1
|
Liu S, Feng A, Li Z. Neuron-Derived Extracellular Vesicles: Emerging Regulators in Central Nervous System Disease Progression. Mol Neurobiol 2025:10.1007/s12035-025-05010-4. [PMID: 40325332 DOI: 10.1007/s12035-025-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The diagnosis and exploration of central nervous system (CNS) diseases remain challenging due to the blood-brain barrier (BBB), complex signaling pathways, and heterogeneous clinical manifestations. Neurons, as the core functional units of the CNS, play a pivotal role in CNS disease progression. Extracellular vesicles (EVs), capable of crossing the BBB, facilitate intercellular and cell-extracellular matrix (ECM) communication, making neuron-derived extracellular vesicles (NDEVs) a focal point of research. Recent studies reveal that NDEVs, carrying various bioactive substances, can exert either pathogenic or protective effects in numerous CNS diseases. Additionally, NDEVs show significant potential as biomarkers for CNS diseases. This review summarizes the emerging roles of NDEVs in CNS diseases, including Alzheimer's disease, depression, traumatic brain injury, schizophrenia, ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. It aims to provide a novel perspective on developing therapeutic and diagnostic strategies for CNS diseases through the study of NDEVs.
Collapse
Affiliation(s)
- Sitong Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Aitong Feng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Eyvani K, Letafatkar N, Babaei P. AMPA Receptors Endocytosis Inhibition Attenuates Cognition Deficit Via c-Fos/BDNF Signaling in Amyloid β Neurotoxicity. Exp Aging Res 2025; 51:303-315. [PMID: 39077805 DOI: 10.1080/0361073x.2024.2377440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024]
Abstract
Glutamatergic imbalance, particularly downregulation of α-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid receptor (AMPARs) endocytosis, has been addressed as a possible reason for cognitive dysfunctions in Alzheimer's disease (AD). We hypothesized that inhibition of AMPAR endocytosis may ameliorate memory impairment in AD model of rats. To approach this, twenty-four adults male Wistar rats were divided into three groups: saline + saline (control group), Aβ + saline, and Aβ + Tat-GluR23Y (AMPA endocytosis inhibitor). Animals received an intracerebroventricular (i.c.v) injection of Aβ (1-42) to induce neuro-toxicity, followed by chronic administration of GluR23Y, and further behavioral assessments by MWM. Afterward, the hippocampal level of Brain Derived Neurotrophic Factor (BDNF) and c-Fos was measured via Western blotting. The results of our study revealed that chronic administration of GluR23Y improved both working and reference memories evidenced by shorter latency time and longer total time spent in the target zone in MWM. Additionally, this improvement was paralleled by an increase in BDNF, but a decrease in c-Fos. In conclusion, GluR23Y improves spatial memory impairment at least partly via elevating neuroprotective factor of BDNF and reducing apoptotic protein of c-Fos.
Collapse
Affiliation(s)
- Kimia Eyvani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Kalra P, Grewal AK, Khan H, Singh TG. Unscrambling the cellular and molecular threads of Neuroplasticity: Insights into Alzheimer's disease pathogenesis. Neuroscience 2025; 571:74-88. [PMID: 39970983 DOI: 10.1016/j.neuroscience.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Alzheimer's disease (AD) is predominantly the most recurring and devastating neurological condition among the elderly population, characterized by the accumulation of amyloid-β (Aβ) and phosphorylated tau proteins, and is accompanied by progressive decline of learning and memory. Due to its complex and multifactorial etiology, a wide variety of therapeutic interventions have been developed. Despite constant advancements in the field, effective treatments that ameliorate the severity of Alzheimer's symptoms or cease their progression are still insufficient. Mounting evidence suggests that synaptic dysfunction could be an essential component of AD pathogenesis as synapse signaling is impaired in the aging brain, which contributes to synaptic decline. Therefore, improving neuroplasticity such as synaptic plasticity or neurogenesis could be a promising therapeutic approach for alleviating the effects of AD. This article reviews the cellular and molecular threads of neuroplasticity as well as targets that restore neuronal survival and plasticity to provide functional recoveries, including receptors, downstream signaling pathways, ion channels, transporters, enzymes, and neurotrophic factors.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, Punjab 140103, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
4
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Neurotrophic factor alpha 1 gene therapy in Alzheimer's disease: scope and advancements. Front Mol Neurosci 2025; 18:1518868. [PMID: 40235693 PMCID: PMC11996844 DOI: 10.3389/fnmol.2025.1518868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia, accounting for 60-80% of all cases globally. Hallmark pathologies of AD include the accumulation of amyloid β peptide and phosphorylated tau, leading to neuronal circuit dysfunction, defective axonal transport, and neurotransmitter system (NTS) abnormalities. Disruptions in acetylcholine, GABA, dopamine, serotonin, and glutamate levels, as well as the loss of cholinergic, GABAergic, and monoaminergic neurons, contribute to the progression of AD. Additionally, neurotrophic factors like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are significantly reduced in AD, impacting neuronal health and synaptic integrity. This review highlights the emerging role of neurotrophic factor alpha 1 (NF-α1), also known as carboxypeptidase E, in AD. NF-α1 shows neuroprotective and neurogenesis-promoting properties, offering potential for therapeutic interventions. The review compares NF-α1 gene therapy with other neurotrophin-based treatments, providing insights into its efficacy in AD management.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Wang HLV, Xiang JF, Yuan C, Veire AM, Gendron TF, Murray ME, Tansey MG, Hu J, Gearing M, Glass JD, Jin P, Corces VG, McEachin ZT. pTDP-43 levels correlate with cell type-specific molecular alterations in the prefrontal cortex of C9orf72 ALS/FTD patients. Proc Natl Acad Sci U S A 2025; 122:e2419818122. [PMID: 39999167 PMCID: PMC11892677 DOI: 10.1073/pnas.2419818122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with C9orf72 ALS/FTD, we compared healthy controls with C9orf72 ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during FTD development. Loss of neurosurveillance microglia and activation of the complement cascade take place early, when pTDP-43 aggregates are absent or very low, and become more pronounced in late stages, suggesting an initial involvement of microglia in disease progression. Reduction of layer 2-3 cortical projection neurons with high expression of CUX2/LAMP5 also occurs early, and the reduction becomes more pronounced as pTDP-43 accumulates. Several unique features were observed only in samples with high levels of pTDP-43, including global alteration of chromatin accessibility in oligodendrocytes, microglia, and astrocytes; higher ratios of premature oligodendrocytes; increased levels of the noncoding RNA NEAT1 in astrocytes and neurons, and higher amount of phosphorylated ribosomal protein S6. Our findings reveal progressive functional changes in major cell types found in the prefrontal cortex of C9orf72 ALS/FTD patients that shed light on the mechanisms underlying the pathology of this disease.
Collapse
Affiliation(s)
- Hsiao-Lin V. Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
| | - Chenyang Yuan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA30322
| | - Austin M. Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
| | | | | | - Malú G. Tansey
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL32607
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL32607
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA30322
| | - Marla Gearing
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA30322
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA30322
| | - Jonathan D. Glass
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
- Department of Neurology, Emory University School of Medicine, Atlanta, GA30322
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| | - Zachary T. McEachin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA30322
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
6
|
Yang X, Huang YWA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 2025; 20:715-724. [PMID: 38886937 PMCID: PMC11433911 DOI: 10.4103/nrr.nrr-d-23-02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Tropomyosin receptor kinase B (TrkB) signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory. The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre- or postsynaptic TrkB resulting in the strengthening of synapses, reflected by long-term potentiation. Postsynaptically, the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca2+/calmodulin-dependent protein kinase II and phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation. In this review, we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders. A reduction of TrkB signaling has been observed in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression. Treatment with brain-derived neurotrophic factor is problematic, due to poor pharmacokinetics, low brain penetration, and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform. Although TrkB agonists and antibodies that activate TrkB are being intensively investigated, they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions. Targeting TrkB-postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Zhong Y, Wang W, Zhang M, Yao Y, Liu H, Zhang K. Efficacy and safety of prophylactic use of benzhexol after risperidone treatment in MK-801-induced mouse model of schizophrenia. Psychopharmacology (Berl) 2025; 242:651-661. [PMID: 39551830 DOI: 10.1007/s00213-024-06716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
RATIONALE There is a debate about whether doctors should prophylactically use benzhexol in schizophrenic patients to reduce the occurrence of extrapyramidal side effects (EPS) after risperidone treatment. OBJECTIVES We conducted a prospective animal model to explore the efficacy and safety of the prophylactic use of benzhexol after risperidone treatment and the mechanism of the process. METHODS C57/BL mice were injected with MK-801 (0.5 mg/kg, i.p.) once a day for two weeks. The open field test (OFT) and the novel object recognition test (NORT) assessed the schizophrenia-like behavior of mice. After four weeks of treatment with benzhexol (10 mg/kg, i.g.) and risperidone (3 mg/kg, i.g.), the inclined screen test (IST), rotarod test (RT), open field test (OFT), novel object recognition test (NORT) and the Morris water maze test (MWM) were conducted successively. The expression of BDNF, p-Tau, and Tau in the hippocampus was detected by Western blot assay. RESULTS We showed that benzhexol can significantly attenuate risperidone-induced motor coordination impairments and catalepsy and did not affect the efficacy of risperidone in reducing spontaneous activity. Notably, the prophylactic use of benzhexol reduced the recognition memory and spatial memory in MK-801-induced model mice after risperidone. In addition, benzhexol increased the ratio of p-Tau/Tau and decreased BDNF expression levels in the hippocampus. CONCLUSIONS We found that the prophylactic use of benzhexol can reduce the occurrence of EPS and does not affect the efficacy of risperidone in the treatment of positive symptoms. Benzhexol may impair cognitive function but did not cause further deterioration of cognitive function in MK-801 mice.
Collapse
Affiliation(s)
- Yongjie Zhong
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wenhui Wang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Miaomiao Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yitan Yao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
- Anhui Psychiatric Center, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, 238000, China.
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China.
- Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
8
|
Sheng R, Zhao M, Pu K, Zhou Y, Zeng L, Chen Y, Wang P, Liu X, Xu S. Allium Macrostemon Bge. Attenuates the Cognitive Decline of Aging Mice by Enhancing BDNF/TrkB Pathway. Food Sci Nutr 2025; 13:e70010. [PMID: 40027296 PMCID: PMC11868736 DOI: 10.1002/fsn3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
Allium macrostemon Bge. (AM) is a widely utilized culinary spice recognized for its numerous health-promoting properties. Aging-related cognitive impairment (ARCI) represents a significant global health concern during the aging process. However, the potential of AM to attenuate ARCI has not been investigated. This work aims to reveal the effects and potential mechanisms of the water extraction of AM (WEAM) in alleviating ARCI, with a particular emphasis on the BDNF/TrkB signaling pathway. The findings showed a significant enhancement in memory function and a reduction in hippocampal neuronal damage in aging mice following treatment with WEAM, manifested by an increased spontaneous alternation rate in the Y-maze, prolonged step-through latency, and decreased number of errors in the PAT test, a shortened escape latency and increased platform swimming time and platform crossing times in the MWM test. Additionally, WEAM reduced oxidative stress, elevated the expression of proteins related to synaptic plasticity (SYN and PSD95), and activated the BDNF/TrkB signaling pathway in D-galactose-induced aging mice. To elucidate the mechanism by which WEAM alleviates ARCI, both a TrkB activator (7,8-DHF) and an inhibitor (ANA-12) were employed. The results demonstrated that the effects of WEAM on synaptic plasticity were potentiated by 7,8-DHF and diminished by ANA-12. Finally, 11 chemical compositions of WEAM were analyzed and quantified using HPLC-MS/MS, including macrostemonoside, sarsasapogenin, diosgenin, timosaponin AIII, N-p-trans-coumaroyltyramine, guanosine, adenosine, phenylalanine, adenine, arginine, and valine. These results suggest that AM may serve as a promising culinary spice for mitigating ARCI by promoting the BDNF/TrkB signaling pathway, thereby enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Ruilin Sheng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Meihuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Keting Pu
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Yongtao Zhou
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Li Zeng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Wang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Xiao Liu
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine ResourcesChengdu University of Traditional Chinese MedicineChengduChina
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain DisordersChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
9
|
Alcalá-Lozano R, Carmona-Hernández R, Ocampo-Romero AG, Sosa-Millán AL, Morelos-Santana ED, Abarca DZ, Castro-de-Aquino DV, Cabrera-Muñoz EA, Ramírez-Rodríguez GB, Sosa Ortiz AL, Garza-Villarreal EA, Saracco-Alvarez R, González Olvera JJ. Predicting the Beneficial Effects of Cognitive Stimulation and Transcranial Direct Current Stimulation in Amnestic Mild Cognitive Impairment with Clinical, Inflammation, and Human Microglia Exposed to Serum as Potential Markers: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Int J Mol Sci 2025; 26:1754. [PMID: 40004217 PMCID: PMC11855719 DOI: 10.3390/ijms26041754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
In amnestic mild cognitive impairment (aMCI), neuroinflammation evolves during disease progression, affecting microglial function and potentially accelerating the pathological process. Currently, no effective treatment exists, leading to explorations of various symptomatic approaches, though few target the underlying physiological mechanisms. Modulating inflammatory processes may be critical in slowing disease progression. Cognitive stimulation (CS) and transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (l-DLPFC) show promise, but the results are heterogeneous. Thus, a randomized, double-blind, placebo-controlled clinical trial is currently underway. The first-stage results were examined after three weeks of intervention in two groups: active tDCS combined with CS and sham tDCS combined with CS. Twenty-two participants underwent two assessments: T0 (baseline) and T1 (after 15 sessions of tDCS, active or sham, and 9 sessions of CS). The results demonstrated that CS improved cognition, increased brain-derived neurotrophic factor (BDNF) levels, and reduced peripheral proinflammatory cytokine levels (interleukin IL-6 and chemokine CX3CL1) in serum. This decrease in IL-6 may promote microglial proliferation and survival as a modulatory effect response, while the increase in BDNF might suggest a regulatory mechanism in microglia-neuron interaction responses. However, tDCS did not enhance the cognitive or modulatory effects of CS, suggesting that longer interventions might be required to achieve substantial benefits.
Collapse
Affiliation(s)
- Ruth Alcalá-Lozano
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Programa de Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Rocio Carmona-Hernández
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Ana Gabriela Ocampo-Romero
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Adriana Leticia Sosa-Millán
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Erik Daniel Morelos-Santana
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Diana Zapata Abarca
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Dana Vianey Castro-de-Aquino
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Edith Araceli Cabrera-Muñoz
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Ana Luisa Sosa Ortiz
- Laboratorio de Demencias, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco (INNN), Mexico City 14269, Mexico
| | - Eduardo A. Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro 76230, Mexico
| | - Ricardo Saracco-Alvarez
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | | |
Collapse
|
10
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
11
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Jiang M, Chi J, Qiao Y, Wang J, Zhang Z, Liu J, Sheng X, Yuan L. Ginsenosides Rg1, Rb1 and rare ginsenosides: Promising candidate agents for Parkinson's disease and Alzheimer's disease and network pharmacology analysis. Pharmacol Res 2025; 212:107578. [PMID: 39756554 DOI: 10.1016/j.phrs.2025.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Ginseng has been commonly used as a traditional Chinese medicine in Asian countries for thousands of years. Ginsenosides are the main pharmacologically active ingredients isolated from ginseng and have neuroprotective effects in the treatment of neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To summarise and investigate the protective roles of ginsenosides and their underlying mechanisms in PD and AD, we used ''Ginsenoside", ''Parkinson's disease", ''Alzheimer's disease", ''anti-inflammatory", ''antioxidant", and ''apoptosis" as keywords to search and extract relevant literature information from scientific databases such as Elsevier, PubMed, and Google Scholar databases. In particular, we used network pharmacology to identify the potential targets of ginsenosides Rg1 and Rb1 in PD and AD. By analysing the existing research advances and network pharmacology results, we found that the neuroprotective effects of ginsenosides, primarily mediated through anti-inflammation, anti-apoptosis and anti-oxidative stress, etc, may be associated with the PI3K/Akt, BDNF/TrkB, MAPKs, NF-κB, Nrf2 and Wnt/β-catenin signalling pathways. This review systematically summarises the different roles and mechanisms of ginsenosides Rg1, Rb1, and rare ginsenosides in PD and AD and provides new strategies for the treatment of neurodegenerative disorders. Network pharmacology provides a new research paradigm for the treatment of PD and AD using Rg1 and Rb1.
Collapse
Affiliation(s)
- Mingchun Jiang
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China
| | - Jiaxin Chi
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yifan Qiao
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jinpeng Wang
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Zhixin Zhang
- School of pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Jia Liu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Xinhao Sheng
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Liangjie Yuan
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China.
| |
Collapse
|
13
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1756-1769. [PMID: 39030441 PMCID: PMC11909598 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
14
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
15
|
Xiong W, She W, Liu Y, Zhou H, Wang X, Li F, Li R, Wang J, Qin D, Jing S, Duan X, Jiang C, Xu C, He Y, Wang Z, Ye Q. Clinical-grade human dental pulp stem cells improve adult hippocampal neural regeneration and cognitive deficits in Alzheimer's disease. Theranostics 2025; 15:894-914. [PMID: 39776809 PMCID: PMC11700856 DOI: 10.7150/thno.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. Methods: We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD. Specifically, we investigated the effect of neural crest-specific derived hDPSCs on endogenous neural regeneration and long-term efficacy following a single transplantation in the triple-transgenic mouse model (3xTg-AD). Results: Our research demonstrated that a single administration of clinical-grade hDPSCs yielded dramatic short-term therapeutic benefits (5 weeks) and sustained partial efficacy (6 months) with respect to improving cognitive impairment and delaying typical pathological progression in 3xTg-AD mice. Intriguingly, exogenous hDPSCs were robustly self-differentiated into newborn functional neurons in the hippocampus of 3xTg-AD mice. The foremost evidence is provided that hDPSCs promote endogenic neural regeneration by enhancing the activation of the Wnt/β-catenin pathway, which may contribute to stabilizing the hippocampal neural network to reverse memory deficits. Conclusion: These findings highlight the multifunctional potential of hDPSCs in AD treatment, which enhances cognition through alleviating neuropathology and providing neural regenerative driving force. Understanding these multiplicity effects is critical to advancing the clinical translation of stem cell-based therapies for AD.
Collapse
Affiliation(s)
- Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenting She
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Fang Li
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruohan Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dongdong Qin
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingxiang Duan
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cailei Jiang
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chun Xu
- Sydney School of Dentistry, The University of Sydney, Sydney, NSW, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Zhihao Wang
- Center for Neurodegenerative Disease Research, and Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Sydney School of Dentistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Ma J, Dong Y, Liu J, Gao S, Quan J. The role of GRB2 in diabetes, diabetes complications and related disorders. Diabetes Obes Metab 2025; 27:23-34. [PMID: 39478285 DOI: 10.1111/dom.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a key adaptor protein involved in multiple signalling pathways, and its dysregulation is associated with various diseases. Type 2 diabetes is a systemic condition characterized by insulin resistance and impaired β-cell function. The complications of diabetes significantly reduce life expectancy and quality of life, imposing a substantial burden on society. However, the role of GRB2 in diabetes and associated complications is largely unknown. Emerging evidence suggests that GRB2 plays a crucial role in insulin resistance, inflammation, immune activation and the regulation of cellular processes such as cell proliferation, growth, metabolism, angiogenesis, apoptosis and differentiation. Dysregulation of GRB2-mediated pathways contributes to the progression of diabetic neuropathy, cognitive dysfunction, nephropathy, retinopathy and related disorders. This review provides a comprehensive overview of the current understanding of the role of GRB2 in diabetes, diabetes complications and related disorders, alongside recent advances in the development of GRB2-targeted therapies. Elucidating the complex role of GRB2 in these disorders provides valuable insights into potential therapeutic strategies targeting GRB2-mediated pathways.
Collapse
Affiliation(s)
- Jing Ma
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Yuyan Dong
- Clinical College of Ningxia Medical University, Yinchuan, China
| | - Juxiang Liu
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| | - Shuo Gao
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of Endocrinology and Metabolism, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Endocrine and Metabolic Diseases of Gansu Province, Lanzhou, China
| |
Collapse
|
17
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
18
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
19
|
Suganya S, Ashok BS, Ajith TA. A Recent Update on the Role of Estrogen and Progesterone in Alzheimer's Disease. Cell Biochem Funct 2024; 42:e70025. [PMID: 39663597 DOI: 10.1002/cbf.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative disease responsible for 60%-80% dementia cases globally. The disease is more prevalent among elder females. Female reproductive hormones are found to be essential for cellular activities in brain. The physiological role of neurotrophins and sex hormones in hippocampal region during neurogenesis and neuron differentiation was studied as well. In addition to triggering cellular pathways, estrogen and progesterone carry out a number of biological processes that lead to neuroprotection. They might have an impact on learning and memory. One of estrogen's modest antioxidant properties is its direct scavenging of free radicals. The neurotrophic effect of estrogen and progesterone can be explained by their ability to rise the expression of the brain-derived neurotrophic factor (BDNF) mRNA. Additionally, they have the ability to degrade beta-amyloid and stop inflammation, apoptotic neuronal cell death, and tau protein phosphorylation. To enhance their neuroprotective action, various cross-talking pathways in cells that are mediated by estrogen, progesterone, and BDNF receptors. This include signaling by mitogen-activated protein kinase/extracellular regulated kinase, phosphatidylinositol 3-kinase/protein kinase B, and phospholipase/protein kinase C. Clinical research to establish the significance of these substances are fragmented, despite publications claiming a lower prevalence of AD when medication is started before menopause. This review article emphasizes an update on the role of estrogen, and progesterone in AD.
Collapse
Affiliation(s)
- S Suganya
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Thekkuttuparambil Ananthanarayanan Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Thrissur, Kerala, India
- Amala Integrated Medical Research Department, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| |
Collapse
|
20
|
Tao L, Liu Z, Li X, Wang H, Wang Y, Zhou D, Zhang H. Oleanonic acid ameliorates mutant Aβ precursor protein-induced oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in vitro. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167459. [PMID: 39134286 DOI: 10.1016/j.bbadis.2024.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Accumulation in the brain of amyloid-β (Aβ), derived from cleavage of Aβ precursor protein (APP), is a hallmark of Alzheimer's disease (AD). Oleanonic acid (OA), a phytochemical from several plants, has proven anti-inflammatory effects, but its role in AD remains unknown. Here we found that OA reduced APP expression and inhibited oxidative stress via Nrf2/HO-1 signaling in SH-SY5Y neuroblastoma cells stably overexpressing APP. OA suppressed phosphorylated mTOR but increased autophagy markers ATG5 and LC3-II. Moreover, OA rescued ferroptosis-related factors GPX4, NCOA, and COX2 and ER stress markers GRP78, CHOP, and three main induction pathways of ER stress including IRE1/XBP1s, PERK/EIF2α, and ATF6. OA alleviated mitochondrial damage through MFN1, MFN2, OPA1, FIS1, and DRP1. Furthermore, OA upregulated GDF11 expression and downregulated phosphorylation of ErbB4 and TrkB without affecting BDNF levels. Thus, OA might protect neurons from APP-induced neurotoxicity by inhibiting oxidative stress, autophagy deficits, ferroptosis, mitochondrial damage, and ER stress in AD, providing a new promising therapeutic strategy in patients with AD.
Collapse
Affiliation(s)
- Liqing Tao
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zewang Liu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Zhang
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China; Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
21
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera I, Corzo L, Naidoo V. Therapeutic Options in Alzheimer's Disease: From Classic Acetylcholinesterase Inhibitors to Multi-Target Drugs with Pleiotropic Activity. Life (Basel) 2024; 14:1555. [PMID: 39768263 PMCID: PMC11678002 DOI: 10.3390/life14121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases. Since the approval of acetylcholinesterase inhibitors (Tacrine, Donepezil, Rivastigmine, Galantamine) and Memantine, between 1993 and 2003, no new drug was approved by the FDA until the advent of immunotherapy with Aducanumab in 2021 and Lecanemab in 2023. Over the past decade, more than 10,000 new compounds with potential action on some pathogenic components of AD have been tested. The limitations of these anti-AD treatments have stimulated the search for multi-target (MT) drugs. In recent years, more than 1000 drugs with potential MT function have been studied in AD models. MT drugs aim to address the complex and multifactorial nature of the disease. This approach has the potential to offer more comprehensive benefits than single-target therapies, which may be limited in their effectiveness due to the intricate pathology of AD. A strategy still unexplored is the combination of epigenetic drugs with MT agents. Another option could be biotechnological products with pleiotropic action, among which nosustrophine-like compounds could represent an attractive, although not definitive, example.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (O.M.-I.); (N.C.); (I.C.); (L.C.); (V.N.)
| | | | | | | | | | | |
Collapse
|
22
|
Tavares J, Oliveira AV, de Souza Nascimento T, Gomes JMP, Parente ACB, Bezerra JR, da Costa MDR, de Aguiar MSS, Sampaio TL, Lima FAV, de Barros Viana GS, de Andrade GM. Aqueous extract of Spirulina exerts neuroprotection in an experimental model of Alzheimer sporadic disease in mice induced by Streptozotocin. Metab Brain Dis 2024; 40:26. [PMID: 39565401 DOI: 10.1007/s11011-024-01477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes gradual memory loss and cognitive impairment. Intracerebroventricular injections of streptozotocin (ICV-STZ) have been used as an experimental model of sporadic Alzheimer's disease (SAD) because they produce deficits in brain insulin signaling, oxidative stress, neuroinflammation, and neurodegeneration, resulting in cognitive decline and memory impairment. Spirulina platensis (SPI) is a nutraceutical with anti-inflammatory, antioxidant, and neuroprotective properties. The objective of this work was to study the effects of SPI on cognitive deficits and neuronal damage in mice submitted to the experimental model of SAD induced by ICV-STZ. Male Swiss mice (25-35 g) received ICV-STZ (3 mg/Kg) bilaterally on days 1 and 3, SPI (50 and 100 mg/Kg, o.p.) or vehicle (saline) was administered 2 h after the second surgery, and once a day for 16 days. SPI treatment prevented working, episodic, spatial, and aversive memory deficits. Locomotor activity was not altered. ICV-STZ caused an increase in MDA, nitrite, and superoxide anion, while decreasing GSH. SPI treatment protected against GSH increase in the prefrontal cortex and hippocampus, and inhibited AChE activity in the prefrontal cortex. SPI prevented astrogliosis and microgliosis induced by ICV-STZ. These findings highlight the therapeutic potential of SPI for the treatment of SAD, indicating that its neuroprotective action is linked to antioxidant, anti-inflammatory, and AChE inhibitory activity.
Collapse
Affiliation(s)
- Juliete Tavares
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Alfaete Vieira Oliveira
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Tyciane de Souza Nascimento
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Jessica Maria Pessoa Gomes
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Ana Caroline Barros Parente
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Jessica Rabelo Bezerra
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Mac Dionys Rodrigues da Costa
- Postgraduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil.
| | - Tiago Lima Sampaio
- Postgraduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Francisco Arnaldo Viana Lima
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Glauce Socorro de Barros Viana
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
- Postgraduate Program in Pharmacology, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Brazil.
- Neuroscience and Behavior Lab, Drug Research and Development Center (NPDM), Federal University of Ceara, Fortaleza, Brazil.
- Department of Physiology and Pharmacology, School of Medicine Federal, University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| |
Collapse
|
23
|
Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer's disease with compounds from natural products. Int Immunopharmacol 2024; 141:112936. [PMID: 39163684 DOI: 10.1016/j.intimp.2024.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is difficult to cure and of global concern. Neuroinflammation is closely associated with the onset and progression of AD, making its treatment increasingly important. Compounds from natural products, with fewer side effects than synthetic drugs, are of high research interest. STAT3, a multifunctional transcription factor, is involved in various cellular processes including inflammation, cell growth, and apoptosis. Its activation and inhibition can have different effects under various pathological conditions. In AD, the STAT3 protein plays a crucial role in promoting neuroinflammation and contributing to disease progression. This occurs primarily through the JAK2-STAT3 signaling pathway, which impacts microglia, astrocytes, and hippocampal neurons. This paper reviews the STAT3 signaling pathway in AD and 25 compounds targeting STAT3 up to 2024. Notably, Rutin, Paeoniflorin, and Geniposide up-regulate STAT3 in hippocampal and cortex neurons, showing neuroprotective effects in various AD models. Other 23 compounds downregulate AD by suppressing neuroinflammation through inhibition of STAT3 activation in microglia and astrocytes. These findings highlight the potential of compounds from natural products in improving AD by targeting STAT3, offering insights into the prevention and management of AD.
Collapse
Affiliation(s)
- Xiyue Wen
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
24
|
Armeli F, Coccurello R, Giacovazzo G, Mengoni B, Paoletti I, Oddi S, Maccarrone M, Businaro R. FAAH Inhibition Counteracts Neuroinflammation via Autophagy Recovery in AD Models. Int J Mol Sci 2024; 25:12044. [PMID: 39596118 PMCID: PMC11593522 DOI: 10.3390/ijms252212044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Endocannabinoids have attracted great interest for their ability to counteract the neuroinflammation underlying Alzheimer's disease (AD). Our study aimed at evaluating whether this activity was also due to a rebalance of autophagic mechanisms in cellular and animal models of AD. We supplied URB597, an inhibitor of Fatty-Acid Amide Hydrolase (FAAH), the degradation enzyme of anandamide, to microglial cultures treated with Aβ25-35, and to Tg2576 transgenic mice, thus increasing the endocannabinoid tone. The addition of URB597 did not alter cell viability and induced microglia polarization toward an anti-inflammatory phenotype, as shown by the modulation of pro- and anti-inflammatory cytokines, as well as M1 and M2 markers; moreover microglia, after URB597 treatment released higher levels of Bdnf and Nrf2, confirming the protective role underlying endocannabinoids increase, as shown by RT-PCR and immunofluorescence experiments. We assessed the number and area of amyloid plaques in animals administered with URB597 compared to untreated animals and the expression of autophagy key markers in the hippocampus and prefrontal cortex from both groups of mice, via immunohistochemistry and ELISA. After URB597 supply, we detected a reduction in the number and areas of amyloid plaques, as detected by Congo Red staining and a reshaping of microglia activation as shown by M1 and M2 markers' modulation. URB597 administration restored autophagy in Tg2576 mice via an increase in BECN1 (Beclin1), ATG7 (Autophagy Related 7), LC3 (light chain 3) and SQSTM1/p62 (sequestrome 1) as well as via the activation of the ULK1 (Unc-51 Like Autophagy Activating Kinase 1) signaling pathway, suggesting that it targets mTOR/ULK1-dependent autophagy pathway. The potential of endocannabinoids to rebalance autophagy machinery may be considered as a new perspective for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Roberto Coccurello
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- Institute for Complex Systems (ISC), National Research Council (C.N.R.), 00185 Rome, Italy
| | - Giacomo Giacovazzo
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- School of Veterinary Medicine, University of Teramo (UniTE), 64100 Teramo, Italy
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Ilaria Paoletti
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
| | - Sergio Oddi
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- School of Veterinary Medicine, University of Teramo (UniTE), 64100 Teramo, Italy
| | - Mauro Maccarrone
- European Brain Research Center, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (R.C.); (G.G.); (I.P.); (S.O.); (M.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
25
|
Peng D, Liu T, Lu H, Zhang L, Chen H, Huang Y, Hu B, Zhang Q. Intranasal delivery of engineered extracellular vesicles loaded with miR-206-3p antagomir ameliorates Alzheimer's disease phenotypes. Theranostics 2024; 14:7623-7644. [PMID: 39659569 PMCID: PMC11626949 DOI: 10.7150/thno.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: The level of miR-206-3p in the plasma and temporal cortex is increased in Alzheimer's disease (AD) patients. miR-206-3p antagomir injected into hippocampus ameliorates cognitive deficits by enhancing the level of BDNF. However, the trauma caused by brain injection and susceptibility to degradation limit its application. Methods: To overcome these challenges, we constructed engineered extracellular vesicles derived from mesenchymal stem cell (MSC-EVs) loaded with miR-206-3p antagomir (MSC-EVs-anta) by electroporation technology, and explored the therapeutic effects of MSC-EVs-anta delivered by intranasal administration on AD mice. Transcriptome sequencing and LC-MS/MS proteomic analysis were employed to disclose the mechanism underlying the attenuation of AD phenotypes by MSC-EVs-anta. Results: MSC-EVs-anta had favorable neuroprotection by promoting neurite outgrowth in vitro. Following intranasal administration, MSC-EVs-anta improved learning and memory deficits, promoted hippocampal neurogenesis and synaptic plasticity, and alleviated Aβ deposition. Compared with MSC-EVs or miR-206-3p antagomir alone, MSC-EVs-anta showed superior therapeutic effects. Mechanistically, MSC-EVs-anta significantly upregulated brain-derived neurotrophic factor (BDNF) in AD mice, and activated the BDNF/TrkB signaling pathway. The data from two-omics analyses demonstrated that the differentially expressed proteins and genes significantly regulated by MSC-EVs-anta were primarily enriched in the pathways involved in neurogenesis and synapse. Conclusions: Our findings highlight the intranasal administration of MSC-EVs-anta as a promising strategy for the treatment of AD.
Collapse
Affiliation(s)
- Dong Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huahui Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Bo Hu
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qihao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Ramires Júnior OV, Silveira JS, Gusso D, Krupp Prauchner GR, Ferrary Deniz B, Almeida WD, Pereira LO, Wyse AT. Homocysteine decreases VEGF, EGF, and TrkB levels and increases CCL5/RANTES in the hippocampus: Neuroprotective effects of rivastigmine and ibuprofen. Chem Biol Interact 2024; 403:111260. [PMID: 39357784 DOI: 10.1016/j.cbi.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Homocysteine (Hcy) is produced through methionine transmethylation. Elevated Hcy levels are termed Hyperhomocysteinemia (HHcy) and represent a risk factor for neurodegenerative conditions such as Alzheimer's disease. This study aimed to explore the impact of mild HHcy and the neuroprotective effects of ibuprofen and rivastigmine via immunohistochemical analysis of glial markers (Iba-1 and GFAP). Additionally, we assessed levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), chemokine ligand 5 (CCL5/RANTES), CX3C chemokine ligand 1 (CX3CL1), and the NGF/p75NTR/tropomyosin kinase B (TrkB) pathway in the hippocampus of adult rats. Mild chronic HHcy was induced chemically in Wistar rats by subcutaneous administration of Hcy (4 mg/kg body weight) twice daily for 30 days. Rivastigmine (0.5 mg/kg) and ibuprofen (40 mg/kg) were administered intraperitoneally once daily. Results revealed elevated levels of CCL5/RANTES and reduced levels of VEGF, EGF, and TrkB in the hippocampus of HHcy-exposed rats. Rivastigmine mitigated the neurotoxic effects of HHcy by increasing TrkB and VEGF levels. Conversely, ibuprofen attenuated CCL5/RANTES levels against the neurotoxicity of HHcy, significantly reducing this chemokine's levels. HHcy-induced neurochemical impairment in the hippocampus may jeopardize neurogenesis, synapse formation, axonal transport, and inflammatory balance, leading to neurodegeneration. Treatments with rivastigmine and ibuprofen alleviated some of these detrimental effects. Reversing HHcy-induced damage through these compounds could serve as a potential neuroprotective strategy against brain damage.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Fisiologia e Farmacologia, Instiruto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wellington de Almeida
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Yan YJ, Huang CQ. Cognitive impairment induced by circadian rhythm disorders involves hippocampal brain-derived neurotrophic factor reduction and amyloid-β deposition. Chronobiol Int 2024; 41:1299-1306. [PMID: 39311588 DOI: 10.1080/07420528.2024.2406545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Circadian rhythm disruptions have been implicated in numerous health issues, including cognitive decline and the exacerbation of neurodegenerative diseases, like Alzheimer disease (AD). Brain-derived neurotrophic factor (BDNF), vital for neuronal plasticity and cognitive function, is regulated by the circadian clock and exerts protective effects against AD. Thus, we investigated the impact of circadian rhythm disorders (CRDs) on cognitive impairment and explored the underlying neurobiological mechanisms by assessing BDNF and amyloid-β (Aβ) levels. We divided male C57BL/6 mice into three groups (n = 30): a control group (normal 12/12 hour light-dark cycle) and two CRD model groups (3/3 and 22/22 hour cycles, respectively). After 12 weeks, we assessed cognitive functions using the Morris water maze. Following behavioral tests, hippocampal levels of BDNF and Aβ were quantified using enzyme-linked immunosorbent assays. CRDs significantly impaired learning and memory, as evidenced by longer times to reach and find the platform in the CRD groups (p < 0.01). Furthermore, BDNF levels were notably decreased and Aβ levels increased in the CRD groups compared with the control group (p < 0.01). Thus, CRDs elicit cognitive impairment by reducing BDNF levels and increasing Aβ deposition in the hippocampus.
Collapse
Affiliation(s)
- Yue-Jia Yan
- Department of Geriatrics, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Chang-Quan Huang
- Department of Geriatrics, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
- Department of General Medicine, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Chen R, Pan C, Mao X, Zhang Y, Chen G, Xu M, Nivar J, Tao Y, Cao H, Li J. Chloride intracellular channel 4 blockade improves cognition in mice with Alzheimer's disease: CLIC4 protein expression and tau protein hyperphosphorylation. Int J Biol Macromol 2024; 278:134972. [PMID: 39181373 DOI: 10.1016/j.ijbiomac.2024.134972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Numerous academic literature suggests that amyloid-β (Aβ) deposition, tau protein phosphorylation, and irreversible neuronal death are the three major causes of AD. The chloride intracellular channel (CLIC) protein family not only regulates the polarisation of neurons, but also has important implications for neuronal survival. Chloride intracellular channel 4 (CLIC4) can be pathologically activated by cyclin-dependent kinase 5 (Cdk5), which causes a significant increase in the expression of CLIC4 and mediates neuronal apoptosis. CLIC4 knockdown inhibits H2O2-induced neuronal apoptosis; however, the relationship between CLIC4 and AD remains unknown. In the present study, we showed that CLIC4 expression was elevated in the hippocampus of AD mice; knockdown of hippocampal CLIC4 alleviated Aβ25-35-induced cognitive impairment in mice; overexpression of hippocampal CLIC4 accelerated Aβ deposition and tau protein hyperphosphorylation in young AD mice (APP/PS1 mice at three months of age). CLIC4 overexpressing mice had a longer escape latency compared to controls in behavioural testing (Morris water maze and T-maze tests). By Co-immunoprecipitation/mass spectrometry (Co-IP/MS) of HT22 cells to identify proteins that specifically bind to CLIC4, we found interactions with CCAAT enhancer binding protein (C/EBPβ); a critical pathway involved in the development of various neurodegenerative diseases. In addition, the knockdown of hippocampal CLIC4 alleviated AD-like pathology by inhibiting the C/EBPβ/AEP signaling pathway. These data suggest an essential role for high CLIC4 expression in the pathophysiology of AD and reveal that inhibition of CLIC4 expression may provide an opportunity for treatment.
Collapse
Affiliation(s)
- Rui Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China; The Second Affiliated Hospital Zhejiang University School of Medicine, Department of Anesthesiology, Hangzhou 310000, Zhejiang Province, China
| | - Chi Pan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Xinyu Mao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Yantong Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Gang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Mengting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - John Nivar
- Rutgers New Jersey Medical School, Department of Anesthesiology, Newark, NJ, USA
| | - Yuanxiang Tao
- Rutgers New Jersey Medical School, Department of Anesthesiology, Newark, NJ, USA
| | - Hong Cao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China
| | - Jun Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Department of Anesthesiology, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
29
|
Nguyen DD, Mansur S, Ciesla L, Gray NE, Zhao S, Bao Y. A Combined Computational and Experimental Approach to Studying Tropomyosin Kinase Receptor B Binders for Potential Treatment of Neurodegenerative Diseases. Molecules 2024; 29:3992. [PMID: 39274839 PMCID: PMC11396239 DOI: 10.3390/molecules29173992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Tropomyosin kinase receptor B (TrkB) has been explored as a therapeutic target for neurological and psychiatric disorders. However, the development of TrkB agonists was hindered by our poor understanding of the TrkB agonist binding location and affinity (both affect the regulation of disorder types). This motivated us to develop a combined computational and experimental approach to study TrkB binders. First, we developed a docking method to simulate the binding affinity of TrkB and binders identified by our magnetic drug screening platform from Gotu kola extracts. The Fred Docking scores from the docking computation showed strong agreement with the experimental results. Subsequently, using this screening platform, we identified a list of compounds from the NIH clinical collection library and applied the same docking studies. From the Fred Docking scores, we selected two compounds for TrkB activation tests. Interestingly, the ability of the compounds to increase dendritic arborization in hippocampal neurons matched well with the computational results. Finally, we performed a detailed binding analysis of the top candidates and compared them with the best-characterized TrkB agonist, 7,8-dyhydroxyflavon. The screening platform directly identifies TrkB binders, and the computational approach allows for the quick selection of top candidates with potential biological activities based on the docking scores.
Collapse
Affiliation(s)
- Duc D. Nguyen
- Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
| | - Shomit Mansur
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Lukasz Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Shan Zhao
- Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
30
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Christidi F, Drouka A, Brikou D, Mamalaki E, Ntanasi E, Karavasilis E, Velonakis G, Angelopoulou G, Tsapanou A, Gu Y, Yannakoulia M, Scarmeas N. The Association between Individual Food Groups, Limbic System White Matter Tracts, and Episodic Memory: Initial Data from the Aiginition Longitudinal Biomarker Investigation of Neurodegeneration (ALBION) Study. Nutrients 2024; 16:2766. [PMID: 39203902 PMCID: PMC11357525 DOI: 10.3390/nu16162766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
(1) Background: Many studies link food intake with clinical cognitive outcomes, but evidence for brain biomarkers, such as memory-related limbic white matter (WM) tracts, is limited. We examined the association between food groups, limbic WM tracts integrity, and memory performance in community-dwelling individuals. (2) Methods: We included 117 non-demented individuals (ALBION study). Verbal and visual episodic memory tests were administered, and a composite z-score was calculated. Diffusion tensor imaging tractography was applied for limbic WM tracts (fornix-FX, cingulum bundle-CB, uncinate fasciculus-UF, hippocampal perforant pathway zone-hPPZ). Food intake was evaluated through four 24-h recalls. We applied linear regression models adjusted for demographics and energy intake. (3) Results: We found significant associations between (a) higher low-to-moderate alcohol intake and higher FX fractional anisotropy (FA), (b) higher full-fat dairy intake and lower hPPZ FA, and (c) higher red meat and cold cuts intake and lower hPPZ FA. None of the food groups was associated with memory performance. (4) Conclusions: Despite non-significant associations between food groups and memory, possibly due to participants' cognitive profile and/or compensatory mechanisms, the study documented a possible beneficial role of low-to-moderate alcohol and a harmful role of full-fat dairy and red meat and cold cuts on limbic WM tracts.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, D08 NHY1 Dublin, Ireland
| | - Archontoula Drouka
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Dora Brikou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Eirini Mamalaki
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Eva Ntanasi
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
- School of Medicine, Democritus University of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgia Angelopoulou
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
| | - Angeliki Tsapanou
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA;
| | - Yian Gu
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA;
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece
| | - Nikolaos Scarmeas
- First Department of Neurology, Aiginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece (G.A.)
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
32
|
Zampieri G, Cabrol L, Urra C, Castro-Nallar E, Schwob G, Cleary D, Angione C, Deacon RMJ, Hurley MJ, Cogram P. Microbiome alterations are associated with apolipoprotein E mutation in Octodon degus and humans with Alzheimer's disease. iScience 2024; 27:110348. [PMID: 39148714 PMCID: PMC11324989 DOI: 10.1016/j.isci.2024.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer's disease (AD). A major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut microbiome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing AD-like pathologies are needed. Octodon degus (degu) exhibit spontaneous AD-like symptoms and ApoE mutations, making them suitable for studying the interplay between AD genetic determinants and gut microbiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and 32 degu using16S rRNA gene amplicon sequencing. Significant associations were found between the degu ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akkermansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for studying the AD/microbiome crosstalk.
Collapse
Affiliation(s)
- Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Léa Cabrol
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Aix Marseille University, University Toulon, CNRS, IRD, Méditerranéen Institute of Océanographie (MIO) UM 110, Avenue de Luminy, 13009 Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - Claudio Urra
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Avenida República 239, Santiago 7591538, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago 7800003, Chile
| | - David Cleary
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Department of Computer Science and Information Systems, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| | - Robert M J Deacon
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Michael J Hurley
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Patricia Cogram
- Institute of Ecology and Biodiversity, Department of Ecological Sciences, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile
- Department of Anatomy and Neurobiology, School of Medicine, B240 Med Sci, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
33
|
Wang Y, Peng D, Zhang X, Chen J, Feng J, Zhang R, Mai W, Chen H, Yang Y, Huang Y, Zhang Q. PLCβ4 driven by cadmium-exposure during gestation and lactation contributes to cognitive deficits by suppressing PIP2/PLCγ1/CREB/BDNF signaling pathway in male offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134756. [PMID: 38820747 DOI: 10.1016/j.jhazmat.2024.134756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The fetus and infants are particularly vulnerable to Cadmium (Cd) due to the immaturity of the blood-brain barrier. In utero and early life exposure to Cd is associated with cognitive deficits. Although such exposure has attracted widespread attention, its gender-specificity remains controversial, and there are no reports disclosing the underlying mechanism of gender‑specific neurotoxicity. We extensively evaluated the learning and cognitive functions and synaptic plasticity of male and female rats exposed to maternal Cd. Maternal Cd exposure induced learning and memory deficits in male offspring rats, but not in female offspring rats. PLCβ4 was identified as a critical protein, which might be related to the gender‑specific cognitive deficits in male rats. The up-regulated PLCβ4 competed with PLCγ1 to bind to PIP2, which counteracted the hydrolysis of PIP2 by PLCγ1. The decreased activation of PLCγ1 inhibited the phosphorylation of CREB to reduce BDNF transcription, which consequently resulted in the damage of hippocampal neurons and cognitive deficiency. Moreover, the low level of BDNF promoted AEP activation to induce Aβ deposition in the hippocampus. These findings highlight that PLCβ4 might be a potential target for the therapy of learning and cognitive deficits caused by Cd exposure in early life.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong Peng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiang Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Feng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
34
|
Zhang Z, Wu H, Wang S, Li Y, Yang P, Xu L, Liu Y, Liu M. PRG ameliorates cognitive impairment in Alzheimer's disease mice by regulating β-amyloid and targeting the ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155671. [PMID: 38763005 DOI: 10.1016/j.phymed.2024.155671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND PRG is derived from Phellinus ribis and is a homogeneous polysaccharide with well-defined structural information. PRG was found to have significant in vitro neurotrophic and neuroprotective activities. Thus, PRG might be a potential treatment for Alzheimer's disease. However, the related mechanisms of action are still unclear, so deeper in vivo experimental validation and the potential mechanisms need to be investigated. PURPOSE The effects of PRG on AD mice were investigated using Senescence-accelerated SAMP8 mice as an AD model to elucidate the crucial molecular mechanisms. METHODS PRG was obtained from Phellinus ribis by water-alcohol precipitation, column chromatography, and ultrafiltration. The Morris water maze and novel object recognition behavioral assays were used to evaluate the effects of PRG in AD mice. Nissl staining, the TUNEL apoptosis assay, and Golgi staining were used to assess brain neuronal cell damage, apoptosis, and neuronal status. Enzyme-linked immunosorbent assays, Western blotting, and immunofluorescence were used to explore the impacts of correlated factors and protein pathways under relevant mechanisms. RESULTS The findings suggest that PRG improved learning ability and spatial memory capacity in SAMP8 mice. PRG hastened the disintegration of β-amyloid, reduced the content and abnormal accumulation of the toxic Aβ1-42 protein, and decreased apoptosis. PRG activated the BDNF/ERK/CREB signaling pathway through a cascade, exerted neurotrophic effects, regulated cell proliferation and differentiation, increased neuronal dendritic branching and spine density, and improved synaptic plasticity. CONCLUSION PRG promoted β-amyloid degradation to reduce neuronal damage and apoptosis. It exerted neurotrophic effects by activating the BDNF/ERK/CREB pathway, promoting neuronal dendritic branching and dendritic spine growth, regulating cell proliferation and differentiation, and improving synaptic plasticity, which improved AD. Taken together, as a novel natural active polysaccharide with a well-defined structure, PRG affected AD symptoms in senescence-accelerated mice by interacting with multiple targets. The results indicate that PRG is a promising potential anti-AD drug candidate.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haoran Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pei Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Maoxuan Liu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
35
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
36
|
Zheng S, Ma R, Yang Y, Li G. Psilocybin for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1420601. [PMID: 39050672 PMCID: PMC11266071 DOI: 10.3389/fnins.2024.1420601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment and a prominent contributor to dementia. The scarcity of available therapies for AD accentuates the exigency for innovative treatment modalities. Psilocybin, a psychoactive alkaloid intrinsic to hallucinogenic mushrooms, has garnered attention within the neuropsychiatric realm due to its established safety and efficacy in treating depression. Nonetheless, its potential as a therapeutic avenue for AD remains largely uncharted. This comprehensive review endeavors to encapsulate the pharmacological effects of psilocybin while elucidating the existing evidence concerning its potential mechanisms contributing to a positive impact on AD. Specifically, the active metabolite of psilocybin, psilocin, elicits its effects through the modulation of the 5-hydroxytryptamine 2A receptor (5-HT2A receptor). This modulation causes heightened neural plasticity, diminished inflammation, and improvements in cognitive functions such as creativity, cognitive flexibility, and emotional facial recognition. Noteworthy is psilocybin's promising role in mitigating anxiety and depression symptoms in AD patients. Acknowledging the attendant adverse reactions, we proffer strategies aimed at tempering or mitigating its hallucinogenic effects. Moreover, we broach the ethical and legal dimensions inherent in psilocybin's exploration for AD treatment. By traversing these avenues, We propose therapeutic potential of psilocybin in the nuanced management of Alzheimer's disease.
Collapse
Affiliation(s)
- Siyi Zheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of General Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Dai XJ, Liao JH, Jia Y, Cao R, Zhou MN. Noise Exposure Promotes Alzheimer's Disease-Like Lesions and DNA Damage. Noise Health 2024; 26:287-293. [PMID: 39345066 PMCID: PMC11539988 DOI: 10.4103/nah.nah_26_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE This study aimed to explore the mechanism by which noise contributes to the development of Alzheimer's disease (AD)-like lesions. METHOD Male Wistar rats (24 months) were allocated into two groups (n = 6 per groups): a noise group exposed to 98 dB sound pressure-level white noise for 4 hours daily from 8:00 to 12:00 for 30 days, and a control group without noise exposure. The cognitive functions of the rats were assessed using new-object recognition and Morris water maze tests. Then, hippocampal tissues were collected, and the levels of amyloid β 1-42 (Aβ1-42), Aβ1-40, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) were measured using enzyme-linked immunosorbent assay (ELISA). Protein expression was evaluated through Western blot. RESULTS Noise exposure significantly impaired cognitive and recognition abilities, increased the escape latency, and decreased the number of crossings through the platform quadrant intersection and the time spent in the target quadrant (P < 0.01). The new-object exploration and recognition index of the rats in the noise group markedly decreased (P < 0.01). ELISA results indicated increases in Aβ1-40 and Aβ1-42 levels and decreases in BDNF and TrkB levels in the rat hippocampus in the noise group (P < 0.01). Western blot analyses revealed that beta-site amyloid precursor protein (APP) cleaving enzyme 1, phosphorylated tau protein, gamma-H2A histone family, member X, checkpoint kinase 2, p53, and p21 were remarkably elevated in the noise group (P < 0.01). CONCLUSION Chronic noise exposure can cause hippocampal genetic damage in aged rats, leading to cognitive disorders and the development of lesions similar to those observed in AD. Thus, noise is a potential risk factor for neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiao-jie Dai
- Internal Medicine-Neurology, Xi’an Gaoxin Hospital, Shaanxi 710075, China
| | - Jun-hua Liao
- Guangzhou Yujia Biotechnology Co. Ltd, Guangzhou 510300, Guangdong, China
| | - Yi Jia
- Internal Medicine-Neurology, Xi’an Gaoxin Hospital, Shaanxi 710075, China
| | - Rui Cao
- Internal Medicine-Neurology, Qingyang People’s Hospital, Qingyang, Gansu 745000, China
| | - Mei-ning Zhou
- The Third Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi 710068, China
| |
Collapse
|
38
|
Latif‐Hernandez A, Yang T, Butler RR, Losada PM, Minhas PS, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson KI, Wyss‐Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. Alzheimers Dement 2024; 20:4434-4460. [PMID: 38779814 PMCID: PMC11247716 DOI: 10.1002/alz.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aβ) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION BD10-2 prevented APPL/S/Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.
Collapse
Affiliation(s)
- Amira Latif‐Hernandez
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Tao Yang
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Robert R. Butler
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Patricia Moran Losada
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| | - Paras S. Minhas
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Halle White
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Kevin C. Tran
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Harry Liu
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Danielle A. Simmons
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Vanessa Langness
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Katrin I. Andreasson
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- Chan Zuckerberg BiohubSan FranciscoCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- The Phil and Penny Knight Initiative for Brain ResilienceStanford UniversityStanfordCaliforniaUSA
| | - Frank M. Longo
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
39
|
Xu D, Liu J, Meng S, Sun M, Chen Y, Hong Y. Isoflurane-induced neuroinflammation and NKCC1/KCC2 dysregulation result in long-term cognitive disorder in neonatal mice. BMC Anesthesiol 2024; 24:200. [PMID: 38840092 PMCID: PMC11151488 DOI: 10.1186/s12871-024-02587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were quantified using ELISA. RESULTS We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1β levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1β, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.
Collapse
Affiliation(s)
- Dongni Xu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Jiayi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Meixian Sun
- The Eighth People's Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Yuqing Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
40
|
Wakasugi D, Kondo S, Ferdousi F, Mizuno S, Yada A, Tominaga K, Takahashi S, Isoda H. A rare olive compound oleacein functions as a TrkB agonist and mitigates neuroinflammation both in vitro and in vivo. Cell Commun Signal 2024; 22:309. [PMID: 38835076 PMCID: PMC11151522 DOI: 10.1186/s12964-024-01691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1β, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.
Collapse
Affiliation(s)
- Daiki Wakasugi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Shinji Kondo
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center (LARC) in Transborder Medical Research Center (TMRC), Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Yada
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Ibaraki, 305-8565, Japan
| | - Kenichi Tominaga
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center (LARC) in Transborder Medical Research Center (TMRC), Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0821, Japan.
| |
Collapse
|
41
|
Weinstein G, Kojis DJ, Ghosh S, Beiser AS, Seshadri S. Association of Neurotrophic Factors at Midlife With In Vivo Measures of β-Amyloid and Tau Burden 15 Years Later in Dementia-Free Adults. Neurology 2024; 102:e209198. [PMID: 38471064 PMCID: PMC11033983 DOI: 10.1212/wnl.0000000000209198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neurotrophic factors (NTFs) play an important role in Alzheimer disease (AD) pathophysiology. Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are important NTFs. However, a direct link of BDNF and VEGF circulating levels with in vivo measures of amyloid-β (Aβ) and tau burden remains to be elucidated. We explored the relationship of BDNF and VEGF serum levels with future brain Aβ and tau pathology in a cohort of cognitively healthy, predominantly middle-aged adults and tested for possible effect modifications by sex and menopausal status. METHODS This cross-sectional analysis was conducted using data from the Framingham Heart Study (FHS), a community-based cohort study. The study sample included cognitively healthy participants from the FHS Offspring and Third-generation cohorts. BDNF and VEGF were measured in the third-generation cohort during examination cycles 2 (2005-2008) and 1 (2002-2005), respectively, and in the offspring cohort during examination cycle 7 (1998-2001). Participants underwent 11C-Pittsburgh compound B amyloid and 18F-Flortaucipir tau-PET imaging (2015-2021). Linear regression models were used to assess the relationship of serum BDNF and VEGF levels with regional tau and global Aβ, adjusting for potential confounders. Interactions with sex and menopausal status were additionally tested. RESULTS The sample included 414 individuals (mean age = 41 ± 9 years; 51% female). Continuous measures of BDNF and VEGF were associated with tau signal in the rhinal region after adjustment for potential confounders (β = -0.15 ± 0.06, p = 0.018 and β = -0.19 ± 0.09, p = 0.043, respectively). High BDNF (≥32,450 pg/mL) and VEGF (≥488 pg/mL) levels were significantly related to lower rhinal tau (β = -0.27 ± 0.11, p = 0.016 and β = -0.40 ± 0.14, p = 0.004, respectively) and inferior temporal tau (β = -0.24 ± 0.11, p = 0.028 and β = -0.26 ± 0.13, p = 0.049, respectively). The BDNF-rhinal tau association was observed only among male individuals. Overall, BDNF and VEGF were not associated with global amyloid; however, high VEGF levels were associated with lower amyloid burden in postmenopausal women (β = -1.96 ± 0.70, p = 0.013, per 1 pg/mL). DISCUSSION This study demonstrates a robust association between BDNF and VEGF serum levels with in vivo measures of tau almost 2 decades later. These findings add to mounting evidence from preclinical studies suggesting a role of NTFs as valuable blood biomarkers for AD risk prediction.
Collapse
Affiliation(s)
- Galit Weinstein
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Daniel J Kojis
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Saptaparni Ghosh
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Alexa S Beiser
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Sudha Seshadri
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| |
Collapse
|
42
|
Tsimpolis A, Kalafatakis K, Charalampopoulos I. Recent advances in the crosstalk between the brain-derived neurotrophic factor and glucocorticoids. Front Endocrinol (Lausanne) 2024; 15:1362573. [PMID: 38645426 PMCID: PMC11027069 DOI: 10.3389/fendo.2024.1362573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key neurotrophin within the brain, by selectively activating the TrkB receptor, exerts multimodal effects on neurodevelopment, synaptic plasticity, cellular integrity and neural network dynamics. In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the neural tissue and implicated in neurodevelopment, synaptic plasticity, cellular homeostasis, cognitive and emotional processing. Recent research evidences indicate that these two major regulatory systems interact at various levels: they share common intracellular downstream pathways, GCs differentially regulate BDNF expression, under certain conditions BDNF antagonises the GC-induced effects on long-term potentiation, neuritic outgrowth and cellular death, while GCs regulate the intraneuronal transportation and the lysosomal degradation of BDNF. Currently, the BDNF-GC crosstalk features have been mainly studied in neurons, although initial findings show that this crosstalk could be equally important for other brain cell types, such as astrocytes. Elucidating the precise neurobiological significance of BDNF-GC interactions in a tempospatial manner, is crucial for understanding the subtleties of brain function and dysfunction, with implications for neurodegenerative and neuroinflammatory diseases, mood disorders and cognitive enhancement strategies.
Collapse
Affiliation(s)
- Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantinos Kalafatakis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Faculty of Medicine and Dentistry (Malta Campus), Queen Mary University of London, Victoria, Malta
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
43
|
Zhang S, Chen Y, Wang Y, Wang H, Yao D, Chen G. Tau Accumulation in the Spinal Cord Contributes to Chronic Inflammatory Pain by Upregulation of IL-1β and BDNF. Neurosci Bull 2024; 40:466-482. [PMID: 38148427 PMCID: PMC11003936 DOI: 10.1007/s12264-023-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/09/2023] [Indexed: 12/28/2023] Open
Abstract
Microtubule-associated protein Tau is responsible for the stabilization of neuronal microtubules under normal physiological conditions. Much attention has been focused on Tau's contribution to cognition, but little research has explored its role in emotions such as pain, anxiety, and depression. In the current study, we found a significant increase in the levels of p-Tau (Thr231), total Tau, IL-1β, and brain-derived neurotrophic factor (BDNF) on day 7 after complete Freund's adjuvant (CFA) injection; they were present in the vast majority of neurons in the spinal dorsal horn. Microinjection of Mapt-shRNA recombinant adeno-associated virus into the spinal dorsal cord alleviated CFA-induced inflammatory pain and inhibited CFA-induced IL-1β and BDNF upregulation. Importantly, Tau overexpression was sufficient to induce hyperalgesia by increasing the expression of IL-1β and BDNF. Furthermore, the activation of glycogen synthase kinase 3 beta partly contributed to Tau accumulation. These findings suggest that Tau in the dorsal horn could be a promising target for chronic inflammatory pain therapy.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yeru Chen
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongwei Wang
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Dandan Yao
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
44
|
Yao Q, Long C, Yi P, Zhang G, Wan W, Rao X, Ying J, Liang W, Hua F. C/EBPβ: A transcription factor associated with the irreversible progression of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14721. [PMID: 38644578 PMCID: PMC11033503 DOI: 10.1111/cns.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aβ (β-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPβ in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS Several studies have demonstrated an elevation in the expression level of C/EBPβ among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPβ expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPβ can be a new therapeutic target for AD. METHODS A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS Overexpression of C/EBPβ exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION The correlation between overexpression of C/EBPβ and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPβ regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPβ overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION The overexpression of C/EBPβ accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPβ plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPβ could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.
Collapse
Affiliation(s)
- Qing Yao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Chubing Long
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Pengcheng Yi
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Guangyong Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Wei Wan
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Xiuqin Rao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Jun Ying
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| | - Fuzhou Hua
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| |
Collapse
|
45
|
Pan L, Li C, Meng L, Zhang G, Zou L, Tian Y, Chen S, Sun Y, Su D, Zhang X, Xiong M, Xiao T, Xia D, Hong Z, Zhang Z. GDF1 ameliorates cognitive impairment induced by hearing loss. NATURE AGING 2024; 4:568-583. [PMID: 38491289 DOI: 10.1038/s43587-024-00592-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024]
Abstract
Hearing loss is associated with an increased risk of Alzheimer disease (AD). However, the mechanisms of hearing loss promoting the onset of AD are poorly understood. Here we show that hearing loss aggravates cognitive impairment in both wild-type mice and mouse models of AD. Embryonic growth/differentiation factor 1 (GDF1) is downregulated in the hippocampus of deaf mice. Knockdown of GDF1 mimics the detrimental effect of hearing loss on cognition, while overexpression of GDF1 in the hippocampus attenuates the cognitive impairment induced by deafness. Strikingly, overexpression of GDF1 also attenuates cognitive impairment in APP/PS1 transgenic mice. GDF1 activates Akt, which phosphorylates asparagine endopeptidase and inhibits asparagine endopeptidase-induced synaptic degeneration and amyloid-β production. The expression of GDF1 is downregulated by the transcription factor CCAAT-enhancer binding protein-β. These findings indicate that hearing loss could promote AD pathological changes by inhibiting the GDF1 signaling pathway; thus, GDF1 may represent a therapeutic target for AD.
Collapse
Affiliation(s)
- Lina Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunrui Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zou
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sen Chen
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Su
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danhao Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengyuan Hong
- PET-CT/MRI Center, Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
46
|
Farokhi Larijani S, Hassanzadeh G, Zahmatkesh M, Radfar F, Farahmandfar M. Intranasal insulin intake and exercise improve memory function in amyloid-β induced Alzheimer's-like disease in rats: Involvement of hippocampal BDNF-TrkB receptor. Behav Brain Res 2024; 460:114814. [PMID: 38104636 DOI: 10.1016/j.bbr.2023.114814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The most prevalent type of dementia, Alzheimer's disease (AD), is a compelling illustration of the link between cognitive deficits and neurophysiological anomalies. We investigated the possible protective effect of intranasal insulin intake with exercise on amyloid-β (Aβ)-induced neuronal damage. The level of hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were analyzed to understand the involvement of BDNF-TrkB pathway in this modulation. In this study, we induced AD-like pathology by amyloid-β (Aβ) administration. Then, we examined the impact of a 4-week pretreatment of moderate treadmill exercise and intranasal intake of insulin on working and spatial memory in male Wistar rats. We also analyzed the mechanisms of improved memory and anxiety through changes in the protein level of BDNF and TrkB. Results showed that animals received Aβ had impaired working memory, increased anxiety which were accompanied by lower protein levels of BDNF and TrkB in the hippocampus. The exercise training and intranasal insulin improved working memory deficits, decreased anxiety, and increased BDNF, and TrkB levels in the hippocampus of animals received Aβ. Our finding of improved memory performance after intranasal intake of insulin and exercise may be of significance for the treatment of memory impairments and anxiety-like behavior in AD.
Collapse
Affiliation(s)
- Setare Farokhi Larijani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Zhan Q, Kong F, Shao S, Zhang B, Huang S. Pathogenesis of Depression in Alzheimer's Disease. Neurochem Res 2024; 49:548-556. [PMID: 38015411 DOI: 10.1007/s11064-023-04061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Depression is a prevalent occurrence among Alzheimer's disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer's disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer's disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fanyi Kong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Shao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
48
|
Li Y, Wu H, Liu M, Zhang Z, Ji Y, Xu L, Liu Y. Polysaccharide from Polygala tenuifolia alleviates cognitive decline in Alzheimer's disease mice by alleviating Aβ damage and targeting the ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117564. [PMID: 38081400 DOI: 10.1016/j.jep.2023.117564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia is used in a variety of Chinese medicine prescriptions for the classic dementia treatment, and polysaccharide is an important active component in the herb. AIM OF THE STUDY This study investigated the in vivo anti-Alzheimer's disease (AD) activity of the polysaccharide PTPS from Polygala tenuifolia using the senescence-accelerated mouse/prone8 (SAMP8) model and explored its molecular mechanism to lay the foundation for the development of polysaccharide-based anti-AD drugs. MATERIALS AND METHODS The Morris water maze test (MWM)was used to detect changes in the spatial cognitive ability of mice, and Nissl staining was applied to observe the state of neurons in the classic hippocampus. The levels of acetylcholine (ACh) and acetylcholinesterase (AChE) were measured by ELISA. Immunofluorescence was used to reflect β-amyloid (Aβ) levels in brain tissue. Apoptosis was evaluated by TdT-mediated dUTP Nick-End Labeling (TUNEL) method. The status of dendritic branches and spines was observed by Golgi staining. Meanwhile, the expression levels of recombinant human insulin-degrading enzyme (IDE), brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB), extracellular regulated protein kinases (ERK), and cAMP-response element binding protein (CREB) proteins were determined by Western blotting. RESULTS PTPS improves spatial cognitive deficits in AD mice, reduces cellular damage in the CA3 region of the hippocampus, maintains the balance of the cholinergic system, and exerts an anti-AD effect in vivo. The molecular mechanism of its action may be related to the reduction of Aβ deposition as well as the activation of ERK pathway-related proteins with enhanced synaptic plasticity. CONCLUSIONS PTPS is able to exert anti-AD activity in vivo by mitigating Aβ damage and targeting the ERK pathway.
Collapse
Affiliation(s)
- Yuanyuan Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Haoran Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Maoxuan Liu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuning Ji
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jina, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Jinan 250355, China.
| |
Collapse
|
49
|
Cho SB. Comorbidity Genes of Alzheimer's Disease and Type 2 Diabetes Associated with Memory and Cognitive Function. Int J Mol Sci 2024; 25:2211. [PMID: 38396891 PMCID: PMC10889845 DOI: 10.3390/ijms25042211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are comorbidities that result from the sharing of common genes. The molecular background of comorbidities can provide clues for the development of treatment and management strategies. Here, the common genes involved in the development of the two diseases and in memory and cognitive function are reviewed. Network clustering based on protein-protein interaction network identified tightly connected gene clusters that have an impact on memory and cognition among the comorbidity genes of AD and T2DM. Genes with functional implications were intensively reviewed and relevant evidence summarized. Gene information will be useful in the discovery of biomarkers and the identification of tentative therapeutic targets for AD and T2DM.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street, Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
50
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|