1
|
Cheng Z, Cui X, Li S, Liang Y, Yang W, Ouyang J, Wei M, Yan Z, Yu W. Harnessing cytokines to optimize chimeric antigen receptor-T cell therapy for gastric cancer: Current advances and innovative strategies. Biomed Pharmacother 2024; 178:117229. [PMID: 39096620 DOI: 10.1016/j.biopha.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Enormous patients with gastric cancer (GC) are insensitive to chemotherapy and targeted therapy without the chance of radical surgery, so immunotherapy may supply a novel choice for them. Chimeric antigen receptor (CAR)-T cell therapy has the advantages of higher specificity, stronger lethality, and longer-lasting efficacy, and it has the potential for GC in the future. However, its application still faces numerous obstacles in terms of accuracy, efficacy, and safety. Cytokines can mediate the migration, proliferation, and survival of immune cells, regulate the duration and strength of immune responses, and are involved in the occurrence of severe side effects in CAR-T cell therapy. The expression levels of specific cytokines are associated with the genesis, invasion, metastasis, and prognosis of GC. Applications of cytokines and their receptors in CAR-T cell therapy have emerged, and various cytokines and their receptors have contributed to improving CAR-T cell anti-tumor capabilities. Large amounts of central cytokines in this therapy include chemokines, interleukins (ILs), transforming growth factor-β (TGF-β), and colony-stimulating factors (CSFs). Meanwhile, researchers have explored the combination therapy in treating GC, and several approaches applied to other malignancies can also be considered as references. Therefore, our review comprehensively outlines the biological functions and clinical significance of cytokines and summarizes current advances and innovative strategies for harnessing cytokines to optimize CAR-T cell therapy for GC.
Collapse
Affiliation(s)
- Zewei Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaohan Cui
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yize Liang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Ouyang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Oser L, Midha A, Schlosser-Brandenburg J, Rausch S, Mugo RM, Kundik A, Elizalde-Velázquez LE, Adjah J, Musimbi ZD, Klopfleisch R, Helm CS, von Samson-Himmelstjerna G, Hartmann S, Ebner F. Ascaris suum infection in juvenile pigs elicits a local Th2 response in a setting of ongoing Th1 expansion. Front Immunol 2024; 15:1396446. [PMID: 38799456 PMCID: PMC11116563 DOI: 10.3389/fimmu.2024.1396446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.
Collapse
Affiliation(s)
- Larissa Oser
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Josephine Schlosser-Brandenburg
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Luis E. Elizalde-Velázquez
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D. Musimbi
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Christina S. Helm
- Department of Veterinary Medicine, Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Department of Veterinary Medicine, Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
- Infection Pathogenesis, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Hong A, Umar A, Chen H, Yu Z, Huang J. Advances in the study of the interaction between schistosome infections and the host's intestinal microorganisms. Parasit Vectors 2024; 17:185. [PMID: 38600604 PMCID: PMC11007984 DOI: 10.1186/s13071-024-06245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by schistosomes that infects hundreds of millions of people worldwide. In the life cycle of schistosomiasis, eggs are regarded as the main pathogenic factor, causing granuloma formation in the tissues and organs of hosts, which can cause severe gastrointestinal and liver granulomatous immune responses and irreversible fibrosis. Increasing evidence suggests that the gut microbiome influences the progression of schistosomiasis and plays a central role in liver disease via the gut-liver axis. When used as pharmaceutical supplements or adjunctive therapy, probiotics have shown promising results in preventing, mitigating, and even treating schistosomiasis. This review elucidates the potential mechanisms of this three-way parasite-host-microbiome interaction by summarizing schistosome-mediated intestinal flora disorders, local immune changes, and host metabolic changes, and elaborates the important role of the gut microbiome in liver disease after schistosome infection through the gut-liver axis. Understanding the mechanisms behind this interaction may aid in the discovery of probiotics as novel therapeutic targets and sustainable control strategies for schistosomiasis.
Collapse
Affiliation(s)
- Ao Hong
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Yang Y, Wang XY, Duan C, Wang ZJ, Sheng HY, Xu XL, Wang WJ, Yang JH. Clinicopathological characteristics and its association with digestive system tumors of 1111 patients with Schistosomiasis japonica. Sci Rep 2023; 13:15115. [PMID: 37704736 PMCID: PMC10500003 DOI: 10.1038/s41598-023-42456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
Schistosomiasis japonicum can cause different degrees of organ damage and complex human immune pathological reactions, which often invade the intestine and liver. The purpose of this study was to explore the pathological types and pathological changes of Schistosomiasis and their correlation with some digestive system tumors. Hematoxylin eosin staining was performed on the diseased tissues of 1111 Schistosomiasis cases. We counted the deposition sites of Schistosoma eggs, analyzed the pathological characteristics, and compared the clinicopathological characteristics of Schistosomiasis associated digestive system tumors and non-Schistosomiasis digestive system tumors. We found that Schistosoma japonicum can cause multi organ and multi system damage, with 469 cases of inflammation, 47 cases of adenoma, and 519 cases of adenocarcinoma. Other types include cysts, stromal tumors, malignant lymphomas, and neuroendocrine tumors. Schistosomiasis associated tumors, including gastric cancer, liver cancer, colon cancer and rectal cancer, were compared with non-Schistosomiasis tumors. There were significant differences in age, gender and tumor differentiation between the two groups. Our study shows Schistosomiasis is a systemic disease, causing multiple organ and system damage in the human body. Its clinicopathological types are diverse, and there may be a pathological change process of "Inflammation-adenoma-carcinoma". Schistosomiasis associated digestive system tumors differ from non-Schistosomiasis tumors in some clinicopathological features.
Collapse
Affiliation(s)
- Yang Yang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
- Class1 Grade 2019, Department of Stomatology, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Xiao-Yi Wang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Chun Duan
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Zi-Jian Wang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Hao-Yu Sheng
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Xiu-Liang Xu
- Department of Infectious Diseases, The People's Hospital of Chizhou, Chizhou, Anhui, People's Republic of China
| | - Wen-Jie Wang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Jiang-Hua Yang
- Department of Infectious Diseases, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Lam HYP, Wu WJ, Liang TR, Li HC, Chang KC, Peng SY. Salmonella typhimurium exacerbates injuries but resolves fibrosis in liver and spleen during Schistosoma mansoni infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023:S1684-1182(23)00070-1. [PMID: 36964051 DOI: 10.1016/j.jmii.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND In most developing or undeveloped countries, patients are often co-infected with multiple pathogens rather than a single pathogen. While different pathogens have their impact on morbidity and mortality, co-infection of more than one pathogen usually made the disease outcome different. Many studies reported the co-infection of Schistosoma with Salmonella in pandemic areas. However, the link or the underlying mechanism in the pathogenesis caused by Schistosoma-Salmonella co-infection is still unknown. METHODS In this study, Salmonella typhimurium (S. typhimurium) was challenged to Schistosoma mansoni (S. mansoni)-infected mice. Further experiments such as bacterial culture, histopathological examination, western blotting, and flow cytometry were performed to evaluate the outcomes of the infection. Cytokine responses of the mice were also determined by ELISA and real-time quantitative PCR. RESULTS Our results demonstrated that co-infected mice resulted in higher bacterial excretion in the acute phase but higher bacterial colonization in the chronic phase. Lesser egg burden was also observed during chronic schistosomiasis. Infection with S. typhimurium during schistosomiasis induces activation of the inflammasome and apoptosis, thereby leading to more drastic tissue damage. Interestingly, co-infected mice showed a lower fibrotic response in the liver and spleen. Further, co-infection alters the immunological functioning of the mice, possibly the reason for the observed pathological outcomes. CONCLUSION Collectively, our findings here demonstrated that S. mansoni-infected mice challenged with S. typhimurium altered their immunological responses, thereby leading to different pathological outcomes.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan; Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan; Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
6
|
Schick J, Altunay M, Lacorcia M, Marschner N, Westermann S, Schluckebier J, Schubart C, Bodendorfer B, Christensen D, Alexander C, Wirtz S, Voehringer D, da Costa CP, Lang R. IL-4 and helminth infection downregulate MINCLE-dependent macrophage response to mycobacteria and Th17 adjuvanticity. eLife 2023; 12:72923. [PMID: 36753434 PMCID: PMC9908076 DOI: 10.7554/elife.72923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The myeloid C-type lectin receptor (CLR) MINCLE senses the mycobacterial cell wall component trehalose-6,6'-dimycolate (TDM). Recently, we found that IL-4 downregulates MINCLE expression in macrophages. IL-4 is a hallmark cytokine in helminth infections, which appear to increase the risk for mycobacterial infection and active tuberculosis. Here, we investigated functional consequences of IL-4 and helminth infection on MINCLE-driven macrophage activation and Th1/Th17 adjuvanticity. IL-4 inhibited MINCLE and cytokine induction after macrophage infection with Mycobacterium bovis bacille Calmette-Guerin (BCG). Infection of mice with BCG upregulated MINCLE on myeloid cells, which was inhibited by IL-4 plasmid injection and by infection with the nematode Nippostrongylus brasiliensis in monocytes. To determine the impact of helminth infection on MINCLE-dependent immune responses, we vaccinated mice with a recombinant protein together with the MINCLE ligand trehalose-6,6-dibehenate (TDB) as adjuvant. Concurrent infection with N. brasiliensis or with Schistosoma mansoni promoted T cell-derived IL-4 production and suppressed Th1/Th17 differentiation in the spleen. In contrast, helminth infection did not reduce Th1/Th17 induction by TDB in draining peripheral lymph nodes, where IL-4 levels were unaltered. Upon use of the TLR4-dependent adjuvant G3D6A, N. brasiliensis infection impaired selectively the induction of splenic antigen-specific Th1 but not of Th17 cells. Inhibition of MINCLE-dependent Th1/Th17 responses in mice infected with N. brasiliensis was dependent on IL-4/IL-13. Thus, helminth infection attenuated the Th17 response to MINCLE-dependent immunization in an organ- and adjuvant-specific manner via the Th2 cytokines IL-4/IL-13. Taken together, our results demonstrate downregulation of MINCLE expression on monocytes and macrophages by IL-4 as a possible mechanism of thwarted Th17 vaccination responses by underlying helminth infection.
Collapse
Affiliation(s)
- Judith Schick
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Meltem Altunay
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Matthew Lacorcia
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Nathalie Marschner
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Stefanie Westermann
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Julia Schluckebier
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Christoph Schubart
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Barbara Bodendorfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Dennis Christensen
- Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum InstitutCopenhagenDenmark
| | - Christian Alexander
- Cellular Microbiology, Forschungszentrum Borstel, Leibniz Lung Center BorstelBorstelGermany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| | - Clarissa Prazeres da Costa
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Center for Global Health, Technische Universität MünchenMunichGermany,Center for Global Health, Technical University MunichMunichGermany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
| |
Collapse
|
7
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
8
|
Prodjinotho UF, Gres V, Henkel F, Lacorcia M, Dandl R, Haslbeck M, Schmidt V, Winkler AS, Sikasunge C, Jakobsson PJ, Henneke P, Esser-von Bieren J, Prazeres da Costa C. Helminthic dehydrogenase drives PGE 2 and IL-10 production in monocytes to potentiate Treg induction. EMBO Rep 2022; 23:e54096. [PMID: 35357743 PMCID: PMC9066053 DOI: 10.15252/embr.202154096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Immunoregulation of inflammatory, infection‐triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub‐Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL‐10 and the lipid mediator PGE2. These act in concert, converting naive CD4+ T cells into CD127−CD25hiFoxP3+CTLA‐4+ Tregs, through the G protein‐coupled receptors EP2 and EP4 and the IL‐10 receptor. Moreover, while viable cyst products strongly upregulate IL‐10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro‐inflammatory microglia and TGF‐β as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL‐10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2‐IL‐10 axis and targeting TGF‐ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.
Collapse
Affiliation(s)
- Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vitka Gres
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Matthew Lacorcia
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ramona Dandl
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Veronika Schmidt
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Andrea Sylvia Winkler
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Chummy Sikasunge
- Department of Paraclinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection and Research (DZIF), Munich, Germany
| |
Collapse
|
9
|
Abstract
It is well established that by modulating various immune functions, host infection may alter the course of concomitant inflammatory diseases, of both infectious and autoimmune etiologies. Beyond the major impact of commensal microbiota on the immune status, host exposure to viral, bacterial, and/or parasitic microorganisms also dramatically influences inflammatory diseases in the host, in a beneficial or harmful manner. Moreover, by modifying pathogen control and host tolerance to tissue damage, a coinfection can profoundly affect the development of a concomitant infectious disease. Here, we review the diverse mechanisms that underlie the impact of (co)infections on inflammatory disorders. We discuss epidemiological studies in the context of the hygiene hypothesis and shed light on the sometimes dual impact of germ exposure on human susceptibility to inflammatory disease. We then summarize the immunomodulatory mechanisms at play, which can involve pleiotropic effects of immune players and discuss the possibility to harness pathogen-derived compounds to the host benefit.
Collapse
|
10
|
Age-dependent rise in IFN-γ competence undermines effective type 2 responses to nematode infection. Mucosal Immunol 2022; 15:1270-1282. [PMID: 35690651 PMCID: PMC9705248 DOI: 10.1038/s41385-022-00519-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The efficient induction of type 2 immune responses is central to the control of helminth infections. Previous studies demonstrated that strong Th1 responses driven by intracellular pathogens as well as a bias for type 1 activity in senescent mice impedes the generation of Th2 responses and the control of intestinal nematode infections. Here, we show that the spontaneous differentiation of Th1 cells and their expansion with age restrains type 2 immunity to infection with the small intestinal nematode H. polygyrus much earlier in life than previously anticipated. This includes the more extensive induction of IFN-γ competent, nematode-specific Th2/1 hybrid cells in BALB/c mice older than three months compared to younger animals. In C57BL/6 mice, Th1 cells accumulate more rapidly at steady state, translating to elevated Th2/1 differentiation and poor control of parasite fitness in primary infections experienced at a young age. Blocking of early IFN-γ and IL-12 signals during the first week of nematode infection leads to sharply decreased Th2/1 differentiation and promotes resistance in both mouse lines. Together, these data suggest that IFN-γ competent, type 1 like effector cells spontaneously accumulating in the vertebrate host progressively curtail the effectiveness of anti-nematode type 2 responses with rising host age.
Collapse
|
11
|
Lacorcia M, Bhattacharjee S, Laubhahn K, Alhamdan F, Ram M, Muschaweckh A, Potaczek DP, Kosinska A, Garn H, Protzer U, Renz H, Prazeres da Costa C. Fetomaternal immune cross talk modifies T-cell priming through sustained changes to DC function. J Allergy Clin Immunol 2021; 148:843-857.e6. [PMID: 33684437 DOI: 10.1016/j.jaci.2021.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Prenatal exposure to infections can modify immune development. These environmental disturbances during early life potentially alter the incidence of inflammatory disorders as well as priming of immune responses. Infection with the helminth Schistosoma mansoni is widely studied for its ability to alter immune responsiveness and is associated with variations in coinfection, allergy, and vaccine efficacy in endemic populations. OBJECTIVE Exposure to maternal schistosomiasis during early life, even without transmission of infection, can result in priming effects on offspring immune responses to bystander antigenic challenges as related to allergic responsiveness and vaccination, with this article seeking to further clarify the effects and underlying immunologic imprinting. METHODS Here, we have combined a model of chronic maternal schistosomiasis infection with a thorough analysis of subsequent offspring immune responses to allergy and vaccination models, including viral challenge and steady-state changes to immune cell compartments. RESULTS We have demonstrated that maternal schistosomiasis alters CD4+ responses during allergic sensitization and challenge in a skewed IL-4/B-cell-dominant response to antigenic challenge associated with limited inflammatory response. Beyond that, we have uncovered previously unidentified alterations to CD8+ T-cell responses during immunization that are dependent on vaccine formulation and have functional impact on the efficacy of vaccination against viral infection in a murine hepatitis B virus model. CONCLUSION In addition to steady-state modifications to CD4+ T-cell polarization and B-cell priming, we have traced these modified CD8+ responses to an altered dendritic cell phenotype sustained into adulthood, providing evidence for complex priming effects imparted by infection via fetomaternal cross talk.
Collapse
Affiliation(s)
- Matthew Lacorcia
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Sonakshi Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Kristina Laubhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany; Pediatric Allergology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany; German Center for Lung Research, Ludwig Maximilian University Munich, Munich, Germany
| | - Fahd Alhamdan
- Biochemical Pharmacological Center, Translational Inflammation Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| | - Marija Ram
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Andreas Muschaweckh
- Department of Neurology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel P Potaczek
- Biochemical Pharmacological Center, Translational Inflammation Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| | - Anna Kosinska
- Institute for Virology Technical University of Munich, Munich, Germany
| | - Holger Garn
- Biochemical Pharmacological Center, Translational Inflammation Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| | - Ulrike Protzer
- Institute for Virology Technical University of Munich, Munich, Germany
| | - Harald Renz
- Biochemical Pharmacological Center, Translational Inflammation Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany.
| |
Collapse
|
12
|
Zhang X, Arnold IC, Müller A. Mechanisms of persistence, innate immune activation and immunomodulation by the gastric pathogen Helicobacter pylori. Curr Opin Microbiol 2020; 54:1-10. [PMID: 32007716 DOI: 10.1016/j.mib.2020.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
The gastric bacterium Helicobacter pylori efficiently evades innate immune detection and persistently colonizes its human host. Understanding the genetic determinants that H. pylori uses to establish and maintain persistence, along with their cellular targets, is key to our understanding of the pathogenesis of this extraordinarily successful bacterial colonizer of the human stomach. This review highlights recent advances in elucidating innate immune recognition of H. pylori, its interactions with myeloid cells and the consequences that this very local infection has for immune responses at extragastric sites in models of allergy, autoimmunity and parasitic infection. The human-specific, gram-negative gastric colonizer and carcinogen H. pylori represents the prototype of a persistent bacterial pathogen. It is transmitted during early childhood, typically from mother to infant, and is believed to persist in its human host from the cradle to the grave. The tremendous success of H. pylori in infecting and colonizing half of the world's population, and in continuously accompanying humans since they migrated out of Africa over 60000 years ago, can largely be attributed to its ability to manipulate the host immune system to its own advantage, and to thereby ensure its own persistence and chronicity. In his final years as an active PI, Stanley Falkow increasingly recognized the need to understand bacterial persistence strategies as a prerequisite of understanding the pathogenesis of chronic bacterial infections, and, inspired in large part by Denise Monack's work on Salmonella persistence, many of our discussions at the time revolved around this topic. Multiple labs have since made important contributions to our understanding of innate immune detection of H. pylori, the types and polarization of adaptive immune responses that ensue, the ability of H. pylori to skew such immune responses to its advantage, and its ability to manipulate the host immune system with far-reaching, even systemic consequences. This review attempts to cover some of these topics, with a particular focus on the most recent contributions by researchers in the field.
Collapse
Affiliation(s)
- Xiaozhou Zhang
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|