1
|
Ha A, Woolman M, Waas M, Govindarajan M, Kislinger T. Recent implementations of data-independent acquisition for cancer biomarker discovery in biological fluids. Expert Rev Proteomics 2025; 22:163-176. [PMID: 40227112 DOI: 10.1080/14789450.2025.2491355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Cancer is the second-leading cause of death worldwide and accurate biomarkers for early detection and disease monitoring are needed to improve outcomes. Biological fluids, such as blood and urine, are ideal samples for biomarker measurements as they can be routinely collected with relatively minimally invasive methods. However, proteomics analysis of fluids has been a challenge due to the high dynamic range of its protein content. Advances in data-independent acquisition (DIA) mass spectrometry-based proteomics can address some of the technical challenges in the analysis of biofluids, thus enabling the ability for mass spectrometry to propel large-scale biomarker discovery. AREAS COVERED We reviewed principles of DIA and its recent applications in cancer biomarker discovery using biofluids. We summarized DIA proteomics studies using biological fluids in the context of cancer research over the past decade, and provided a comprehensive overview of the benefits and challenges of DIA-MS. EXPERT OPINION Various studies showed the potential of DIA-MS in identifying putative cancer biomarkers in a high-throughput manner. However, the lack of proper study design and standardization of methods across platforms still needs to be addressed to fully utilize the benefits of DIA-MS to accelerate the biomarker discovery and verification processes.
Collapse
Affiliation(s)
- Annie Ha
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Woolman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Matthew Waas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Meinusha Govindarajan
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Lv Z, Yan X, Liu Z, Chen S, Yan X, Yang L, Wang Q. A CH 4-Driven Ion Cloud-Stretched Approach Enables ICP-qMS for Multiplex Single-Cell Analysis. Chemistry 2024; 30:e202402289. [PMID: 39445534 DOI: 10.1002/chem.202402289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
In the last 40 years, inductively coupled plasma quadrupole (q) mass spectrometry (ICP-qMS) has been recognized as one of the best tools for the quantification of multiple elements/isotopes and even the biomolecules they labeled in a homogeneous solution sample. However, it meets a tough challenge when acquiring multi-m/z signals from an intact single-cell dispersed in a cell suspension, since the single-cell ion cloud generated in ICP presents an intermittently transient event with a duration time of hundreds of microseconds while the dwell time plus settling time of the q is at the similar time scale when peak-hopping between different m/z. Herein, we report CH4 is able to stretch the single-cell ion cloud duration time to more than 7,000 μs in collision-reaction-cell (CRC), allowing multi-m/z signals acquisition by ICP-qMS. Quantification of single-cell's multiple phenotype protein markers can thus be achieved on ICP-(CH4-CRC)-qMS, not only revealing the heterogeneity between the single cells but also enabling an unambiguous cell-classification of their subtypes. CH4-driven ion cloud-stretched approach breaks through the long-standing bottleneck limited single-cell multiplex analysis on ICP-qMS, paving a path for more important applications of ICP-qMS in the fields related to single-cell analysis.
Collapse
Affiliation(s)
- Zhengxian Lv
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinli Yan
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhen Liu
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shi Chen
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaowen Yan
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Martisova A, Faktor J, Sosolikova T, Klemesova I, Kolarova T, Holcakova J, Hrstka R. Characterization of the AGR2-NPM3 axis uncovers the AGR2 involvement in PD-L1 regulation in colorectal cancer. Sci Rep 2024; 14:21926. [PMID: 39300184 PMCID: PMC11413233 DOI: 10.1038/s41598-024-72990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Despite extensive research, the molecular role of AGR2 in the progression and metastasis of colorectal cancer (CRC) has not been fully characterized. We used quantitative mass spectrometry (SWATH MS) to identify differentially expressed proteins in paired CRC cell models of the SW480 and SW620 cell lines in response to AGR2 protein level manipulation. Relying on the results from SWATH MS and subsequent immunochemical validation, we selected NMP3 as the top candidate protein associated with AGR2 in CRC tumour cells in our screen. RT‒qPCR and immunochemical analysis confirmed the involvement of AGR2-mediated regulation of NPM3 at the transcriptional and posttranscriptional levels. Since PD-L1 is a constituent of the NPM3 regulatory axis, we aimed to correlate the changes in PD-L1 to the differential expression of AGR2 in our cell models. We found that AGR2 positively regulates PD-L1 levels in both SW480 and SW620 cell lines; additionally, several different CRC patient transcriptome cohorts confirmed the association of AGR2 with PD-L1. Our work reveals a new AGR2-NPM3 regulatory axis and the involvement of AGR2 in the regulation of PD-L1, which paves the way for the association of AGR2 with immune evasion in CRC cells.
Collapse
Affiliation(s)
- Andrea Martisova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, Gdansk, 80-822, Poland
| | - Tereza Sosolikova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Iveta Klemesova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Tamara Kolarova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic.
| |
Collapse
|
4
|
Mueller C, Davis JB, Espina V. Protein biomarkers for subtyping breast cancer and implications for future research: a 2024 update. Expert Rev Proteomics 2024; 21:401-416. [PMID: 39474929 DOI: 10.1080/14789450.2024.2423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Breast cancer subtyping is used clinically for diagnosis, prognosis, and treatment decisions. Subtypes are categorized by cell of origin, histomorphology, gene expression signatures, hormone receptor status, and/or protein levels. Categorizing breast cancer based on gene expression signatures aids in assessing a patient's recurrence risk. Protein biomarkers, on the other hand, provide functional data for selecting therapies for primary and recurrent tumors. We provide an update on protein biomarkers in breast cancer subtypes and their application in prognosis and therapy selection. AREAS COVERED Protein pathways in breast cancer subtypes are reviewed in the context of current protein-targeted treatment options. PubMed, Science Direct, Scopus, and Cochrane Library were searched for relevant studies between 2017 and 17 August 2024. EXPERT OPINION Post-translationally modified proteins and their unmodified counterparts have become clinically useful biomarkers for defining breast cancer subtypes from a therapy perspective. Tissue heterogeneity influences treatment outcomes and disease recurrence. Spatial profiling has revealed complex cellular subpopulations within the breast tumor microenvironment. Deciphering the functional relationships between and within tumor clonal cell populations will further aid in defining breast cancer subtypes and create new treatment paradigms for recurrent, drug resistant, and metastatic disease.
Collapse
Affiliation(s)
- Claudius Mueller
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Justin B Davis
- Laboratory and Bioinformatics Department, Ignite Proteomics, Golden, CO, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
5
|
Qu N, Wang G, Su Y, Chen B, Zhou D, Wu Y, Yuan L, Yin M, Liu M, Peng Y, Zhou W. INPP4B suppresses HER2-induced mesenchymal transition in HER2+ breast cancer and enhances sensitivity to Lapatinib. Biochem Pharmacol 2024; 226:116347. [PMID: 38852646 DOI: 10.1016/j.bcp.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Human epidermal growth factor receptor 2 positive (HER2+) breast cancer (BC) tends to metastasize and has a bad prognosis due to its high malignancy and rapid progression. Inositol polyphosphate 4-phosphatase isoenzymes type II (INPP4B) plays unequal roles in the development of various cancers. However, the function of INPP4B in HER2+ BC has not been elucidated. Here we found that INPP4B expression was significantly lower in HER2+ BC and positively correlated with the prognosis by bioinformatics and tissue immunofluorescence analyses. Overexpression of INPP4B inhibited cell proliferation, migration, and growth of xenografts in HER2+ BC cells. Conversely, depletion of INPP4B reversed these effects and activated the PDK1/AKT and Wnt/β-catenin signaling pathways to promote epithelial-mesenchymal transition (EMT) progression. Moreover, INPP4B overexpression blocked epidermal growth factor (EGF) -induced cell proliferation, migration and EMT progression, whereas INPP4B depletion antagonized HER2 depletion in reduction of cell proliferation and migration of HER2+ BC cells. Additionally, Lapatinib (LAP) inhibited HER2+ BC cell survival, proliferation and migration, and its effect was further enhanced by overexpression of INPP4B. In summary, our results illustrate that INPP4B suppresses HER2+ BC growth, migration and EMT, and its expression level affects patient outcome, further providing new insights into clinical practice.
Collapse
Affiliation(s)
- Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yue Su
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Manjialan Yin
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing 400016, China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Lapcik P, Synkova K, Janacova L, Bouchalova P, Potesil D, Nenutil R, Bouchal P. A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer. Sci Data 2024; 11:794. [PMID: 39025866 PMCID: PMC11258311 DOI: 10.1038/s41597-024-03632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and deeper proteome coverage is needed for its molecular characterization. We present comprehensive library of targeted mass spectrometry assays specific for TNBC and demonstrate its applicability. Proteins were extracted from 105 TNBC tissues and digested. Aliquots were pooled, fractionated using hydrophilic chromatography and analyzed by LC-MS/MS in data-dependent acquisition (DDA) parallel accumulation-serial fragmentation (PASEF) mode on timsTOF Pro LC-MS system. 16 individual lysates were analyzed in data-independent acquisition (DIA)-PASEF mode. Hybrid library was generated in Spectronaut software and covers 244,464 precursors, 168,006 peptides and 11,564 protein groups (FDR = 1%). Application of our library for pilot quantitative analysis of 16 tissues increased identification numbers in Spectronaut 18.5 and DIA-NN 1.8.1 software compared to library-free setting, with Spectronaut achieving the best results represented by 190,310 precursors, 140,566 peptides, and 10,463 protein groups. In conclusion, we introduce assay library that offers the deepest coverage of TNBC proteome to date. The TNBC library is available via PRIDE repository (PXD047793).
Collapse
Grants
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- CZ.02.1.01/0.0/0.0/18_046/0015974 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2023033 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Klara Synkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Rudolf Nenutil
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
De Marchi T, Lai CF, Simmons GM, Goldsbrough I, Harrod A, Lam T, Buluwela L, Kjellström S, Brueffer C, Saal LH, Malmström J, Ali S, Niméus E. Proteomic profiling reveals that ESR1 mutations enhance cyclin-dependent kinase signaling. Sci Rep 2024; 14:6873. [PMID: 38519482 PMCID: PMC10959978 DOI: 10.1038/s41598-024-56412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
| | - Chun-Fui Lai
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Georgia M Simmons
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Isabella Goldsbrough
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alison Harrod
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Thai Lam
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden
| | - Lakjaya Buluwela
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sven Kjellström
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Solvegatan 19, 22362, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry - BioMS, Lund, Sweden
| | - Christian Brueffer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Klinikgatan 32, 22184, Lund, Sweden
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 22362, Lund, Sweden.
- Department of Surgery, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
8
|
Banerjee S, Hatimuria M, Sarkar K, Das J, Pabbathi A, Sil PC. Recent Contributions of Mass Spectrometry-Based "Omics" in the Studies of Breast Cancer. Chem Res Toxicol 2024; 37:137-180. [PMID: 38011513 DOI: 10.1021/acs.chemrestox.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Breast cancer (BC) is one of the most heterogeneous groups of cancer. As every biotype of BC is unique and presents a particular "omic" signature, they are increasingly characterized nowadays with novel mass spectrometry (MS) strategies. BC therapeutic approaches are primarily based on the two features of human epidermal growth factor receptor 2 (HER2) and estrogen receptor (ER) positivity. Various strategic MS implementations are reported in studies of BC also involving data independent acquisitions (DIAs) of MS which report novel differential proteomic, lipidomic, proteogenomic, phosphoproteomic, and metabolomic characterizations associated with the disease and its therapeutics. Recently many "omic" studies have aimed to identify distinct subsidiary biotypes for diagnosis, prognosis, and targets of treatment. Along with these, drug-induced-resistance phenotypes are characterized by "omic" changes. These identifying aspects of the disease may influence treatment outcomes in the near future. Drug quantifications and characterizations are also done regularly and have implications in therapeutic monitoring and in drug efficacy assessments. We report these studies, mentioning their implications toward the understanding of BC. We briefly provide the MS instrumentation principles that are adopted in such studies as an overview with a brief outlook on DIA-MS strategies. In all of these, we have chosen a model cancer for its revelations through MS-based "omics".
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Physiology, Surendranath College, University of Calcutta, Kolkata 700009, India
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Madushmita Hatimuria
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Kasturi Sarkar
- Department of Microbiology, St. Xavier's College, Kolkata 700016, India
| | - Joydeep Das
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ashok Pabbathi
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram India
| | - Parames C Sil
- Department of Molecular Medicine Bose Institute, Kolkata 700054, India
| |
Collapse
|
9
|
Gu J, Xie S, Li X, Wu Z, Xue L, Wang S, Wei W. Identification of plasma proteomic signatures associated with the progression of cardia gastric cancer and precancerous lesions. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:286-294. [PMID: 39036665 PMCID: PMC11256680 DOI: 10.1016/j.jncc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 07/23/2024] Open
Abstract
Objective Considering that there are no effective biomarkers for the screening of cardia gastric cancer (CGC), we developed a noninvasive diagnostic approach, employing data-independent acquisition (DIA) proteomics to identify candidate protein markers. Methods Plasma samples were obtained from 40 subjects, 10 each for CGC, cardia high-grade dysplasia (CHGD), cardia low-grade dysplasia (CLGD), and healthy controls. Proteomic profiles were obtained through liquid chromatography-mass spectrometry (LC-MS/MS-based DIA proteomics. Candidate plasma proteins were identified by weighted gene co-expression network analysis (WGCNA) combined with machine learning and further validated by the Human Protein Atlas (HPA) database. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the biomarker panel. Results There was a clear distinction in proteomic features among CGC, CHGD, CLGD, and the healthy controls. According to the WGCNA, we found 42 positively associated and 164 inversely associated proteins related to CGC progression and demonstrated several canonical cancer-associated pathways. Combined with the results from random forests, LASSO regression, and immunohistochemical results from the HPA database, we identified three candidate proteins (GSTP1, CSRP1, and LY6G6F) that could together distinguish CLGD (AUC = 0.91), CHGD (AUC = 0.99) and CGC (AUC = 0.98) from healthy controls with excellent accuracy. Conclusions The panel of protein biomarkers showed promising diagnostic potential for CGC and precancerous lesions. Further validation and a larger-scale study are warranted to assess its potential clinical applications, suggesting a potential avenue for CGC prevention in the future.
Collapse
Affiliation(s)
- Jianhua Gu
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shuanghua Xie
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xinqing Li
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeming Wu
- iPhenome Biotechnology (Dalian), Inc., Dalian, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoming Wang
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqiang Wei
- Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Tariq M, Richard V, Kerin MJ. MicroRNAs as Molecular Biomarkers for the Characterization of Basal-like Breast Tumor Subtype. Biomedicines 2023; 11:3007. [PMID: 38002007 PMCID: PMC10669494 DOI: 10.3390/biomedicines11113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is a heterogeneous disease highlighted by the presence of multiple tumor variants and the basal-like breast cancer (BLBC) is considered to be the most aggressive variant with limited therapeutics and a poor prognosis. Though the absence of detectable protein and hormonal receptors as biomarkers hinders early detection, the integration of genomic and transcriptomic profiling led to the identification of additional variants in BLBC. The high-throughput analysis of tissue-specific micro-ribonucleic acids (microRNAs/miRNAs) that are deemed to have a significant role in the development of breast cancer also displayed distinct expression profiles in each subtype of breast cancer and thus emerged to be a robust approach for the precise characterization of the BLBC subtypes. The classification schematic of breast cancer is still a fluid entity that continues to evolve alongside technological advancement, and the transcriptomic profiling of tissue-specific microRNAs is projected to aid in the substratification and diagnosis of the BLBC tumor subtype. In this review, we summarize the current knowledge on breast tumor classification, aim to collect comprehensive evidence based on the microRNA expression profiles, and explore their potential as prospective biomarkers of BLBC.
Collapse
Affiliation(s)
| | - Vinitha Richard
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, H91 TK33 Galway, Ireland;
| |
Collapse
|
11
|
Kitata RB, Yang JC, Chen YJ. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. MASS SPECTROMETRY REVIEWS 2023; 42:2324-2348. [PMID: 35645145 DOI: 10.1002/mas.21781] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
The data-independent acquisition mass spectrometry (DIA-MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA-MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA-based proteomics profiling. Here, we review the evolution of the DIA-MS techniques, from earlier proof-of-principle of parallel fragmentation of all-ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH-MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA-MS. We further summarize recent applications of DIA-MS and experimentally-derived as well as in silico spectra library resources for large-scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next-generation DIA-MS for clinical proteomics, we outline the challenges in processing multi-dimensional DIA data set and large-scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
Collapse
Affiliation(s)
| | - Jhih-Ci Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Behera RN, Bisht VS, Giri K, Ambatipudi K. Realm of proteomics in breast cancer management and drug repurposing to alleviate intricacies of treatment. Proteomics Clin Appl 2023; 17:e2300016. [PMID: 37259687 DOI: 10.1002/prca.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer, a multi-networking heterogeneous disease, has emerged as a serious impediment to progress in clinical oncology. Although technological advancements and emerging cancer research studies have mitigated breast cancer lethality, a precision cancer-oriented solution has not been achieved. Thus, this review will persuade the acquiescence of proteomics-based diagnostic and therapeutic options in breast cancer management. Recently, the evidence of breast cancer health surveillance through imaging proteomics, single-cell proteomics, interactomics, and post-translational modification (PTM) tracking, to construct proteome maps and proteotyping for stage-specific and sample-specific cancer subtyping have outperformed conventional ways of dealing with breast cancer by increasing diagnostic efficiency, prognostic value, and predictive response. Additionally, the paradigm shift in applied proteomics for designing a chemotherapy regimen to identify novel drug targets with minor adverse effects has been elaborated. Finally, the potential of proteomics in alleviating the occurrence of chemoresistance and enhancing reprofiled drugs' effectiveness to combat therapeutic obstacles has been discussed. Owing to the enormous potential of proteomics techniques, the clinical recognition of proteomics in breast cancer management can be achievable and therapeutic intricacies can be surmountable.
Collapse
Affiliation(s)
- Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
13
|
Diaz PM, Leehans A, Ravishankar P, Daily A. Multiomic Approaches for Cancer Biomarker Discovery in Liquid Biopsies: Advances and Challenges. Biomark Insights 2023; 18:11772719231204508. [PMID: 37846373 PMCID: PMC10576933 DOI: 10.1177/11772719231204508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Cancer is a complex and heterogeneous disease that poses a significant threat to global health. Early diagnosis and treatment are critical for improving patient outcomes, and the use of liquid biopsies has emerged as a promising approach for cancer detection and monitoring. Traditionally, cancer diagnosis has relied on invasive tissue biopsies, the collection of which can prove challenging for patients and the results of which may not always provide accurate results due to tumor heterogeneity. Liquid biopsies have gained increasing attention as they provide a non-invasive and accessible source of cancer biomarkers, which can be used to diagnose cancer, monitor treatment response, and detect relapse. The integration of -omics technologies, such as proteomics, genomics, and metabolomics, has further enhanced the capabilities of liquid biopsies by introducing precision oncology and enabling the tailoring of treatment for individual patients based on their unique tumor biology. In this review, we will discuss the challenges and advances in the field of cancer liquid biopsies and the integration of -omics technologies for different types of liquid biopsies, including blood, tear, urine, sweat, saliva, and cerebrospinal fluid.
Collapse
Affiliation(s)
- Paola Monterroso Diaz
- Namida Lab Inc., Fayetteville, AR, USA
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, AR, USA
| | | | | | | |
Collapse
|
14
|
Lei JT, Jaehnig EJ, Smith H, Holt MV, Li X, Anurag M, Ellis MJ, Mills GB, Zhang B, Labrie M. The Breast Cancer Proteome and Precision Oncology. Cold Spring Harb Perspect Med 2023; 13:a041323. [PMID: 37137501 PMCID: PMC10547392 DOI: 10.1101/cshperspect.a041323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The goal of precision oncology is to translate the molecular features of cancer into predictive and prognostic tests that can be used to individualize treatment leading to improved outcomes and decreased toxicity. Success for this strategy in breast cancer is exemplified by efficacy of trastuzumab in tumors overexpressing ERBB2 and endocrine therapy for tumors that are estrogen receptor positive. However, other effective treatments, including chemotherapy, immune checkpoint inhibitors, and CDK4/6 inhibitors are not associated with strong predictive biomarkers. Proteomics promises another tier of information that, when added to genomic and transcriptomic features (proteogenomics), may create new opportunities to improve both treatment precision and therapeutic hypotheses. Here, we review both mass spectrometry-based and antibody-dependent proteomics as complementary approaches. We highlight how these methods have contributed toward a more complete understanding of breast cancer and describe the potential to guide diagnosis and treatment more accurately.
Collapse
Affiliation(s)
- Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hannah Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xi Li
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
15
|
Sun R, Ge W, Zhu Y, Sayad A, Luna A, Lyu M, Liang S, Tobalina L, Rajapakse VN, Yu C, Zhang H, Fang J, Wu F, Xie H, Saez-Rodriguez J, Ying H, Reinhold WC, Sander C, Pommier Y, Neel BG, Aebersold R, Guo T. Proteomic Dynamics of Breast Cancer Cell Lines Identifies Potential Therapeutic Protein Targets. Mol Cell Proteomics 2023; 22:100602. [PMID: 37343696 PMCID: PMC10392136 DOI: 10.1016/j.mcpro.2023.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Treatment and relevant targets for breast cancer (BC) remain limited, especially for triple-negative BC (TNBC). We identified 6091 proteins of 76 human BC cell lines using data-independent acquisition (DIA). Integrating our proteomic findings with prior multi-omics datasets, we found that including proteomics data improved drug sensitivity predictions and provided insights into the mechanisms of action. We subsequently profiled the proteomic changes in nine cell lines (five TNBC and four non-TNBC) treated with EGFR/AKT/mTOR inhibitors. In TNBC, metabolism pathways were dysregulated after EGFR/mTOR inhibitor treatment, while RNA modification and cell cycle pathways were affected by AKT inhibitor. This systematic multi-omics and in-depth analysis of the proteome of BC cells can help prioritize potential therapeutic targets and provide insights into adaptive resistance in TNBC.
Collapse
Affiliation(s)
- Rui Sun
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Bioinformatics Department, Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang, China
| | - Yi Zhu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Azin Sayad
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Augustin Luna
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mengge Lyu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luis Tobalina
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chenhuan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Huanhuan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Hui Xie
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, BioQuant, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Huazhong Ying
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chris Sander
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin G Neel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA.
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| | - Tiannan Guo
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules 2023; 28:4768. [PMID: 37375323 DOI: 10.3390/molecules28124768] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bvd, No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Celeste A Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
17
|
Neagu AN, Whitham D, Seymour L, Haaker N, Pelkey I, Darie CC. Proteomics-Based Identification of Dysregulated Proteins and Biomarker Discovery in Invasive Ductal Carcinoma, the Most Common Breast Cancer Subtype. Proteomes 2023; 11:13. [PMID: 37092454 PMCID: PMC10123686 DOI: 10.3390/proteomes11020013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Invasive ductal carcinoma (IDC) is the most common histological subtype of malignant breast cancer (BC), and accounts for 70-80% of all invasive BCs. IDC demonstrates great heterogeneity in clinical and histopathological characteristics, prognoses, treatment strategies, gene expressions, and proteomic profiles. Significant proteomic determinants of the progression from intraductal pre-invasive malignant lesions of the breast, which characterize a ductal carcinoma in situ (DCIS), to IDC, are still poorly identified, validated, and clinically applied. In the era of "6P" medicine, it remains a great challenge to determine which patients should be over-treated versus which need to be actively monitored without aggressive treatment. The major difficulties for designating DCIS to IDC progression may be solved by understanding the integrated genomic, transcriptomic, and proteomic bases of invasion. In this review, we showed that multiple proteomics-based techniques, such as LC-MS/MS, MALDI-ToF MS, SELDI-ToF-MS, MALDI-ToF/ToF MS, MALDI-MSI or MasSpec Pen, applied to in-tissue, off-tissue, BC cell lines and liquid biopsies, improve the diagnosis of IDC, as well as its prognosis and treatment monitoring. Classic proteomics strategies that allow the identification of dysregulated protein expressions, biological processes, and interrelated pathway analyses based on aberrant protein-protein interaction (PPI) networks have been improved to perform non-invasive/minimally invasive biomarker detection of early-stage IDC. Thus, in modern surgical oncology, highly sensitive, rapid, and accurate MS-based detection has been coupled with "proteome point sampling" methods that allow for proteomic profiling by in vivo "proteome point characterization", or by minimal tissue removal, for ex vivo accurate differentiation and delimitation of IDC. For the detection of low-molecular-weight proteins and protein fragments in bodily fluids, LC-MS/MS and MALDI-MS techniques may be coupled to enrich and capture methods which allow for the identification of early-stage IDC protein biomarkers that were previously invisible for MS-based techniques. Moreover, the detection and characterization of protein isoforms, including posttranslational modifications of proteins (PTMs), is also essential to emphasize specific molecular mechanisms, and to assure the early-stage detection of IDC of the breast.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Norman Haaker
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Isabella Pelkey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
18
|
Bons J, Pan D, Shah S, Bai R, Chen‐Tanyolac C, Wang X, Elliott DRF, Urisman A, O'Broin A, Basisty N, Rose J, Sangwan V, Camilleri‐Broët S, Tankel J, Gascard P, Ferri L, Tlsty TD, Schilling B. Data-independent acquisition and quantification of extracellular matrix from human lung in chronic inflammation-associated carcinomas. Proteomics 2023; 23:e2200021. [PMID: 36228107 PMCID: PMC10391693 DOI: 10.1002/pmic.202200021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Early events associated with chronic inflammation and cancer involve significant remodeling of the extracellular matrix (ECM), which greatly affects its composition and functional properties. Using lung squamous cell carcinoma (LSCC), a chronic inflammation-associated cancer (CIAC), we optimized a robust proteomic pipeline to discover potential biomarker signatures and protein changes specifically in the stroma. We combined ECM enrichment from fresh human tissues, data-independent acquisition (DIA) strategies, and stringent statistical processing to analyze "Tumor" and matched adjacent histologically normal ("Matched Normal") tissues from patients with LSCC. Overall, 1802 protein groups were quantified with at least two unique peptides, and 56% of those proteins were annotated as "extracellular." Confirming dramatic ECM remodeling during CIAC progression, 529 proteins were significantly altered in the "Tumor" compared to "Matched Normal" tissues. The signature was typified by a coordinated loss of basement membrane proteins and small leucine-rich proteins. The dramatic increase in the stromal levels of SERPINH1/heat shock protein 47, that was discovered using our ECM proteomic pipeline, was validated by immunohistochemistry (IHC) of "Tumor" and "Matched Normal" tissues, obtained from an independent cohort of LSCC patients. This integrated workflow provided novel insights into ECM remodeling during CIAC progression, and identified potential biomarker signatures and future therapeutic targets.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on AgingNovatoCaliforniaUSA
| | - Deng Pan
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Samah Shah
- Buck Institute for Research on AgingNovatoCaliforniaUSA
| | - Rosemary Bai
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Xianhong Wang
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Daffolyn R. Fels Elliott
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Present address:
Pathology and Laboratory MedicineKansas University Medical Center, the University of KansasKansas CityKansasUSA
| | - Anatoly Urisman
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Amy O'Broin
- Buck Institute for Research on AgingNovatoCaliforniaUSA
| | | | - Jacob Rose
- Buck Institute for Research on AgingNovatoCaliforniaUSA
| | - Veena Sangwan
- Division of Thoracic and Upper Gastrointestinal SurgeryMontreal General HospitalMcGill University Health CentreMontrealQuebecCanada
| | | | - James Tankel
- Division of Thoracic and Upper Gastrointestinal SurgeryMontreal General HospitalMcGill University Health CentreMontrealQuebecCanada
| | - Philippe Gascard
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Lorenzo Ferri
- Division of Thoracic and Upper Gastrointestinal SurgeryMontreal General HospitalMcGill University Health CentreMontrealQuebecCanada
| | - Thea D. Tlsty
- Department of PathologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | |
Collapse
|
19
|
Genetics, Treatment, and New Technologies of Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041303. [PMID: 36831644 PMCID: PMC9954687 DOI: 10.3390/cancers15041303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The current molecular classification divides breast cancer into four major subtypes, including luminal A, luminal B, HER2-positive, and basal-like, based on receptor gene expression profiling. Luminal A and luminal B are hormone receptor (HR, estrogen, and/or progesterone receptor)-positive and are the most common subtypes, accounting for around 50-60% and 15-20% of the total breast cancer cases, respectively. The drug treatment for HR-positive breast cancer includes endocrine therapy, HER2-targeted therapy (depending on the HER2 status), and chemotherapy (depending on the risk of recurrence). In this review, in addition to classification, we focused on discussing the important aspects of HR-positive breast cancer, including HR structure and signaling, genetics, including epigenetics and gene mutations, gene expression-based assays, the traditional and new drugs for treatment, and novel or new uses of technology in diagnosis and treatment. Particularly, we have summarized the commonly mutated genes and abnormally methylated genes in HR-positive breast cancer and compared four common gene expression-based assays that are used in breast cancer as prognostic and/or predictive tools in detail, including their clinical use, the factors being evaluated, patient demographics, and the scoring systems. All these topic discussions have not been fully described and summarized within other research or review articles.
Collapse
|
20
|
De Marchi T, Pyl PT, Sjöström M, Reinsbach SE, DiLorenzo S, Nystedt B, Tran L, Pekar G, Wärnberg F, Fredriksson I, Malmström P, Fernö M, Malmström L, Malmstöm J, Niméus E. Proteogenomics decodes the evolution of human ipsilateral breast cancer. Commun Biol 2023; 6:139. [PMID: 36732562 PMCID: PMC9894938 DOI: 10.1038/s42003-023-04526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Ipsilateral breast tumor recurrence (IBTR) is a clinically important event, where an isolated in-breast recurrence is a potentially curable event but associated with an increased risk of distant metastasis and breast cancer death. It remains unclear if IBTRs are associated with molecular changes that can be explored as a resource for precision medicine strategies. Here, we employed proteogenomics to analyze a cohort of 27 primary breast cancers and their matched IBTRs to define proteogenomic determinants of molecular tumor evolution. Our analyses revealed a relationship between hormonal receptors status and proliferation levels resulting in the gain of somatic mutations and copy number. This in turn re-programmed the transcriptome and proteome towards a highly replicating and genomically unstable IBTRs, possibly enhanced by APOBEC3B. In order to investigate the origins of IBTRs, a second analysis that included primaries with no recurrence pinpointed proliferation and immune infiltration as predictive of IBTR. In conclusion, our study shows that breast tumors evolve into different IBTRs depending on hormonal status and proliferation and that immune cell infiltration and Ki-67 are significantly elevated in primary tumors that develop IBTR. These results can serve as a starting point to explore markers to predict IBTR formation and stratify patients for adjuvant therapy.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden.
| | - Paul Theodor Pyl
- grid.452834.c0000 0004 5911 2402Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund, Sweden
| | - Martin Sjöström
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden ,grid.266102.10000 0001 2297 6811Department of Radiation Oncology, University of California San Francisco, San Francisco, USA
| | - Susanne Erika Reinsbach
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Sebastian DiLorenzo
- grid.8993.b0000 0004 1936 9457National Bioinformatics Infrastructure Sweden, Uppsala University, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala, Sweden
| | - Björn Nystedt
- grid.8993.b0000 0004 1936 9457National Bioinformatics Infrastructure Sweden, Uppsala University, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala, Sweden
| | - Lena Tran
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Gyula Pekar
- grid.411843.b0000 0004 0623 9987Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Fredrik Wärnberg
- grid.8761.80000 0000 9919 9582Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Irma Fredriksson
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Per Malmström
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Mårten Fernö
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Lars Malmström
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmstöm
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Emma Niméus
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden. .,Department of Surgery, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
21
|
Janacova L, Stenckova M, Lapcik P, Hrachovinova S, Bouchalova P, Potesil D, Hrstka R, Müller P, Bouchal P. Catechol-O-methyl transferase suppresses cell invasion and interplays with MET signaling in estrogen dependent breast cancer. Sci Rep 2023; 13:1285. [PMID: 36690660 PMCID: PMC9870911 DOI: 10.1038/s41598-023-28078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). 2D and 3D assays revealed that COMT overexpression associates with decreased cell invasion (p < 0.0001 for Transwell assay, p < 0.05 for spheroid formation). RNA-Seq and LC-DIA-MS/MS proteomics identified genes associated with invasion (FTO, PIR, TACSTD2, ANXA3, KRT80, S100P, PREX1, CLEC3A, LCP1) being downregulated in MCF7-COMT cells, while genes associated with less aggressive phenotype (RBPMS, ROBO2, SELENBP, EPB41L2) were upregulated both at transcript (|log2FC|> 1, adj. p < 0.05) and protein (|log2FC|> 0.58, q < 0.05) levels. Importantly, proteins driving MET signaling were less abundant in COMT overexpressing cells, and pull-down confirmed interaction between COMT and Kunitz-type protease inhibitor 2 (SPINT2), a negative regulator of MET (log2FC = 5.10, q = 1.04-7). In conclusion, COMT may act as tumor suppressor in ER dependent BC not only by detoxification of catechol estrogens but also by suppressing cell invasion and interplay with MET pathway.
Collapse
Affiliation(s)
- Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Michaela Stenckova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Sarka Hrachovinova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Proteomics Core Facility, Central European Institute for Technology, Masaryk University, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Müller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
22
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
23
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
24
|
The FDA-Approved Drug Pyrvinium Selectively Targets ER + Breast Cancer Cells with High INPP4B Expression. Cancers (Basel) 2022; 15:cancers15010135. [PMID: 36612130 PMCID: PMC9817693 DOI: 10.3390/cancers15010135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The majority of breast cancers are estrogen receptor-positive (ER+), and endocrine therapies that suppress ER signaling are the standard-of-care treatment for this subset. However, up to half of all ER+ cancers eventually relapse, highlighting a need for improved clinical therapies. The phosphoinositide phosphatase, INPP4B, is overexpressed in almost half of all ER+ breast cancers, and promotes Wnt/β-catenin signaling, cell proliferation and tumor growth. Here, using cell viability assays, we report that INPP4B overexpression does not affect the sensitivity of ER+ breast cancer cells to standard-of-care treatments including the anti-estrogen 4-hydroxytamoxifen (4-OHT) or the PI3Kα inhibitor alpelisib. Examination of four small molecule Wnt inhibitors revealed that ER+ breast cancer cells with INPP4B overexpression were more sensitive to the FDA-approved drug pyrvinium and a 4-OHT-pyrvinium combination treatment. Using 3D culture models, we demonstrated that pyrvinium selectively reduced the size of INPP4B-overexpressing ER+ breast cancer spheroids in the presence and absence of 4-OHT. These findings suggest that repurposing pyrvinium as a Wnt inhibitor may be an effective therapeutic strategy for human ER+ breast cancers with high INPP4B levels.
Collapse
|
25
|
Mosquim Junior S, Siino V, Rydén L, Vallon-Christersson J, Levander F. Choice of High-Throughput Proteomics Method Affects Data Integration with Transcriptomics and the Potential Use in Biomarker Discovery. Cancers (Basel) 2022; 14:cancers14235761. [PMID: 36497242 PMCID: PMC9736226 DOI: 10.3390/cancers14235761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years, several advances have been achieved in breast cancer (BC) classification and treatment. However, overdiagnosis, overtreatment, and recurrent disease are still significant causes of complication and death. Here, we present the development of a protocol aimed at parallel transcriptome and proteome analysis of BC tissue samples using mass spectrometry, via Data Dependent and Independent Acquisitions (DDA and DIA). Protein digestion was semi-automated and performed on flowthroughs after RNA extraction. Data for 116 samples were acquired in DDA and DIA modes and processed using MaxQuant, EncyclopeDIA, or DIA-NN. DIA-NN showed an increased number of identified proteins, reproducibility, and correlation with matching RNA-seq data, therefore representing the best alternative for this setup. Gene Set Enrichment Analysis pointed towards complementary information being found between transcriptomic and proteomic data. A decision tree model, designed to predict the intrinsic subtypes based on differentially abundant proteins across different conditions, selected protein groups that recapitulate important clinical features, such as estrogen receptor status, HER2 status, proliferation, and aggressiveness. Taken together, our results indicate that the proposed protocol performed well for the application. Additionally, the relevance of the selected proteins points to the possibility of using such data as a biomarker discovery tool for personalized medicine.
Collapse
Affiliation(s)
| | - Valentina Siino
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences Lund, Lund University, 223 81 Lund, Sweden
- Department of Surgery and Gastroenterology, Skåne University Hospital, 214 28 Malmö, Sweden
| | | | - Fredrik Levander
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, 223 81 Lund, Sweden
- Correspondence:
| |
Collapse
|
26
|
Targeted proteomics using parallel reaction monitoring confirms salivary proteins indicative of metastatic triple-negative breast cancer. J Proteomics 2022; 267:104701. [PMID: 35995384 DOI: 10.1016/j.jprot.2022.104701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype due to the absence of hormonal receptors. Our study aimed to identify and determine the effectiveness of salivary proteins as candidate markers for metastatic TNBC subtype using parallel reaction monitoring mass spectrometry (PRM-MS). Three salivary proteins (lipocalin-1, SMR3B, and plastin-2) that showed significant differential expression in label-free quantitation (LFQ) between TNBC (N = 6) and health subjects (HS; N = 6) were selected for further validation. The developed PRM assay was used to quantify peptides GLST and NNLE (lipocalin-1), VYAL and MINL (Plastin-2) and GPYP, and IPPP (SMR3B) on a different cohort of TNBC patients (N = 20) and HS (N = 20) for evaluating their discriminating performances. Quantitative validation using PRM correlated well with the LFQ results, and 5 peptides from three proteins showed a similar up-or down-regulation. Subsequently, these proteins were validated by Western blot analysis. Compared to one protein's performance as an individual marker, the five-signature panel with salivary GLST, VYAL, MINL, GPYP, and IPPP achieved better performance in differentiating aggressive TNBC and HS with sensitivity (80%) and specificity (95%). Targeted proteomic analysis of the prioritized proteins highlights a peptide-based signature in saliva as the potential predictor to distinguish between TNBC and HS. SIGNIFICANCE OF THE STUDY: This study was designed to identify and quantify potential markers in saliva from the triple-negative breast cancer (TNBC) patients using parallel reaction monitoring assay. Three salivary proteins, Lipocalin-1 (LCN-1), Submaxillary androgen-regulated protein 3B (SMR3B), and Plastin-2 (LCP-1) selected in the discovery-phase were further quantified by targeted proteomics and Western blots. The salivary proteins successfully differentiated TNBC patients from healthy subjects with a sensitivity (80%) and specificity (95%).
Collapse
|
27
|
Schneider N, Reed E, Kamel F, Ferrari E, Soloviev M. Rational Approach to Finding Genes Encoding Molecular Biomarkers: Focus on Breast Cancer. Genes (Basel) 2022; 13:genes13091538. [PMID: 36140706 PMCID: PMC9498645 DOI: 10.3390/genes13091538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Early detection of cancer facilitates treatment and improves patient survival. We hypothesized that molecular biomarkers of cancer could be rationally predicted based on even partial knowledge of transcriptional regulation, functional pathways and gene co-expression networks. To test our data mining approach, we focused on breast cancer, as one of the best-studied models of this disease. We were particularly interested to check whether such a ‘guilt by association’ approach would lead to pan-cancer markers generally known in the field or whether molecular subtype-specific ‘seed’ markers will yield subtype-specific extended sets of breast cancer markers. The key challenge of this investigation was to utilize a small number of well-characterized, largely intracellular, breast cancer-related proteins to uncover similarly regulated and functionally related genes and proteins with the view to predicting a much-expanded range of disease markers, especially that of extracellular molecular markers, potentially suitable for the early non-invasive detection of the disease. We selected 23 previously characterized proteins specific to three major molecular subtypes of breast cancer and analyzed their established transcription factor networks, their known metabolic and functional pathways and the existing experimentally derived protein co-expression data. Having started with largely intracellular and transmembrane marker ‘seeds’ we predicted the existence of as many as 150 novel biomarker genes to be associated with the selected three major molecular sub-types of breast cancer all coding for extracellularly targeted or secreted proteins and therefore being potentially most suitable for molecular diagnosis of the disease. Of the 150 such predicted protein markers, 114 were predicted to be linked through the combination of regulatory networks to basal breast cancer, 48 to luminal and 7 to Her2-positive breast cancer. The reported approach to mining molecular markers is not limited to breast cancer and therefore offers a widely applicable strategy of biomarker mining.
Collapse
Affiliation(s)
- Nathalie Schneider
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ellen Reed
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Faddy Kamel
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- Correspondence:
| |
Collapse
|
28
|
Boys EL, Liu J, Robinson PJ, Reddel RR. Clinical applications of mass spectrometry-based proteomics in cancer: where are we? Proteomics 2022; 23:e2200238. [PMID: 35968695 DOI: 10.1002/pmic.202200238] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Tumor tissue processing methodologies in combination with data-independent acquisition mass spectrometry (DIA-MS) have emerged that can comprehensively analyze the proteome of multiple tumor samples accurately and reproducibly. Increasing recognition and adoption of these technologies has resulted in a tranche of studies providing novel insights into cancer classification systems, functional tumor biology, cancer biomarkers, treatment response and drug targets. Despite this, with some limited exceptions, MS-based proteomics has not yet been implemented in routine cancer clinical practice. Here, we summarize the use of DIA-MS in studies that may pave the way for future clinical cancer applications, and highlight the role of alternative MS technologies and multi-omic strategies. We discuss limitations and challenges of studies in this field to date and propose steps for integrating proteomic data into the cancer clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emma L Boys
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jia Liu
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Campus, University of New South Wales, Sydney, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
29
|
Xiao J, Lu S, Wang X, Liang M, Dong C, Zhang X, Qiu M, Ou C, Zeng X, Lan Y, Hu L, Tan L, Peng T, Zhang Q, Long F. Serum Proteomic Analysis Identifies SAA1, FGA, SAP, and CETP as New Biomarkers for Eosinophilic Granulomatosis With Polyangiitis. Front Immunol 2022; 13:866035. [PMID: 35757752 PMCID: PMC9226334 DOI: 10.3389/fimmu.2022.866035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Eosinophilic granulomatosis with polyangiitis (EGPA) is characterized by asthma-like attacks in its early stage, which is easily misdiagnosed as severe asthma. Therefore, new biomarkers for the early diagnosis of EGPA are needed, especially for differentiating the diagnosis of asthma. Objectives To identify serum biomarkers that can be used for early diagnosis of EGPA and to distinguish EGPA from severe asthma. Method Data-independent acquisition (DIA) analysis was performed to identify 45 healthy controls (HC), severe asthma (S-A), and EGPA patients in a cohort to screen biomarkers for early diagnosis of EGPA and to differentiate asthma diagnosis. Subsequently, parallel reaction monitoring (PRM) analysis was applied to a validation cohort of 71 HC, S-A, and EGPA patients. Result Four candidate biomarkers were identified from DIA and PRM analysis-i.e., serum amyloid A1 (SAA1), fibrinogen-α (FGA), and serum amyloid P component (SAP)-and were upregulated in the EGPA group, while cholesteryl ester transfer protein (CETP) was downregulated in the EGPA group compared with the S-A group. Receiver operating characteristics analysis shows that, as biomarkers for early diagnosis of EGPA, the combination of SAA1, FGA, and SAP has an area under the curve (AUC) of 0.947, a sensitivity of 82.35%, and a specificity of 100%. The combination of SAA1, FGA, SAP, and CETP as biomarkers for differential diagnosis of asthma had an AUC of 0.921, a sensitivity of 78.13%, and a specificity of 100%, which were all larger than single markers. Moreover, SAA1, FGA, and SAP were positively and CETP was negatively correlated with eosinophil count. Conclusion DIA-PRM combined analysis screened and validated four previously unexplored but potentially useful biomarkers for early diagnosis of EGPA and differential diagnosis of asthma.
Collapse
Affiliation(s)
- Jing Xiao
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cong Dong
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoxian Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minzhi Qiu
- Health Management Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Changxing Ou
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyin Zeng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yanting Lan
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co., Ltd, Guangzhou, China
| | - Qingling Zhang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Walzer M, García-Seisdedos D, Prakash A, Brack P, Crowther P, Graham RL, George N, Mohammed S, Moreno P, Papatheodorou I, Hubbard SJ, Vizcaíno JA. Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas. Sci Data 2022; 9:335. [PMID: 35701420 PMCID: PMC9197839 DOI: 10.1038/s41597-022-01380-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
The number of mass spectrometry (MS)-based proteomics datasets in the public domain keeps increasing, particularly those generated by Data Independent Acquisition (DIA) approaches such as SWATH-MS. Unlike Data Dependent Acquisition datasets, the re-use of DIA datasets has been rather limited to date, despite its high potential, due to the technical challenges involved. We introduce a (re-)analysis pipeline for public SWATH-MS datasets which includes a combination of metadata annotation protocols, automated workflows for MS data analysis, statistical analysis, and the integration of the results into the Expression Atlas resource. Automation is orchestrated with Nextflow, using containerised open analysis software tools, rendering the pipeline readily available and reproducible. To demonstrate its utility, we reanalysed 10 public DIA datasets from the PRIDE database, comprising 1,278 SWATH-MS runs. The robustness of the analysis was evaluated, and the results compared to those obtained in the original publications. The final expression values were integrated into Expression Atlas, making SWATH-MS experiments more widely available and combining them with expression data originating from other proteomics and transcriptomics datasets.
Collapse
Affiliation(s)
- Mathias Walzer
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom.
| | - David García-Seisdedos
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Ananth Prakash
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Paul Brack
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Peter Crowther
- Melandra Limited, 16 Brook Road, Urmston, Manchester, M41 5RY, United Kingdom
| | - Robert L Graham
- School of Biological Sciences, Chlorine Gardens, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Suhaib Mohammed
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Pablo Moreno
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Simon J Hubbard
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, United Kingdom.
| |
Collapse
|
31
|
Weke K, Kote S, Faktor J, Al Shboul S, Uwugiaren N, Brennan PM, Goodlett DR, Hupp TR, Dapic I. DIA-MS proteome analysis of formalin-fixed paraffin-embedded glioblastoma tissues. Anal Chim Acta 2022; 1204:339695. [DOI: 10.1016/j.aca.2022.339695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
|
32
|
Ravuri HG, Noor Z, Mills PC, Satake N, Sadowski P. Data-Independent Acquisition Enables Robust Quantification of 400 Proteins in Non-Depleted Canine Plasma. Proteomes 2022; 10:9. [PMID: 35324581 PMCID: PMC8953371 DOI: 10.3390/proteomes10010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry-based plasma proteomics offers a major advance for biomarker discovery in the veterinary field, which has traditionally been limited to quantification of a small number of proteins using biochemical assays. The development of foundational data and tools related to sequential window acquisition of all theoretical mass spectra (SWATH)-mass spectrometry has allowed for quantitative profiling of a significant number of plasma proteins in humans and several animal species. Enabling SWATH in dogs enhances human biomedical research as a model species, and significantly improves diagnostic and disease monitoring capability. In this study, a comprehensive peptide spectral library specific to canine plasma proteome was developed and evaluated using SWATH for protein quantification in non-depleted dog plasma. Specifically, plasma samples were subjected to various orthogonal fractionation and digestion techniques, and peptide fragmentation data corresponding to over 420 proteins was collected. Subsequently, a SWATH-based assay was introduced that leveraged the developed resource and that enabled reproducible quantification of 400 proteins in non-depleted plasma samples corresponding to various disease conditions. The ability to profile the abundance of such a significant number of plasma proteins using a single method in dogs has the potential to accelerate biomarker discovery studies in this species.
Collapse
Affiliation(s)
- Halley Gora Ravuri
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Zainab Noor
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
33
|
Dual-elemental analysis of single particles using quadrupole-based inductively coupled plasma-mass spectrometry. Anal Chim Acta 2022; 1192:339389. [DOI: 10.1016/j.aca.2021.339389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 01/26/2023]
|
34
|
Sirven P, Faucheux L, Grandclaudon M, Michea P, Vincent-Salomon A, Mechta-Grigoriou F, Scholer-Dahirel A, Guillot-Delost M, Soumelis V. Definition of a novel breast tumor-specific classifier based on secretome analysis. Breast Cancer Res 2022; 24:94. [PMID: 36539890 PMCID: PMC9764559 DOI: 10.1186/s13058-022-01590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND During cancer development, the normal tissue microenvironment is shaped by tumorigenic events. Inflammatory mediators and immune cells play a key role during this process. However, which molecular features most specifically characterize the malignant tissue remains poorly explored. METHODS Within our institutional tumor microenvironment global analysis (T-MEGA) program, we set a prospective cohort of 422 untreated breast cancer patients. We established a dedicated pipeline to generate supernatants from tumor and juxta-tumor tissue explants and quantify 55 soluble molecules using Luminex or MSD. Those analytes belonged to five molecular families: chemokines, cytokines, growth factors, metalloproteinases, and adipokines. RESULTS When looking at tissue specificity, our dataset revealed some breast tumor-specific characteristics, as IL-16, as well as some juxta-tumor-specific secreted molecules, as IL-33. Unsupervised clustering analysis identified groups of molecules that were specific to the breast tumor tissue and displayed a similar secretion behavior. We identified a tumor-specific cluster composed of nine molecules that were secreted fourteen times more in the tumor supernatants than the corresponding juxta-tumor supernatants. This cluster contained, among others, CCL17, CCL22, and CXCL9 and TGF-β1, 2, and 3. The systematic comparison of tumor and juxta-tumor secretome data allowed us to mathematically formalize a novel breast cancer signature composed of 14 molecules that segregated tumors from juxta-tumors, with a sensitivity of 96.8% and a specificity of 96%. CONCLUSIONS Our study provides the first breast tumor-specific classifier computed on breast tissue-derived secretome data. Moreover, our T-MEGA cohort dataset is a freely accessible resource to the biomedical community to help advancing scientific knowledge on breast cancer.
Collapse
Affiliation(s)
- Philémon Sirven
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Lilith Faucheux
- INSERM U976, Université de Paris, IRSLHôpital Saint Louis, 75006 Paris, France ,INSERM UMR1153, Université de Paris, ECSTRRA Team, 75006 Paris, France
| | - Maximilien Grandclaudon
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Paula Michea
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Anne Vincent-Salomon
- grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,grid.418596.70000 0004 0639 6384Diagnostic and Theranostic Medicine Division, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,grid.418596.70000 0004 0639 6384Centre de Recherche, Stress and Cancer Laboratory, U830 Genetics and Biology of Cancers, INSERM, Institut Curie, Paris, France
| | - Alix Scholer-Dahirel
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Maude Guillot-Delost
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Vassili Soumelis
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France ,INSERM U976, Université de Paris, IRSLHôpital Saint Louis, 75006 Paris, France ,grid.413328.f0000 0001 2300 6614Department of Immunology-Histocompatibility, AP-HP, Hôpital Saint-Louis, 75010 Paris, France
| |
Collapse
|
35
|
Lapcik P, Janacova L, Bouchalova P, Potesil D, Podhorec J, Hora M, Poprach A, Fiala O, Bouchal P. A large-scale assay library for targeted protein quantification in renal cell carcinoma tissues. Proteomics 2021; 22:e2100228. [PMID: 34902229 DOI: 10.1002/pmic.202100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Renal cell carcinoma (RCC) represents 2.2% of all cancer incidences; however, prognostic or predictive RCC biomarkers at protein level are largely missing. To support proteomics research of localized and metastatic RCC, we introduce a new library of targeted mass spectrometry assays for accurate protein quantification in malignant and normal kidney tissue. Aliquots of 86 initially localized RCC, 75 metastatic RCC and 17 adjacent non-cancerous fresh frozen tissue lysates were trypsin digested, pooled, and fractionated using hydrophilic chromatography. The fractions were analyzed using LC-MS/MS on QExactive HF-X mass spectrometer in data-dependent acquisition (DDA) mode. A resulting spectral library contains 77,817 peptides representing 7960 protein groups (FDR = 1%). Further, we confirm applicability of this library on four RCC datasets measured in data-independent acquisition (DIA) mode, demonstrating a specific quantification of a substantially increased part of RCC proteome, depending on LC-MS/MS instrumentation. Impact of sample specificity of the library on the results of targeted DIA data extraction was demonstrated by parallel analyses of two datasets by two pan human libraries. The new RCC specific library has potential to contribute to better understanding the RCC development at molecular level, leading to new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Podhorec
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Plzen, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Fiala
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Pilsen, Charles University, Plzen, Czech Republic.,Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzen, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
36
|
The Role of ATRA, Natural Ligand of Retinoic Acid Receptors, on EMT-Related Proteins in Breast Cancer: Minireview. Int J Mol Sci 2021; 22:ijms222413345. [PMID: 34948142 PMCID: PMC8705994 DOI: 10.3390/ijms222413345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The knowledge of the structure, function, and abundance of specific proteins related to the EMT process is essential for developing effective diagnostic approaches to cancer with the perspective of diagnosis and therapy of malignancies. The success of all-trans retinoic acid (ATRA) differentiation therapy in acute promyelocytic leukemia has stimulated studies in the treatment of other tumors with ATRA. This review will discuss the impact of ATRA use, emphasizing epithelial-mesenchymal transition (EMT) proteins in breast cancer, of which metastasis and recurrence are major causes of death.
Collapse
|
37
|
García-Adrián S, Trilla-Fuertes L, Gámez-Pozo A, Chiva C, López-Vacas R, López-Camacho E, Zapater-Moros A, Lumbreras-Herrera MI, Hardisson D, Yébenes L, Zamora P, Sabidó E, Fresno Vara JÁ, Espinosa E. Molecular characterization of triple negative breast cancer formaldehyde-fixed paraffin-embedded samples by data-independent acquisition proteomics. Proteomics 2021; 22:e2100110. [PMID: 34624180 DOI: 10.1002/pmic.202100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 11/05/2022]
Abstract
Triple negative breast cancer accounts for 15%-20% of all breast carcinomas and is clinically characterized by an aggressive phenotype and poor prognosis. Triple negative tumors do not benefit from targeted therapies, so further characterization is needed to define subgroups with potential therapeutic value. In this work, the proteomes of 125 formalin-fixed paraffin-embedded samples from patients diagnosed with non-metastatic triple negative breast cancer were analyzed using data-independent acquisition + in a LTQ-Orbitrap Fusion Lumos mass spectrometer coupled to an EASY-nLC 1000. 1206 proteins were identified in at least 66% of the samples. Hierarchical clustering, probabilistic graphical models and Significance Analysis of Microarrays were combined to characterize proteomics-based molecular groups. Two molecular groups were defined with differences in biological processes such as glycolysis, translation and immune response. These two molecular groups showed also several differentially expressed proteins. This clinically homogenous dataset may serve to design new therapeutic strategies in the future.
Collapse
Affiliation(s)
| | | | - Angelo Gámez-Pozo
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Cristina Chiva
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rocío López-Vacas
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | | | | | - María I Lumbreras-Herrera
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Pathology, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Laura Yébenes
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid, Spain
| | - Pilar Zamora
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.,Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain.,Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduard Sabidó
- Proteomics Unit, Center for Genomics Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Ángel Fresno Vara
- Molecular Oncology and Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, La Paz University Hospital-IdiPAZ, Madrid, Spain.,Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Enrique Espinosa
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain.,Medical Oncology Service, La Paz University Hospital-IdiPAZ, Madrid, Spain.,Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
38
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
39
|
Bouchalova P, Beranek J, Lapcik P, Potesil D, Podhorec J, Poprach A, Bouchal P. Transgelin Contributes to a Poor Response of Metastatic Renal Cell Carcinoma to Sunitinib Treatment. Biomedicines 2021; 9:biomedicines9091145. [PMID: 34572331 PMCID: PMC8467952 DOI: 10.3390/biomedicines9091145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) represents about 2-3% of all cancers with over 400,000 new cases per year. Sunitinib, a vascular endothelial growth factor tyrosine kinase receptor inhibitor, has been used mainly for first-line treatment of metastatic clear-cell RCC with good or intermediate prognosis. However, about one-third of metastatic RCC patients do not respond to sunitinib, leading to disease progression. Here, we aim to find and characterize proteins associated with poor sunitinib response in a pilot proteomics study. Sixteen RCC tumors from patients responding (8) vs. non-responding (8) to sunitinib 3 months after treatment initiation were analyzed using data-independent acquisition mass spectrometry, together with their adjacent non-cancerous tissues. Proteomics analysis quantified 1996 protein groups (FDR = 0.01) and revealed 27 proteins deregulated between tumors non-responding vs. responding to sunitinib, representing a pattern of deregulated proteins potentially contributing to sunitinib resistance. Gene set enrichment analysis showed an up-regulation of epithelial-to-mesenchymal transition with transgelin as one of the most significantly abundant proteins. Transgelin expression was silenced by CRISPR/Cas9 and RNA interference, and the cells with reduced transgelin level exhibited significantly slower proliferation. Our data indicate that transgelin is an essential protein supporting RCC cell proliferation, which could contribute to intrinsic sunitinib resistance.
Collapse
Affiliation(s)
- Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - Jindrich Beranek
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
| | - David Potesil
- Proteomics Core Facility, Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic;
| | - Jan Podhorec
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.P.); (A.P.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| | - Alexandr Poprach
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (J.P.); (A.P.)
- Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, 656 53 Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (P.B.); (J.B.); (P.L.)
- Correspondence: ; Tel.: +420-549-493-251
| |
Collapse
|
40
|
Narayanankutty A. Phytochemicals as PI3K/ Akt/ mTOR Inhibitors and Their Role in Breast Cancer Treatment. Recent Pat Anticancer Drug Discov 2021; 15:188-199. [PMID: 32914720 DOI: 10.2174/1574892815666200910164641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the predominant form of cancer in women; various cellular pathways are involved in the initiation and progression of breast cancer. Among the various types of breast cancer that differ in their growth factor receptor status, PI3K/Akt signaling is a common pathway where all these converge. Thus, the PI3K signaling is of great interest as a target for breast cancer prevention; however, it is less explored. OBJECTIVE The present review is aimed to provide a concise outline of the role of PI3K/Akt/mTOR pathway in breast carcinogenesis and its progression events, including metastasis, drug resistance and stemness. The review emphasizes the role of natural and synthetic inhibitors of PI3K/Akt/m- TOR pathway in breast cancer prevention. METHODS The data were obtained from PubMed/Medline databases, Scopus and Google patent literature. RESULTS PI3K/Akt/mTOR signaling plays an important role in human breast carcinogenesis; it acts on the initiation and progression events associated with it. Numerous molecules have been isolated and identified as promising drug candidates by targeting the signaling pathway. Results from clinical studies confirm their application in the treatment of human breast cancer alone and in combination with classical chemotherapeutics as well as monoclonal antibodies. CONCLUSION PI3K/mTOR signaling blockers have evolved as promising anticancer agents by interfering breast cancer development and progression at various stages. Natural products and bioactive components are emerging as novel inhibitors of PI3K signaling and more research in this area may yield numerous drug candidates.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, Post Graduate & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Kerala, India
| |
Collapse
|
41
|
El-Baba TJ, Raab SA, Buckley RP, Brown CJ, Lutomski CA, Henderson LW, Woodall DW, Shen J, Trinidad JC, Niu H, Jarrold MF, Russell DH, Laganowsky A, Clemmer DE. Thermal Analysis of a Mixture of Ribosomal Proteins by vT-ESI-MS: Toward a Parallel Approach for Characterizing the Stabilitome. Anal Chem 2021; 93:8484-8492. [PMID: 34101419 PMCID: PMC8546744 DOI: 10.1021/acs.analchem.1c00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The thermal stabilities of endogenous, intact proteins and protein assemblies in complex mixtures were characterized in parallel by means of variable-temperature electrospray ionization coupled to mass spectrometry (vT-ESI-MS). The method is demonstrated by directly measuring the melting transitions of seven proteins from a mixture of proteins derived from ribosomes. A proof-of-concept measurement of a fraction of an Escherichia coli lysate is provided to extend this approach to characterize the thermal stability of a proteome. As the solution temperature is increased, proteins and protein complexes undergo structural and organizational transitions; for each species, the folded ↔ unfolded and assembled ↔ disassembled populations are monitored based on changes in vT-ESI-MS charge state distributions and masses. The robustness of the approach illustrates a step toward the proteome-wide characterization of thermal stabilities and structural transitions-the stabilitome.
Collapse
Affiliation(s)
- Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Rachel P Buckley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Christopher J Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Corinne A Lutomski
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Lucas W Henderson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Daniel W Woodall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jiangchuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
42
|
Bichmann L, Gupta S, Rosenberger G, Kuchenbecker L, Sachsenberg T, Ewels P, Alka O, Pfeuffer J, Kohlbacher O, Röst H. DIAproteomics: A Multifunctional Data Analysis Pipeline for Data-Independent Acquisition Proteomics and Peptidomics. J Proteome Res 2021; 20:3758-3766. [PMID: 34153189 DOI: 10.1021/acs.jproteome.1c00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Data-independent acquisition (DIA) is becoming a leading analysis method in biomedical mass spectrometry. The main advantages include greater reproducibility and sensitivity and a greater dynamic range compared with data-dependent acquisition (DDA). However, the data analysis is complex and often requires expert knowledge when dealing with large-scale data sets. Here we present DIAproteomics, a multifunctional, automated, high-throughput pipeline implemented in the Nextflow workflow management system that allows one to easily process proteomics and peptidomics DIA data sets on diverse compute infrastructures. The central components are well-established tools such as the OpenSwathWorkflow for the DIA spectral library search and PyProphet for the false discovery rate assessment. In addition, it provides options to generate spectral libraries from existing DDA data and to carry out the retention time and chromatogram alignment. The output includes annotated tables and diagnostic visualizations from the statistical postprocessing and computation of fold-changes across pairwise conditions, predefined in an experimental design. DIAproteomics is well documented open-source software and is available under a permissive license to the scientific community at https://www.openms.de/diaproteomics/.
Collapse
Affiliation(s)
- Leon Bichmann
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen 72076, Germany
| | - Shubham Gupta
- Donnelly Center for Biomolecular Research, University of Toronto, Toronto, Ontario ON M5S 3E1, Canada
| | - George Rosenberger
- Department of Systems Biology, Columbia University, New York, New York 10032, United States
| | - Leon Kuchenbecker
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany
| | - Timo Sachsenberg
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany
| | - Phil Ewels
- Science for Life Laboratory (SciLifeLab), Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oliver Alka
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany
| | - Julianus Pfeuffer
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Informatics, Freie Universität Berlin, Berlin 14195, Germany.,Zuse Institute Berlin, Berlin 14195, Germany
| | - Oliver Kohlbacher
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Biological and Medical Informatics, University of Tübingen, Tübingen 72076, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen 72076, Germany
| | - Hannes Röst
- Donnelly Center for Biomolecular Research, University of Toronto, Toronto, Ontario ON M5S 3E1, Canada
| |
Collapse
|
43
|
Hu Y, Wang Z, Liu L, Zhu J, Zhang D, Xu M, Zhang Y, Xu F, Chen Y. Mass spectrometry-based chemical mapping and profiling toward molecular understanding of diseases in precision medicine. Chem Sci 2021; 12:7993-8009. [PMID: 34257858 PMCID: PMC8230026 DOI: 10.1039/d1sc00271f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering "what", "where", "how many" and "whose" chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.
Collapse
Affiliation(s)
- Yechen Hu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Zhongcheng Wang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Liang Liu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Dongxue Zhang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Mengying Xu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Yuanyuan Zhang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular & Cerebrovascular Medicine Nanjing 210029 China
| |
Collapse
|
44
|
INPP4B promotes PI3Kα-dependent late endosome formation and Wnt/β-catenin signaling in breast cancer. Nat Commun 2021; 12:3140. [PMID: 34035258 PMCID: PMC8149851 DOI: 10.1038/s41467-021-23241-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/16/2021] [Indexed: 01/17/2023] Open
Abstract
INPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3β lysosomal degradation and activation of Wnt/β-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/β-catenin therapies.
Collapse
|
45
|
Geary B, Peat E, Dransfield S, Cook N, Thistlethwaite F, Graham D, Carter L, Hughes A, Krebs MG, Whetton AD. Discovery and Evaluation of Protein Biomarkers as a Signature of Wellness in Late-Stage Cancer Patients in Early Phase Clinical Trials. Cancers (Basel) 2021; 13:cancers13102443. [PMID: 34069985 PMCID: PMC8157875 DOI: 10.3390/cancers13102443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
TARGET (tumour characterisation to guide experimental targeted therapy) is a cancer precision medicine programme focused on molecular characterisation of patients entering early phase clinical trials. Performance status (PS) measures a patient's ability to perform a variety of activities. However, the quality of present algorithms to assess PS is limited and based on qualitative clinician assessment. Plasma samples from patients enrolled into TARGET were analysed using the mass spectrometry (MS) technique: sequential window acquisition of all theoretical fragment ion spectra (SWATH)-MS. SWATH-MS was used on a discovery cohort of 55 patients to differentiate patients into either a good or poor prognosis by creation of a Wellness Score (WS) that showed stronger prediction of overall survival (p = 0.000551) compared to PS (p = 0.001). WS was then tested against a validation cohort of 77 patients showing significant (p = 0.000451) prediction of overall survival. WS in both sets had receiver operating characteristic curve area under the curve (AUC) values of 0.76 (p = 0.002) and 0.67 (p = 0.011): AUC of PS was 0.70 (p = 0.117) and 0.55 (p = 0.548). These signatures can now be evaluated further in larger patient populations to assess their utility in a clinical setting.
Collapse
Affiliation(s)
- Bethany Geary
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NQ, UK;
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (F.T.); (L.C.); (A.H.)
| | - Erin Peat
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; (E.P.); (S.D.); (N.C.); (D.G.)
| | - Sarah Dransfield
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; (E.P.); (S.D.); (N.C.); (D.G.)
| | - Natalie Cook
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; (E.P.); (S.D.); (N.C.); (D.G.)
| | - Fiona Thistlethwaite
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (F.T.); (L.C.); (A.H.)
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; (E.P.); (S.D.); (N.C.); (D.G.)
| | - Donna Graham
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; (E.P.); (S.D.); (N.C.); (D.G.)
| | - Louise Carter
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (F.T.); (L.C.); (A.H.)
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; (E.P.); (S.D.); (N.C.); (D.G.)
| | - Andrew Hughes
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (F.T.); (L.C.); (A.H.)
| | - Matthew G. Krebs
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (F.T.); (L.C.); (A.H.)
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK; (E.P.); (S.D.); (N.C.); (D.G.)
- Correspondence: (M.G.K.); (A.D.W.); Tel.: +44-(0)161-275-6267 (A.D.W.)
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NQ, UK;
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (F.T.); (L.C.); (A.H.)
- Manchester National Institute for Health Research Biomedical Research Centre, Manchester M13 9WL, UK
- Correspondence: (M.G.K.); (A.D.W.); Tel.: +44-(0)161-275-6267 (A.D.W.)
| |
Collapse
|
46
|
De Marchi T, Pyl PT, Sjöström M, Klasson S, Sartor H, Tran L, Pekar G, Malmström J, Malmström L, Niméus E. Proteogenomic Workflow Reveals Molecular Phenotypes Related to Breast Cancer Mammographic Appearance. J Proteome Res 2021; 20:2983-3001. [PMID: 33855848 PMCID: PMC8155562 DOI: 10.1021/acs.jproteome.1c00243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/21/2022]
Abstract
Proteogenomic approaches have enabled the generat̲ion of novel information levels when compared to single omics studies although burdened by extensive experimental efforts. Here, we improved a data-independent acquisition mass spectrometry proteogenomic workflow to reveal distinct molecular features related to mammographic appearances in breast cancer. Our results reveal splicing processes detectable at the protein level and highlight quantitation and pathway complementarity between RNA and protein data. Furthermore, we confirm previously detected enrichments of molecular pathways associated with estrogen receptor-dependent activity and provide novel evidence of epithelial-to-mesenchymal activity in mammography-detected spiculated tumors. Several transcript-protein pairs displayed radically different abundances depending on the overall clinical properties of the tumor. These results demonstrate that there are differentially regulated protein networks in clinically relevant tumor subgroups, which in turn alter both cancer biology and the abundance of biomarker candidates and drug targets.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Division
of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, Lund SE-223 62, Sweden
| | - Paul Theodor Pyl
- Division
of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, Lund SE-223 62, Sweden
| | - Martin Sjöström
- Division
of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, Lund SE-223 62, Sweden
| | - Stina Klasson
- Department
Plastic and Reconstructive Surgery, Skåne
University Hospital, Inga Marie Nilssons gata 47, Malmö SE-20502, Sweden
| | - Hanna Sartor
- Division
of Diagnostic Radiology, Department of Translational Medicine, Skåne University Hospital, Entrégatan 7, Lund SE-22185, Sweden
| | - Lena Tran
- Division
of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, Lund SE-223 62, Sweden
| | - Gyula Pekar
- Division
of Oncology and Pathology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund SE-22185, Sweden
| | - Johan Malmström
- Division
of Infection Medicine, Department of Clinical Sciences Lund, Faculty
of Medicine, Lund University, Klinikgatan 32, Lund SE-22184, Sweden
| | - Lars Malmström
- S3IT, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
- Institute
for Computational Science, University of
Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Emma Niméus
- Division
of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, Lund SE-223 62, Sweden
- Department
of Surgery, Skåne University Hospital, Lund 222 42, Sweden
| |
Collapse
|
47
|
Yang J, Yang C, Shen H, Wu W, Tian Z, Xu Q, Cao C, Ye S, Ban L, Tong X, Mei J. Discovery and validation of PZP as a novel serum biomarker for screening lung adenocarcinoma in type 2 diabetes mellitus patients. Cancer Cell Int 2021; 21:162. [PMID: 33691685 PMCID: PMC7945354 DOI: 10.1186/s12935-021-01861-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM) have an increased risk of suffering from various malignancies. This study aimed to identify specific biomarkers that can detect lung adenocarcinoma (LAC) in T2DM patients for the early diagnosis of LAC. Methods The clinical information of hospitalized T2DM patients diagnosed with various cancers was collected by reviewing medical records in Wuxi People’s Hospital Affiliated to Nanjing Medical University from January 1, 2015, to June 30, 2020. To discover diagnostic biomarkers for early-stage LAC in the T2DM population, 20 samples obtained from 5 healthy controls, 5 T2DM patients, 5 LAC patients and 5 T2DM patients with LAC (T2DM + LAC) were subjected to sequential windowed acquisition of all theoretical fragment ion mass spectrum (SWATH-MS) analysis to identify specific differentially-expressed proteins (DEPs) for LAC in patients with T2DM. Then, these results were validated by parallel reaction monitoring MS (PRM-MS) and ELISA analyses. Results Lung cancer was the most common malignant tumor in patients with T2DM, and LAC accounted for the majority of cases. Using SWATH-MS analysis, we found 13 proteins to be unique in T2DM patients with early LAC. Two serum proteins were further validated by PRM-MS analysis, namely, pregnancy-zone protein (PZP) and insulin-like growth factor binding protein 3 (IGFBP3). Furthermore, the diagnostic values of these proteins were validated by ELISA, and PZP was validated as a novel serum biomarker for screening LAC in T2DM patients. Conclusions Our findings indicated that PZP could be used as a novel serum biomarker for the identification of LAC in T2DM patients, which will enhance auxiliary diagnosis and assist in the selection of surgical treatment at an early stage. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01861-8.
Collapse
Affiliation(s)
- Jiayue Yang
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Cheng Yang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Hong Shen
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Wenjun Wu
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Zhen Tian
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Qinghua Xu
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Cuiping Cao
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Shugao Ye
- Department of Chest Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Le Ban
- Department of Chest Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Xin Tong
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
48
|
Weng Y, Liang W, Ji Y, Li Z, Jia R, Liang Y, Ning P, Xu Y. Key Genes and Prognostic Analysis in HER2+ Breast Cancer. Technol Cancer Res Treat 2021; 20:1533033820983298. [PMID: 33499770 PMCID: PMC7844453 DOI: 10.1177/1533033820983298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes (CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.
Collapse
Affiliation(s)
- Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
49
|
Terkelsen T, Pernemalm M, Gromov P, Børresen-Dale AL, Krogh A, Haakensen VD, Lethiö J, Papaleo E, Gromova I. High-throughput proteomics of breast cancer interstitial fluid: identification of tumor subtype-specific serologically relevant biomarkers. Mol Oncol 2021; 15:429-461. [PMID: 33176066 PMCID: PMC7858121 DOI: 10.1002/1878-0261.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Despite significant advancements in breast cancer (BC) research, clinicians lack robust serological protein markers for accurate diagnostics and tumor stratification. Tumor interstitial fluid (TIF) accumulates aberrantly externalized proteins within the local tumor space, which can potentially gain access to the circulatory system. As such, TIF may represent a valuable starting point for identifying relevant tumor-specific serological biomarkers. The aim of the study was to perform comprehensive proteomic profiling of TIF to identify proteins associated with BC tumor status and subtype. A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of 35 TIFs of three main subtypes: luminal (19), Her2 (4), and triple-negative (TNBC) (12) resulted in the identification of > 8800 proteins. Unsupervised hierarchical clustering segregated the TIF proteome into two major clusters, luminal and TNBC/Her2 subgroups. High-grade tumors enriched with tumor infiltrating lymphocytes (TILs) were also stratified from low-grade tumors. A consensus analysis approach, including differential abundance analysis, selection operator regression, and random forest returned a minimal set of 24 proteins associated with BC subtypes, receptor status, and TIL scoring. Among them, a panel of 10 proteins, AGR3, BCAM, CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and ULBP2, was found to stratify the tumor subtype-specific TIFs. In particular, upregulation of BCAM and CELSR1 differentiates luminal subtypes, while upregulation of MIEN1 differentiates Her2 subtypes. Immunohistochemistry analysis showed a direct correlation between protein abundance in TIFs and intratumor expression levels for all 10 proteins. Sensitivity and specificity were estimated for this protein panel by using an independent, comprehensive breast tumor proteome dataset. The results of this analysis strongly support our data, with eight of the proteins potentially representing biomarkers for stratification of BC subtypes. Five of the most representative proteomics databases currently available were also used to estimate the potential for these selected proteins to serve as putative serological markers.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anna-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anders Krogh
- Department of Computer Science, University of Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Janne Lethiö
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
50
|
Zhang Q, Zhang Y, Sun S, Wang K, Qian J, Cui Z, Tao T, Zhou J. ACOX2 is a prognostic marker and impedes the progression of hepatocellular carcinoma via PPARα pathway. Cell Death Dis 2021; 12:15. [PMID: 33414412 PMCID: PMC7791021 DOI: 10.1038/s41419-020-03291-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) has been extensively studied as one of the most aggressive tumors worldwide. However, its mortality rate remains high due to ideal diagnosis and treatment strategies. Uncovering novel genes with prognostic significance would shed light on improving the HCC patient's outcome. In our study, we applied data-independent acquisition (DIA) quantitative proteomics to investigate the expression landscape of 24 paired HCC patients. A total of 1029 differentially expressed proteins (DEPs) were screened. Then, we compared DEPs in our cohort with the differentially expressed genes (DEGs) in The Cancer Genome Atlas, and investigated their prognostic significance, and found 183 prognosis-related genes (PRGs). By conducting protein-protein interaction topological analysis, we identified four subnetworks with prognostic significance. Acyl-CoA oxidase 2 (ACOX2) is a novel gene in subnetwork1, encodes a peroxisomal enzyme, and its function in HCC was investigated in vivo and in vitro. The lower expression of ACOX2 was validated by real-time quantitative PCR, immunohistochemistry, and Western blot. Cell Counting Kit-8 assay, wound healing, and transwell migration assay were applied to evaluate the impact of ACOX2 overexpression on the proliferation and migration abilities in two liver cancer cell lines. ACOX2 overexpression, using a subcutaneous xenograft tumor model, indicated a tumor suppressor role in HCC. To uncover the underlying mechanism, gene set enrichment analysis was conducted, and peroxisome proliferator-activated receptor-α (PPARα) was proposed to be a potential target. In conclusion, we demonstrated a PRG ACOX2, and its overexpression reduced the proliferation and metastasis of liver cancer in vitro and in vivo through PPARα pathway.
Collapse
Affiliation(s)
- Qifan Zhang
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Yunbin Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shibo Sun
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Kai Wang
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Jianping Qian
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Zhonglin Cui
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, 236 Yuanzhu Road, Zhanjiang, Guangdong, 524045, China.
| | - Jie Zhou
- Department of General Surgery, Division of Hepatobiliopancreatic Surgery, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|