork reversal slows down replication fork progression to ensure accurate repair of DNA lesions and facilitates replication fork restart once the DNA lesions have been removed. However, in certain pathological situations, such as the deficiency of DNA repair factors that protect regressed forks from nuclease-mediated degradation, fork reversal can cause genomic instability. In this review, we describe the complex molecular mechanisms regulating fork reversal, with a focus on the role of the SNF2-family fork remodelers SMARCAL1, ZRANB3 and HLTF, and highlight the implications of fork reversal for tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
38
|
Zhang J, Bellani MA, James RC, Pokharel D, Zhang Y, Reynolds JJ, McNee GS, Jackson AP, Stewart GS, Seidman MM. DONSON and FANCM associate with different replisomes distinguished by replication timing and chromatin domain. Nat Commun 2020; 11:3951. [PMID: 32769987 PMCID: PMC7414851 DOI: 10.1038/s41467-020-17449-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Duplication of mammalian genomes requires replisomes to overcome numerous impediments during passage through open (eu) and condensed (hetero) chromatin. Typically, studies of replication stress characterize mixed populations of challenged and unchallenged replication forks, averaged across S phase, and model a single species of “stressed” replisome. Here, in cells containing potent obstacles to replication, we find two different lesion proximal replisomes. One is bound by the DONSON protein and is more frequent in early S phase, in regions marked by euchromatin. The other interacts with the FANCM DNA translocase, is more prominent in late S phase, and favors heterochromatin. The two forms can also be detected in unstressed cells. ChIP-seq of DNA associated with DONSON or FANCM confirms the bias of the former towards regions that replicate early and the skew of the latter towards regions that replicate late. Eukaryotic replisomes are multiprotein complexes. Here the authors reveal two distinct stressed replisomes, associated with DONSON and FANCM, displaying a bias in replication timing and chromatin domain.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ryan C James
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | | | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
39
|
Rageul J, Kim H. Fanconi anemia and the underlying causes of genomic instability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:693-708. [PMID: 31983075 PMCID: PMC7778457 DOI: 10.1002/em.22358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disorder, characterized by birth defects, progressive bone marrow failure, and a predisposition to cancer. This devastating disease is caused by germline mutations in any one of the 22 known FA genes, where the gene products are primarily responsible for the resolution of DNA interstrand cross-links (ICLs), a type of DNA damage generally formed by cytotoxic chemotherapeutic agents. However, the identity of endogenous mutagens that generate DNA ICLs remains largely elusive. In addition, whether DNA ICLs are indeed the primary cause behind FA phenotypes is still a matter of debate. Recent genetic studies suggest that naturally occurring reactive aldehydes are a primary source of DNA damage in hematopoietic stem cells, implicating that they could play a role in genome instability and FA. Emerging lines of evidence indicate that the FA pathway constitutes a general surveillance mechanism for the genome by protecting against a variety of DNA replication stresses. Therefore, understanding the DNA repair signaling that is regulated by the FA pathway, and the types of DNA lesions underlying the FA pathophysiology is crucial for the treatment of FA and FA-associated cancers. Here, we review recent advances in our understanding of the relationship between reactive aldehydes, bone marrow dysfunction, and FA biology in the context of signaling pathways triggered during FA-mediated DNA repair and maintenance of the genomic integrity. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie Rageul
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
- Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York 11794, USA
- Correspondence to: Hyungjin Kim, Ph.D., Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Basic Sciences Tower 8-125, 100 Nicolls Rd., Stony Brook, NY 11794, Phone: 631-444-3134, FAX: 631-444-3218,
| |
Collapse
|
40
|
Berti M, Cortez D, Lopes M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol 2020; 21:633-651. [PMID: 32612242 DOI: 10.1038/s41580-020-0257-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
Abstract
Complete and accurate DNA replication requires the progression of replication forks through DNA damage, actively transcribed regions, structured DNA and compact chromatin. Recent studies have revealed a remarkable plasticity of the replication process in dealing with these obstacles, which includes modulation of replication origin firing, of the architecture of replication forks, and of the functional organization of the replication machinery in response to replication stress. However, these specialized mechanisms also expose cells to potentially dangerous transactions while replicating DNA. In this Review, we discuss how replication forks are actively stalled, remodelled, processed, protected and restarted in response to specific types of stress. We also discuss adaptations of the replication machinery and the role of chromatin modifications during these transactions. Finally, we discuss interesting recent data on the relevance of replication fork plasticity to human health, covering its role in tumorigenesis, its crosstalk with innate immunity responses and its potential as an effective cancer therapy target.
Collapse
Affiliation(s)
- Matteo Berti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Huang JW, Acharya A, Taglialatela A, Nambiar TS, Cuella-Martin R, Leuzzi G, Hayward SB, Joseph SA, Brunette GJ, Anand R, Soni RK, Clark NL, Bernstein KA, Cejka P, Ciccia A. MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nat Commun 2020; 11:2948. [PMID: 32528060 PMCID: PMC7290032 DOI: 10.1038/s41467-020-16718-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) mediates the error-free repair of DNA double-strand breaks to maintain genomic stability. Here we characterize C17orf53/MCM8IP, an OB-fold containing protein that binds ssDNA, as a DNA repair factor involved in HR. MCM8IP-deficient cells exhibit HR defects, especially in long-tract gene conversion, occurring downstream of RAD51 loading, consistent with a role for MCM8IP in HR-dependent DNA synthesis. Moreover, loss of MCM8IP confers cellular sensitivity to crosslinking agents and PARP inhibition. Importantly, we report that MCM8IP directly associates with MCM8-9, a helicase complex mutated in primary ovarian insufficiency, and RPA1. We additionally show that the interactions of MCM8IP with MCM8-9 and RPA facilitate HR and promote replication fork progression and cellular viability in response to treatment with crosslinking agents. Mechanistically, MCM8IP stimulates the helicase activity of MCM8-9. Collectively, our work identifies MCM8IP as a key regulator of MCM8-9-dependent DNA synthesis during DNA recombination and replication.
Collapse
Affiliation(s)
- Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ananya Acharya
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah A Joseph
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gregory J Brunette
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Varga M, Csályi K, Bertyák I, Menyhárd DK, Poole RJ, Cerveny KL, Kövesdi D, Barátki B, Rouse H, Vad Z, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Young RM, Wilson SW. Tissue-Specific Requirement for the GINS Complex During Zebrafish Development. Front Cell Dev Biol 2020; 8:373. [PMID: 32548116 PMCID: PMC7270345 DOI: 10.3389/fcell.2020.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient and accurate DNA replication is particularly critical in stem and progenitor cells for successful proliferation and survival. The replisome, an amalgam of protein complexes, is responsible for binding potential origins of replication, unwinding the double helix, and then synthesizing complimentary strands of DNA. According to current models, the initial steps of DNA unwinding and opening are facilitated by the CMG complex, which is composed of a GINS heterotetramer that connects Cdc45 with the mini-chromosome maintenance (Mcm) helicase. In this work, we provide evidence that in the absence of GINS function DNA replication is cell autonomously impaired, and we also show that gins1 and gins2 mutants exhibit elevated levels of apoptosis restricted to actively proliferating regions of the central nervous system (CNS). Intriguingly, our results also suggest that the rapid cell cycles during early embryonic development in zebrafish may not require the function of the canonical GINS complex as neither zygotic Gins1 nor Gins2 isoforms seem to be present during these stages.
Collapse
Affiliation(s)
- Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kitti Csályi
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Bertyák
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- HAS-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Richard J Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kara L Cerveny
- Biology Department, Reed College, Portland, OR, United States
| | - Dorottya Kövesdi
- Office of Supported Research Groups of the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannah Rouse
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Zsuzsa Vad
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Medical and Biomedical Education, St. George's University of London, London, United Kingdom
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
43
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
44
|
O'Rourke JJ, Bythell-Douglas R, Dunn EA, Deans AJ. ALT control, delete: FANCM as an anti-cancer target in Alternative Lengthening of Telomeres. Nucleus 2020; 10:221-230. [PMID: 31663812 PMCID: PMC6949022 DOI: 10.1080/19491034.2019.1685246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Break-induced replication is a specific type of DNA repair that has a co-opted role in telomere extension by telomerase-negative cancer cells. This Alternative Lengthening of Telomeres (or ‘ALT’) is required for viability in approximately 10% of all carcinomas, but up to 50% of the soft-tissue derived sarcomas. In several recent studies, we and others demonstrate that expression and activity of FANCM, a DNA translocase protein, is essential for the viability of ALT-associated cancers. Here we provide a summary of how and why FANCM depletion leads to deletion of ALT-controlled cancers, predominantly through a hyper-activation of break-induced replication. We also discuss how FANCM can and has been targeted in cancer cell killing, including potential opportunities in ALT and other genetic backgrounds.
Collapse
Affiliation(s)
- Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, (St Vincent's) University of Melbourne, Fitzroy, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Elyse A Dunn
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, (St Vincent's) University of Melbourne, Fitzroy, Australia
| |
Collapse
|
45
|
Yang W, Seidman MM, Rupp WD, Gao Y. Replisome structure suggests mechanism for continuous fork progression and post-replication repair. DNA Repair (Amst) 2019; 81:102658. [PMID: 31303546 DOI: 10.1016/j.dnarep.2019.102658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
What happens to DNA replication when it encounters a damaged or nicked DNA template has been under investigation for five decades. Initially it was thought that DNA polymerase, and thus the replication-fork progression, would stall at road blocks. After the discovery of replication-fork helicase and replication re-initiation factors by the 1990s, it became clear that the replisome can "skip" impasses and finish replication with single-stranded gaps and double-strand breaks in the product DNA. But the mechanism for continuous fork progression after encountering roadblocks is entangled with translesion synthesis, replication fork reversal and recombination repair. The recently determined structure of the bacteriophage T7 replisome offers the first glimpse of how helicase, primase, leading-and lagging-strand DNA polymerases are organized around a DNA replication fork. The tightly coupled leading-strand polymerase and lagging-strand helicase provides a scaffold to consolidate data accumulated over the past five decades and offers a fresh perspective on how the replisome may skip lesions and complete discontinuous DNA synthesis. Comparison of the independently evolved bacterial and eukaryotic replisomes suggests that repair of discontinuous DNA synthesis occurs post replication in both.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - W Dean Rupp
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520-8040, USA
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|