1
|
Sinha N, Israely S, Ben Harosh O, Harel R, Dewald JP, Prut Y. Disentangling acute motor deficits and adaptive responses evoked by the loss of cerebellar output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.21.595172. [PMID: 38826200 PMCID: PMC11142089 DOI: 10.1101/2024.05.21.595172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Patients with cerebellar damage experience various motor impairments, but the specific sequence of primary and compensatory processes that contribute to these deficits remains uncertain. To clarify this, we reversibly blocked cerebellar outflow in monkeys engaged in planar reaching tasks. This intervention led to a spatially selective reduction in hand velocity, primarily due to decreased muscle torque, especially in movements requiring high inter-joint torque coupling. When examining repeated reaches to the same target, we found that the reduced velocity resulted from both an immediate deficit and a gradually developing compensatory slowing to reduce passive inter-joint interactions. However, the slowed hand velocity did not account for the fragmented and variable movement trajectories observed during the cerebellar block. Our findings indicate that cerebellar impairment results in motor deficits due to both inadequate muscle torque and an altered compensatory control strategy for managing impaired limb dynamics. Additionally, impaired motor control elevates noise, which cannot be entirely mitigated through compensatory strategies.
Collapse
|
2
|
Israely S, Ninou H, Rajchert O, Elmaleh L, Harel R, Mawase F, Kadmon J, Prut Y. Cerebellar output shapes cortical preparatory activity during motor adaptation. Nat Commun 2025; 16:2574. [PMID: 40089504 PMCID: PMC11910607 DOI: 10.1038/s41467-025-57832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.
Collapse
Affiliation(s)
- Sharon Israely
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Hugo Ninou
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
- Département D'Etudes Cognitives, Ecole Normale Supérieure, Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, PSL University, Paris, France
- Laboratoire de Physique de l'Ecole Normale Superieure, Ecole Normale Supérieure, PSL University, Paris, France
| | - Ori Rajchert
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lee Elmaleh
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, Tel Aviv, Israel
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Kadmon
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel.
| | - Yifat Prut
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
3
|
Israely S, Ninou H, Rajchert O, Elmaleh L, Harel R, Mawase F, Kadmon J, Prut Y. Cerebellar output shapes cortical preparatory activity during motor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.12.603354. [PMID: 40060411 PMCID: PMC11888169 DOI: 10.1101/2024.07.12.603354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.
Collapse
Affiliation(s)
- Sharon Israely
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Hugo Ninou
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Département D’Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France
- Laboratoire de Physique de l’Ecole Normale Superieure, Ecole Normale Supérieure, PSL University, Paris, France
| | - Ori Rajchert
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lee Elmaleh
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, 5262000 Tel Aviv, Israel
| | - Firas Mawase
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Kadmon
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| | - Yifat Prut
- The Edmond and Lily Safra Center For Brain Sciences, The Hebrew University, Jerusalem, 91904-01, Israel
| |
Collapse
|
4
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
5
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. Nat Commun 2024; 15:7309. [PMID: 39181866 PMCID: PMC11344817 DOI: 10.1038/s41467-024-51750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different conditions. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are sequenced by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics. This shift is minimally affected by cerebellar perturbation and significantly larger than the load response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A Kirk
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Keenan T Hope
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Britton A Sauerbrei
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
6
|
Asemi-Rad A, Ghiyamihoor F, Consalez GG, Marzban H. Ablation of Projection Glutamatergic Neurons in the Lateral Cerebellar Nuclei Alters Motor Coordination in Vglut2-Cre+ Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1313-1320. [PMID: 37289359 DOI: 10.1007/s12311-023-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Cerebellar nuclei (CN) constitute the sole cerebellar output to the rest of the central nervous system and play a central role in cerebellar circuits. Accumulating evidence from both human genetics and animal studies point to a crucial role for CN connectivity in neurological diseases, including several types of ataxia. However, because of the compact and restricted topography and close functional connection between the CN and the cerebellar cortex, identifying cerebellar deficits exclusively linked to CN is challenging. In this study, we have experimentally ablated large projection glutamatergic neurons of the lateral CN and evaluated the impact of this selective manipulation on motor coordination in mice. To this end, through stereotaxic surgery, we injected the lateral CN of Vglut2-Cre+ mice with an adeno-associated virus (AAV) encoding a Cre-dependent diphtheria toxin receptor (DTR), followed by an intraperitoneal injection of diphtheria toxin (DT) to ablate the glutamatergic neurons of the lateral nucleus. Double immunostaining of cerebellar sections with anti-SMI32 and -GFP antibodies revealed GFP expression and provided evidence of SMI32+ neuron degeneration at the site of AAV injection in the lateral nucleus of Vglut2-Cre+ mice. No changes were observed in Vglut2-Cre negative mice. Analysis of motor coordination by rotarod test indicated that the latency to fall was significantly different before and after AAV/DT injection in the Vglut2-Cre+ group. Elapsed time and number of steps in the beam walking test were significantly higher in AAV/DT injected Vglut2-Cre+ AAV/DT mice compared to controls. We demonstrate for the first time that partial degeneration of glutamatergic neurons in the lateral CN is sufficient to induce an ataxic phenotype.
Collapse
Affiliation(s)
- Azam Asemi-Rad
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
| | - Farshid Ghiyamihoor
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada
| | - G Giacomo Consalez
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada.
- The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Palacios ER, Chadderton P, Friston K, Houghton C. Cerebellar state estimation enables resilient coupling across behavioural domains. Sci Rep 2024; 14:6641. [PMID: 38503802 PMCID: PMC10951354 DOI: 10.1038/s41598-024-56811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Cerebellar computations are necessary for fine behavioural control and may rely on internal models for estimation of behaviourally relevant states. Here, we propose that the central cerebellar function is to estimate how states interact with each other, and to use these estimates to coordinates extra-cerebellar neuronal dynamics underpinning a range of interconnected behaviours. To support this claim, we describe a cerebellar model for state estimation that includes state interactions, and link this model with the neuronal architecture and dynamics observed empirically. This is formalised using the free energy principle, which provides a dual perspective on a system in terms of both the dynamics of its physical-in this case neuronal-states, and the inferential process they entail. As a demonstration of this proposal, we simulate cerebellar-dependent synchronisation of whisking and respiration, which are known to be tightly coupled in rodents, as well as limb and tail coordination during locomotion. In summary, we propose that the ubiquitous involvement of the cerebellum in behaviour arises from its central role in precisely coupling behavioural domains.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- University of Bristol, School of Physiology Pharmacology and Neuroscience, Bristol, BS8 1TD, UK.
| | - Paul Chadderton
- University of Bristol, School of Physiology Pharmacology and Neuroscience, Bristol, BS8 1TD, UK
| | - Karl Friston
- UCL, Wellcome Centre for Human Neuroimaging, London, WC1N 3AR, UK
| | - Conor Houghton
- University of Bristol, Department of Computer Science, Bristol, BS8 1UB, UK
| |
Collapse
|
8
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565869. [PMID: 37986810 PMCID: PMC10659339 DOI: 10.1101/2023.11.06.565869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different contexts. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are clocked by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics, which is minimally affected by cerebellar perturbation and significantly larger than the response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A. Kirk
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | - Keenan T. Hope
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | | | | |
Collapse
|
9
|
Boven E, Cerminara NL. Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions. Front Syst Neurosci 2023; 17:1211530. [PMID: 37745783 PMCID: PMC10512466 DOI: 10.3389/fnsys.2023.1211530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Performing successful adaptive behaviour relies on our ability to process a wide range of temporal intervals with certain precision. Studies on the role of the cerebellum in temporal information processing have adopted the dogma that the cerebellum is involved in sub-second processing. However, emerging evidence shows that the cerebellum might be involved in suprasecond temporal processing as well. Here we review the reciprocal loops between cerebellum and cerebral cortex and provide a theoretical account of cerebro-cerebellar interactions with a focus on how cerebellar output can modulate cerebral processing during learning of complex sequences. Finally, we propose that while the ability of the cerebellum to support millisecond timescales might be intrinsic to cerebellar circuitry, the ability to support supra-second timescales might result from cerebellar interactions with other brain regions, such as the prefrontal cortex.
Collapse
Affiliation(s)
- Ellen Boven
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Neural and Machine Learning Group, Bristol Computational Neuroscience Unit, Intelligent Systems Labs, School of Engineering Mathematics and Technology, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Nadia L. Cerminara
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Nashef A, Spindle MS, Calame DJ, Person AL. A dual Purkinje cell rate and synchrony code sculpts reach kinematics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548720. [PMID: 37503038 PMCID: PMC10370034 DOI: 10.1101/2023.07.12.548720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cerebellar Purkinje cells (PCs) encode movement kinematics in their population firing rates. Firing rate suppression is hypothesized to disinhibit neurons in the cerebellar nuclei, promoting adaptive movement adjustments. Debates persist, however, about whether a second disinhibitory mechanism, PC simple spike synchrony, is a relevant population code. We addressed this question by relating PC rate and synchrony patterns recorded with high density probes, to mouse reach kinematics. We discovered behavioral correlates of PC synchrony that align with a known causal relationship between activity in cerebellar output. Reach deceleration was positively correlated with both Purkinje firing rate decreases and synchrony, consistent with both mechanisms disinhibiting target neurons, which are known to adjust reach velocity. Direct tests of the contribution of each coding scheme to nuclear firing using dynamic clamp, combining physiological rate and synchrony patterns ex vivo, confirmed that physiological levels of PC simple spike synchrony are highly facilitatory for nuclear firing. These findings suggest that PC firing rate and synchrony collaborate to exert fine control of movement.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Michael S Spindle
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Dylan J Calame
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| | - Abigail L Person
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, 80045, CO, USA
| |
Collapse
|
11
|
Bachschmid-Romano L, Hatsopoulos NG, Brunel N. Interplay between external inputs and recurrent dynamics during movement preparation and execution in a network model of motor cortex. eLife 2023; 12:77690. [PMID: 37166452 PMCID: PMC10174693 DOI: 10.7554/elife.77690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2023] [Indexed: 05/12/2023] Open
Abstract
The primary motor cortex has been shown to coordinate movement preparation and execution through computations in approximately orthogonal subspaces. The underlying network mechanisms, and the roles played by external and recurrent connectivity, are central open questions that need to be answered to understand the neural substrates of motor control. We develop a recurrent neural network model that recapitulates the temporal evolution of neuronal activity recorded from the primary motor cortex of a macaque monkey during an instructed delayed-reach task. In particular, it reproduces the observed dynamic patterns of covariation between neural activity and the direction of motion. We explore the hypothesis that the observed dynamics emerges from a synaptic connectivity structure that depends on the preferred directions of neurons in both preparatory and movement-related epochs, and we constrain the strength of both synaptic connectivity and external input parameters from data. While the model can reproduce neural activity for multiple combinations of the feedforward and recurrent connections, the solution that requires minimum external inputs is one where the observed patterns of covariance are shaped by external inputs during movement preparation, while they are dominated by strong direction-specific recurrent connectivity during movement execution. Our model also demonstrates that the way in which single-neuron tuning properties change over time can explain the level of orthogonality of preparatory and movement-related subspaces.
Collapse
Affiliation(s)
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
- Committee on Computational Neuroscience, University of Chicago, Chicago, United States
| | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, United States
- Department of Physics, Duke University, Durham, United States
- Duke Institute for Brain Sciences, Duke University, Durham, United States
- Center for Cognitive Neuroscience, Duke University, Durham, United States
| |
Collapse
|
12
|
Kumar G, Ma CHE. Toward a cerebello-thalamo-cortical computational model of spinocerebellar ataxia. Neural Netw 2023; 162:541-556. [PMID: 37023628 DOI: 10.1016/j.neunet.2023.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/07/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Computational neural network modelling is an emerging approach for optimization of drug treatment of neurological disorders and fine-tuning of rehabilitation strategies. In the current study, we constructed a cerebello-thalamo-cortical computational neural network model to simulate a mouse model of cerebellar ataxia (pcd5J mice) by manipulating cerebellar bursts through reduction of GABAergic inhibitory input. Cerebellar output neurons were projected to the thalamus and bidirectionally connected with the cortical network. Our results showed that reduction of inhibitory input in the cerebellum orchestrated the cortical local field potential (LFP) dynamics to generate specific motor outputs of oscillations of the theta, alpha, and beta bands in the computational model as well as in mouse motor cortical neurons. The therapeutic potential of deep brain stimulation (DBS) was tested in the computational model by increasing the sensory input to restore cortical output. Ataxia mice showed normalization of the motor cortex LFP after cerebellum DBS. We provide a novel approach to computational modelling to investigate the effect of DBS by mimicking cerebellar ataxia involving degeneration of Purkinje cells. Simulated neural activity coincides with findings from neural recordings of ataxia mice. Our computational model could thus represent cerebellar pathologies and provide insight into how to improve disease symptoms by restoring neuronal electrophysiological properties using DBS.
Collapse
Affiliation(s)
- Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region.
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Fleischer P, Abbasi A, Fealy AW, Danielsen NP, Sandhu R, Raj PR, Gulati T. Emergent Low-Frequency Activity in Cortico-Cerebellar Networks with Motor Skill Learning. eNeuro 2023; 10:ENEURO.0011-23.2023. [PMID: 36750360 PMCID: PMC9946068 DOI: 10.1523/eneuro.0011-23.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The motor cortex controls skilled arm movement by recruiting a variety of targets in the nervous system, and it is important to understand the emergent activity in these regions as refinement of a motor skill occurs. One fundamental projection of the motor cortex (M1) is to the cerebellum. However, the emergent activity in the motor cortex and the cerebellum that appears as a dexterous motor skill is consolidated is incompletely understood. Here, we report on low-frequency oscillatory (LFO) activity that emerges in cortico-cerebellar networks with learning the reach-to-grasp motor skill. We chronically recorded the motor and the cerebellar cortices in rats, which revealed the emergence of coordinated movement-related activity in the local-field potentials as the reaching skill consolidated. Interestingly, we found this emergent activity only in the rats that gained expertise in the task. We found that the local and cross-area spiking activity was coordinated with LFOs in proficient rats. Finally, we also found that these neural dynamics were more prominently expressed during accurate behavior in the M1. This work furthers our understanding on emergent dynamics in the cortico-cerebellar loop that underlie learning and execution of precise skilled movement.
Collapse
Affiliation(s)
- Pierson Fleischer
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Andrew W Fealy
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Nathan P Danielsen
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Ramneet Sandhu
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Philip R Raj
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Tanuj Gulati
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Bioengineering, Henry Samueli School of Engineering, University of California-Los Angeles, Los Angeles, California 92697
| |
Collapse
|
14
|
Boven E, Pemberton J, Chadderton P, Apps R, Costa RP. Cerebro-cerebellar networks facilitate learning through feedback decoupling. Nat Commun 2023; 14:51. [PMID: 36599827 DOI: 10.1038/s41467-022-35658-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. Inspired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network, thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed functional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and cognitive tasks. Finally, the model makes several experimentally testable predictions regarding cerebro-cerebellar task-specific representations over learning, task-specific benefits of cerebellar predictions and the differential impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar networks as feedback decoupling machines.
Collapse
Affiliation(s)
- Ellen Boven
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Joseph Pemberton
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Rui Ponte Costa
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK.
| |
Collapse
|
15
|
Age- and task-dependent effects of cerebellar tDCS on manual dexterity and motor learning–A preliminary study. Neurophysiol Clin 2022; 52:354-365. [DOI: 10.1016/j.neucli.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
|
16
|
Nashef A, Cohen O, Perlmutter SI, Prut Y. A cerebellar origin of feedforward inhibition to the motor cortex in non-human primates. Cell Rep 2022; 39:110803. [PMID: 35545040 DOI: 10.1016/j.celrep.2022.110803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Voluntary movements are driven by coordinated activity across a large population of motor cortical neurons. Formation of this activity is controlled by local interactions and long-range inputs. How remote areas of the brain communicate with motor cortical neurons to effectively drive movement remains unclear. We address this question by studying the cerebellar-thalamocortical system. We find that thalamic input to the motor cortex triggers feedforward inhibition by contacting inhibitory cells via highly effective GluR2-lacking AMPA receptors and that, during task performance, the activity of parvalbumin (PV) and pyramidal cells exhibits relations comparable with movement parameters. We also find that the movement-related activity of PV interneurons precedes firing of pyramidal cells. This counterintuitive sequence of events, where inhibitory cells are recruited more strongly and before excitatory cells, may amplify the cortical effect of cerebellar signals in a way that exceeds their sheer synaptic efficacy by suppressing other inputs.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Oren Cohen
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Steve I Perlmutter
- Department of Physiology & Biophysics and Washington National Primate Research Center, University of Washington, Box 357330, Seattle, WA 98195, USA
| | - Yifat Prut
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel.
| |
Collapse
|
17
|
Otor Y, Achvat S, Cermak N, Benisty H, Abboud M, Barak O, Schiller Y, Poleg-Polsky A, Schiller J. Dynamic compartmental computations in tuft dendrites of layer 5 neurons during motor behavior. Science 2022; 376:267-275. [PMID: 35420959 DOI: 10.1126/science.abn1421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuft dendrites of layer 5 pyramidal neurons form specialized compartments important for motor learning and performance, yet their computational capabilities remain unclear. Structural-functional mapping of the tuft tree from the motor cortex during motor tasks revealed two morphologically distinct populations of layer 5 pyramidal tract neurons (PTNs) that exhibit specific tuft computational properties. Early bifurcating and large nexus PTNs showed marked tuft functional compartmentalization, representing different motor variable combinations within and between their two tuft hemi-trees. By contrast, late bifurcating and smaller nexus PTNs showed synchronous tuft activation. Dendritic structure and dynamic recruitment of the N-methyl-d-aspartate (NMDA)-spiking mechanism explained the differential compartmentalization patterns. Our findings support a morphologically dependent framework for motor computations, in which independent amplification units can be combinatorically recruited to represent different motor sequences within the same tree.
Collapse
Affiliation(s)
- Yara Otor
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Shay Achvat
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Nathan Cermak
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Hadas Benisty
- Yale University School of Medicine; Bethany, CT, USA
| | - Maisan Abboud
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Omri Barak
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Yitzhak Schiller
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics; University of Colorado School of Medicine, 12800 East 19th Avenue MS8307, Aurora, CO 8004, USA
| | - Jackie Schiller
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| |
Collapse
|
18
|
Uematsu A, Tanaka M. Effects of GABAergic and Glutamatergic Inputs on Temporal Prediction Signals in the Primate Cerebellar Nucleus. Neuroscience 2022; 482:161-171. [PMID: 35031083 DOI: 10.1016/j.neuroscience.2021.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
The cerebellum has been shown to be involved in temporal information processing. We recently demonstrated that neurons in the cerebellar dentate nucleus exhibited periodic activity predicting stimulus timing when monkeys attempted to detect a single omission of isochronous repetitive visual stimulus. In this study, we assessed the relative contribution of signals from Purkinje cells and mossy and climbing fibers to the periodic activity by comparing single neuronal firing before and during local infusion of GABA or glutamate receptor antagonists (gabazine or a mixture of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide hydrate (NBQX) and (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP)). Gabazine application reduced the magnitude of periodic activity and increased the baseline firing rate in most neurons. In contrast, during the blockade of glutamate receptors, both the magnitude of periodic firing modulation and the baseline activity remained unchanged in the population, while a minority of neurons significantly altered their activity. Furthermore, the amounts of changes in the baseline activity and the magnitude of periodic activity were inversely correlated in the gabazine experiments but not in the NBQX + CPP experiments. We also found that the variation of baseline activity decreased during gabazine application but sometimes increased during the blockade of glutamate receptors. These changes were not observed during prolonged recording without drug administration. These results suggest that the predictive neuronal activity in the dentate nucleus may mainly attribute to the inputs from the cerebellar cortex, while the signals from both mossy fibers and Purkinje cells may play a role in setting the level and variance of baseline activity during the task.
Collapse
Affiliation(s)
- Akiko Uematsu
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan; Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
19
|
Tan HX, Wei QC, Chen Y, Xie YJ, Guo QF, He L, Gao Q. The Immediate Effects of Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Cerebral Cortical Excitability During a Balance Task in Healthy Individuals: A Pilot Study. Front Hum Neurosci 2021; 15:748241. [PMID: 34867241 PMCID: PMC8632863 DOI: 10.3389/fnhum.2021.748241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: This pilot study aimed to investigate the immediate effects of single-session intermittent theta-burst stimulation (iTBS) on the cerebellar vermis during a balance task, which could unveil the changes of cerebral cortical excitability in healthy individuals. Subjects: A total of seven right-handed healthy subjects (26.86 ± 5.30 years) were included in this study. Interventions: Each subject received single-session iTBS on cerebellar vermis in a sitting position. Main Measures: Before and after the intervention, all subjects were asked to repeat the balance task of standing on the left leg three times. Each task consisted of 15 s of standing and 20 s of resting. Real-time changes in cerebral cortex oxygen concentrations were monitored with functional near-infrared spectroscopy (fNIRS). During the task, changes in blood oxygen concentration were recorded and converted into the mean HbO2 for statistical analysis. Results: After stimulation, the mean HbO2 in the left SMA (P = 0.029) and right SMA (P = 0.043) significantly increased compared with baseline. However, no significant changes of mean HbO2 were found in the bilateral dorsolateral prefrontal lobe (P > 0.05). Conclusion: Single-session iTBS on the cerebellar vermis in healthy adults can increase the excitability of the cerebral cortex in the bilateral supplementary motor areas during balance tasks. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [ChiCTR2100048915].
Collapse
Affiliation(s)
- Hui-Xin Tan
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Chuan Wei
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Juan Xie
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Fan Guo
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin He
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Gao
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Dooley JC, Sokoloff G, Blumberg MS. Movements during sleep reveal the developmental emergence of a cerebellar-dependent internal model in motor thalamus. Curr Biol 2021; 31:5501-5511.e5. [PMID: 34727521 DOI: 10.1016/j.cub.2021.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
With our eyes closed, we can track a limb's moment-to-moment location in space. If this capacity relied solely on sensory feedback from the limb, we would always be a step behind because sensory feedback takes time: for the execution of rapid and precise movements, such lags are not tolerable. Nervous systems solve this problem by computing representations-or internal models-that mimic movements as they are happening, with the associated neural activity occurring after the motor command but before sensory feedback. Research in adults indicates that the cerebellum is necessary to compute internal models. What is not known, however, is when-and under what conditions-this computational capacity develops. Here, taking advantage of the unique kinematic features of the discrete, spontaneous limb twitches that characterize active sleep, we captured the developmental emergence of a cerebellar-dependent internal model. Using rats at postnatal days (P) 12, P16, and P20, we compared neural activity in the ventral posterior (VP) and ventral lateral (VL) thalamic nuclei, both of which receive somatosensory input but only the latter of which receives cerebellar input. At all ages, twitch-related activity in VP lagged behind the movement, consistent with sensory processing; similar activity was observed in VL through P16. At P20, however, VL activity no longer lagged behind movement but instead precisely mimicked the movement itself; this activity depended on cerebellar input. In addition to demonstrating the emergence of internal models of movement, these findings implicate twitches in their development and calibration through, at least, the preweanling period.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Guo JZ, Sauerbrei BA, Cohen JD, Mischiati M, Graves AR, Pisanello F, Branson KM, Hantman AW. Disrupting cortico-cerebellar communication impairs dexterity. eLife 2021; 10:e65906. [PMID: 34324417 PMCID: PMC8321550 DOI: 10.7554/elife.65906] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
To control reaching, the nervous system must generate large changes in muscle activation to drive the limb toward the target, and must also make smaller adjustments for precise and accurate behavior. Motor cortex controls the arm through projections to diverse targets across the central nervous system, but it has been challenging to identify the roles of cortical projections to specific targets. Here, we selectively disrupt cortico-cerebellar communication in the mouse by optogenetically stimulating the pontine nuclei in a cued reaching task. This perturbation did not typically block movement initiation, but degraded the precision, accuracy, duration, or success rate of the movement. Correspondingly, cerebellar and cortical activity during movement were largely preserved, but differences in hand velocity between control and stimulation conditions predicted from neural activity were correlated with observed velocity differences. These results suggest that while the total output of motor cortex drives reaching, the cortico-cerebellar loop makes small adjustments that contribute to the successful execution of this dexterous movement.
Collapse
|
22
|
Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston JA, Eleftheriou C, Pakan JMP, Huang CC, Hantman AW, Rochefort NL, Duguid I. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 2021; 109:2326-2338.e8. [PMID: 34146469 PMCID: PMC8315304 DOI: 10.1016/j.neuron.2021.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Executing learned motor behaviors often requires the transformation of sensory cues into patterns of motor commands that generate appropriately timed actions. The cerebellum and thalamus are two key areas involved in shaping cortical output and movement, but the contribution of a cerebellar-thalamocortical pathway to voluntary movement initiation remains poorly understood. Here, we investigated how an auditory "go cue" transforms thalamocortical activity patterns and how these changes relate to movement initiation. Population responses in dentate/interpositus-recipient regions of motor thalamus reflect a time-locked increase in activity immediately prior to movement initiation that is temporally uncoupled from the go cue, indicative of a fixed-latency feedforward motor timing signal. Blocking cerebellar or motor thalamic output suppresses movement initiation, while stimulation triggers movements in a behavioral context-dependent manner. Our findings show how cerebellar output, via the thalamus, shapes cortical activity patterns necessary for learned context-dependent movement initiation.
Collapse
Affiliation(s)
- Joshua Dacre
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Matt Colligan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas Clarke
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Julian J Ammer
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Julia Schiemann
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Victor Chamosa-Pino
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Claudi
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - J Alex Harston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Constantinos Eleftheriou
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janelle M P Pakan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Area-specific thalamocortical synchronization underlies the transition from motor planning to execution. Proc Natl Acad Sci U S A 2021; 118:2012658118. [PMID: 33526664 DOI: 10.1073/pnas.2012658118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas. Neuronal correlations reveal functional cooperation and opposition between the motor thalamus and distinct motor cortical areas with specific roles in planning vs. performing movements. Thus, by enhancing and suppressing motor and premotor firing, the motor thalamus can facilitate the transition from a motor plan to execution.
Collapse
|
24
|
Laine CM, Cohn BA, Valero-Cuevas FJ. Temporal control of muscle synergies is linked with alpha-band neural drive. J Physiol 2021; 599:3385-3402. [PMID: 33963545 DOI: 10.1113/jp281232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS It is theorized that the nervous system controls groups of muscles together as functional units, or 'synergies', resulting in correlated electromyographic (EMG) signals among muscles. However, such correlation does not necessarily imply group-level neural control. Oscillatory synchronization (coherence) among EMG signals implies neural coupling, but it is not clear how this relates to control of muscle synergies. EMG was recorded from seven arm muscles of 10 adult participants rotating an upper limb ergometer, and EMG-EMG coherence, EMG amplitude correlations and their relationship with each other were characterized. A novel method to derive multi-muscle synergies from EMG-EMG coherence is presented and these are compared with classically defined synergies. Coherent alpha-band (8-16 Hz) drive was strongest among muscles whose gross activity levels are well correlated within a given task. The cross-muscle distribution and temporal modulation of coherent alpha-band drive suggests a possible role in the neural coordination/monitoring of synergies. ABSTRACT During movement, groups of muscles may be controlled together by the nervous system as an adaptable functional entity, or 'synergy'. The rules governing when (or if) this occurs during voluntary behaviour in humans are not well understood, at least in part because synergies are usually defined by correlated patterns of muscle activity without regard for the underlying structure of their neural control. In this study, we investigated the extent to which comodulation of muscle output (i.e. correlation of electromyographic (EMG) amplitudes) implies that muscles share intermuscular neural input (assessed via EMG-EMG coherence analysis). We first examined this relationship among pairs of upper limb muscles engaged in an arm cycling task. We then applied a novel multidimensional EMG-EMG coherence analysis allowing synergies to be characterized on the basis of shared neural drive. We found that alpha-band coherence (8-16 Hz) is related to the degree to which overall muscle activity levels correlate over time. The extension of this coherence analysis to describe the cross-muscle distribution and temporal modulation of alpha-band drive revealed a close match to the temporal and structural features of traditionally defined muscle synergies. Interestingly, the coherence-derived neural drive was inversely associated with, and preceded, changes in EMG amplitudes by ∼200 ms. Our novel characterization of how alpha-band neural drive is dynamically distributed among muscles is a fundamental step forward in understanding the neural origins and correlates of muscle synergies.
Collapse
Affiliation(s)
- Christopher M Laine
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Brian A Cohn
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Ren Y, Shen Y, Si N, Fan S, Zhang Y, Xu W, Shi L, Zhang X. Slc20a2-Deficient Mice Exhibit Multisystem Abnormalities and Impaired Spatial Learning Memory and Sensorimotor Gating but Normal Motor Coordination Abilities. Front Genet 2021; 12:639935. [PMID: 33889180 PMCID: PMC8056086 DOI: 10.3389/fgene.2021.639935] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr's disease, is a rare autosomal dominant or recessive neurodegenerative disorder characterized by bilateral and symmetrical microvascular calcifications affecting multiple brain regions, particularly the basal ganglia (globus pallidus, caudate nucleus, and putamen) and thalamus. The most common clinical manifestations include cognitive impairment, neuropsychiatric signs, and movement disorders. Loss-of-function mutations in SLC20A2 are the major genetic causes of PFBC. OBJECTIVE This study aimed to investigate whether Slc20a2 knockout mice could recapitulate the dynamic processes and patterns of brain calcification and neurological symptoms in patients with PFBC. We comprehensively evaluated brain calcifications and PFBC-related behavioral abnormalities in Slc20a2-deficient mice. METHODS Brain calcifications were analyzed using classic calcium-phosphate staining methods. The Morris water maze, Y-maze, and fear conditioning paradigms were used to evaluate long-term spatial learning memory, working memory, and episodic memory, respectively. Sensorimotor gating was mainly assessed using the prepulse inhibition of the startle reflex program. Spontaneous locomotor activity and motor coordination abilities were evaluated using the spontaneous activity chamber, cylinder test, accelerating rotor-rod, and narrowing balance beam tests. RESULTS Slc20a2 homozygous knockout (Slc20a2-HO) mice showed congenital and global developmental delay, lean body mass, skeletal malformation, and a high proportion of unilateral or bilateral eye defects. Brain calcifications were detected in the hypothalamus, ventral thalamus, and midbrain early at postnatal day 80 in Slc20a2-HO mice, but were seldom found in Slc20a2 heterozygous knockout (Slc20a2-HE) mice, even at extremely old age. Slc20a2-HO mice exhibited spatial learning memory impairments and sensorimotor gating deficits while exhibiting normal working and episodic memories. The general locomotor activity, motor balance, and coordination abilities were not statistically different between Slc20a2-HO and wild-type mice after adjusting for body weight, which was a major confounding factor in our motor function evaluations. CONCLUSION The human PFBC-related phenotypes were highly similar to those in Slc20a2-HO mice. Therefore, Slc20a2-HO mice might be suitable for the future evaluation of neuropharmacological intervention strategies targeting cognitive and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Yaqiong Ren
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuqi Shen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shiqi Fan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Lei Shi
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, White JJ, Sillitoe RV. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nat Commun 2021; 12:1295. [PMID: 33637754 PMCID: PMC7910465 DOI: 10.1038/s41467-021-21417-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) relieves motor dysfunction in Parkinson's disease, and other movement disorders. Here, we demonstrate the potential benefits of DBS in a model of ataxia by targeting the cerebellum, a major motor center in the brain. We use the Car8 mouse model of hereditary ataxia to test the potential of using cerebellar nuclei DBS plus physical activity to restore movement. While low-frequency cerebellar DBS alone improves Car8 mobility and muscle function, adding skilled exercise to the treatment regimen additionally rescues limb coordination and stepping. Importantly, the gains persist in the absence of further stimulation. Because DBS promotes the most dramatic improvements in mice with early-stage ataxia, we postulated that cerebellar circuit function affects stimulation efficacy. Indeed, genetically eliminating Purkinje cell neurotransmission blocked the ability of DBS to reduce ataxia. These findings may be valuable in devising future DBS strategies.
Collapse
Affiliation(s)
- Lauren N. Miterko
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Tao Lin
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Joy Zhou
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Meike E. van der Heijden
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Jaclyn Beckinghausen
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Joshua J. White
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Roy V. Sillitoe
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
27
|
Yamaura H, Igarashi J, Yamazaki T. Simulation of a Human-Scale Cerebellar Network Model on the K Computer. Front Neuroinform 2020; 14:16. [PMID: 32317955 PMCID: PMC7146068 DOI: 10.3389/fninf.2020.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Computer simulation of the human brain at an individual neuron resolution is an ultimate goal of computational neuroscience. The Japanese flagship supercomputer, K, provides unprecedented computational capability toward this goal. The cerebellum contains 80% of the neurons in the whole brain. Therefore, computer simulation of the human-scale cerebellum will be a challenge for modern supercomputers. In this study, we built a human-scale spiking network model of the cerebellum, composed of 68 billion spiking neurons, on the K computer. As a benchmark, we performed a computer simulation of a cerebellum-dependent eye movement task known as the optokinetic response. We succeeded in reproducing plausible neuronal activity patterns that are observed experimentally in animals. The model was built on dedicated neural network simulation software called MONET (Millefeuille-like Organization NEural neTwork), which calculates layered sheet types of neural networks with parallelization by tile partitioning. To examine the scalability of the MONET simulator, we repeatedly performed simulations while changing the number of compute nodes from 1,024 to 82,944 and measured the computational time. We observed a good weak-scaling property for our cerebellar network model. Using all 82,944 nodes, we succeeded in simulating a human-scale cerebellum for the first time, although the simulation was 578 times slower than the wall clock time. These results suggest that the K computer is already capable of creating a simulation of a human-scale cerebellar model with the aid of the MONET simulator.
Collapse
Affiliation(s)
- Hiroshi Yamaura
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Jun Igarashi
- Head Office for Information Systems and Cybersecurity, RIKEN, Saitama, Japan
| | - Tadashi Yamazaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
28
|
Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. eLife 2020; 9:54073. [PMID: 32223891 PMCID: PMC7105376 DOI: 10.7554/elife.54073] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
While classical views of cerebellar learning have suggested that this structure predominantly operates according to an error-based supervised learning rule to refine movements, emerging evidence suggests that the cerebellum may also harness a wider range of learning rules to contribute to a variety of behaviors, including cognitive processes. Together, such evidence points to a broad role for cerebellar circuits in generating and testing predictions about movement, reward, and other non-motor operations. However, this expanded view of cerebellar processing also raises many new questions about how such apparent diversity of function arises from a structure with striking homogeneity. Hence, this review will highlight both current evidence for predictive cerebellar circuit function that extends beyond the classical view of error-driven supervised learning, as well as open questions that must be addressed to unify our understanding cerebellar circuit function.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
29
|
Berger DJ, Masciullo M, Molinari M, Lacquaniti F, d'Avella A. Does the cerebellum shape the spatiotemporal organization of muscle patterns? Insights from subjects with cerebellar ataxias. J Neurophysiol 2020; 123:1691-1710. [PMID: 32159425 DOI: 10.1152/jn.00657.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of the cerebellum in motor control has been investigated extensively, but its contribution to the muscle pattern organization underlying goal-directed movements is still not fully understood. Muscle synergies may be used to characterize multimuscle pattern organization irrespective of time (spatial synergies), in time irrespective of the muscles (temporal synergies), and both across muscles and in time (spatiotemporal synergies). The decomposition of muscle patterns as combinations of different types of muscle synergies offers the possibility to identify specific changes due to neurological lesions. In this study, we recorded electromyographic activity from 13 shoulder and arm muscles in subjects with cerebellar ataxias (CA) and in age-matched healthy subjects (HS) while they performed reaching movements in multiple directions. We assessed whether cerebellar damage affects the organization of muscle patterns by extracting different types of muscle synergies from the muscle patterns of each HS and using these synergies to reconstruct the muscle patterns of all other participants. We found that CA muscle patterns could be accurately captured only by spatial muscle synergies of HS. In contrast, there were significant differences in the reconstruction R2 values for both spatiotemporal and temporal synergies, with an interaction between the two synergy types indicating a larger difference for spatiotemporal synergies. Moreover, the reconstruction quality using spatiotemporal synergies correlated with the severity of impairment. These results indicate that cerebellar damage affects the temporal and spatiotemporal organization, but not the spatial organization, of the muscle patterns, suggesting that the cerebellum plays a key role in shaping their spatiotemporal organization.NEW & NOTEWORTHY In recent studies, the decomposition of muscle activity patterns has revealed a modular organization of the motor commands. We show, for the first time, that muscle patterns of subjects with cerebellar damage share with healthy controls spatial, but not temporal and spatiotemporal, modules. Moreover, changes in spatiotemporal organization characterize the severity of the subject's impairment. These results suggest that the cerebellum has a specific role in shaping the spatiotemporal organization of the muscle patterns.
Collapse
Affiliation(s)
- Denise J Berger
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
30
|
Schieber MH. Stimulating Cerebellar Outflow Reveals Temporal Control of Motor Cortical Activity. Cell Rep 2019; 27:2525-2526. [PMID: 31141678 DOI: 10.1016/j.celrep.2019.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nashef et al. (2019) show that high-frequency stimulation of the superior cerebellar peduncle produces a temporary cerebellar deficit. While the deficit is present, motor cortex neurons that receive cerebellar input maintain their directional tuning but lose their noise correlation.
Collapse
Affiliation(s)
- Marc H Schieber
- Departments of Neurology, Neuroscience, and Biomedical Engineering and the Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|