1
|
Stundl J, Bronner ME. Tempting fate: Neural crest induction along the body axis. Cells Dev 2025:204000. [PMID: 39894223 DOI: 10.1016/j.cdev.2025.204000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Neural crest induction begins at the neural plate border and involves the intricate interplay of signaling and transcriptional events. In this review, we examine the literature on neural crest induction, focusing primarily on the chick model due to the extended time during which the induction process occurs. While it is well-established that induction initiates during mid-gastrulation, evidence from tissue recombination and transcriptomic analyses suggests that the process continues until neural tube closure. Along the body axis, distinct neural crest populations with varying developmental potentials emerge in a rostral to caudal progression. Testing axial level differences has revealed axial level specific subcircuits that influence region-specific neural crest cell fate decision, though what leads to axial level specification remains unknown.
Collapse
Affiliation(s)
- Jan Stundl
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena 91125, USA
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena 91125, USA.
| |
Collapse
|
2
|
Dhillon-Richardson RM, Haugan AK, Lyons LW, McKenna JK, Bronner ME, Martik ML. Reactivation of an Embryonic Cardiac Neural Crest Transcriptional Subcircuit During Zebrafish Heart Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633462. [PMID: 39868190 PMCID: PMC11760256 DOI: 10.1101/2025.01.16.633462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
During vertebrate development, the heart primarily arises from mesoderm, with crucial contributions from cardiac neural crest cells that migrate to the heart and form a variety of cardiovascular derivatives. Here, by integrating bulk and single cell RNA-seq with ATAC-seq, we identify a gene regulatory subcircuit specific to migratory cardiac crest cells composed of key transcription factors egr1, sox9a, tfap2a and ets1. Notably, we show that cells expressing the canonical neural crest gene sox10 are essential for proper cardiac regeneration in adult zebrafish. Furthermore, expression of all transcription factors from the migratory cardiac crest gene subcircuit are reactivated after injury at the wound edge. Together, our results uncover a developmental gene regulatory network that is important for cardiac neural crest fate determination, with key factors reactivated during regeneration.
Collapse
Affiliation(s)
| | - Alexandra K. Haugan
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
| | - Luke W. Lyons
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
| | - Joseph K. McKenna
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
| | | | - Megan L. Martik
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Division of Biology, California Institute of Technology; Pasadena, CA, USA
| |
Collapse
|
3
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024; 12:2262. [PMID: 39457575 PMCID: PMC11504183 DOI: 10.3390/biomedicines12102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications.
Collapse
Affiliation(s)
- Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Malvina Millet
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ludivine Rouillon
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
5
|
Sande-Melon M, Bergemann D, Fernández-Lajarín M, González-Rosa JM, Cox AG. Development of a hepatic cryoinjury model to study liver regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550437. [PMID: 38948752 PMCID: PMC11212901 DOI: 10.1101/2023.07.24.550437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The liver is a remarkable organ that can regenerate in response to injury. Depending on the extent of injury, the liver can undergo compensatory hyperplasia or fibrosis. Despite decades of research, the molecular mechanisms underlying these processes are poorly understood. Here, we developed a new model to study liver regeneration based on cryoinjury. To visualise liver regeneration at cellular resolution, we adapted the CUBIC tissue-clearing approach. Hepatic cryoinjury induced a localised necrotic and apoptotic lesion characterised by inflammation and infiltration of innate immune cells. Following this initial phase, we observed fibrosis, which resolved as regeneration re-established homeostasis in 30 days. Importantly, this approach enables the comparison of healthy and injured parenchyma with an individual animal, providing unique advantages to previous models. In summary, the hepatic cryoinjury model provides a fast and reproducible method for studying the cellular and molecular pathways underpinning fibrosis and liver regeneration.
Collapse
Affiliation(s)
- Marcos Sande-Melon
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - David Bergemann
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13 Street, 02129 MA, USA
- Harvard Medical School
| | - Miriam Fernández-Lajarín
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13 Street, 02129 MA, USA
- Harvard Medical School
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467
| | - Juan Manuel González-Rosa
- Cardiovascular Research Centre, Massachusetts General Hospital Research Institute, Charlestown Navy Yard Campus, 149, 13 Street, 02129 MA, USA
- Harvard Medical School
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA 02467
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, 3000, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
6
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and developmental divergence in the neural crest programme between cichlid fish species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578004. [PMID: 38352436 PMCID: PMC10862805 DOI: 10.1101/2024.01.30.578004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | | | | | - Maxon J. Ngochera
- Senga Bay Fisheries Research Center, Malawi Fisheries Department, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Zhuo D, Lei I, Li W, Liu L, Li L, Ni J, Liu Z, Fan G. The origin, progress, and application of cell-based cardiac regeneration therapy. J Cell Physiol 2023; 238:1732-1755. [PMID: 37334836 DOI: 10.1002/jcp.31060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
Cardiovascular disease (CVD) has become a severe threat to human health, with morbidity and mortality increasing yearly and gradually becoming younger. When the disease progresses to the middle and late stages, the loss of a large number of cardiomyocytes is irreparable to the body itself, and clinical drug therapy and mechanical support therapy cannot reverse the development of the disease. To explore the source of regenerated myocardium in model animals with the ability of heart regeneration through lineage tracing and other methods, and develop a new alternative therapy for CVDs, namely cell therapy. It directly compensates for cardiomyocyte proliferation through adult stem cell differentiation or cell reprogramming, which indirectly promotes cardiomyocyte proliferation through non-cardiomyocyte paracrine, to play a role in heart repair and regeneration. This review comprehensively summarizes the origin of newly generated cardiomyocytes, the research progress of cardiac regeneration based on cell therapy, the opportunity and development of cardiac regeneration in the context of bioengineering, and the clinical application of cell therapy in ischemic diseases.
Collapse
Affiliation(s)
- Danping Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyu Ni
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihao Liu
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
10
|
Zuppo DA, Missinato MA, Santana-Santos L, Li G, Benos PV, Tsang M. Foxm1 regulates cardiomyocyte proliferation in adult zebrafish after cardiac injury. Development 2023; 150:dev201163. [PMID: 36846912 PMCID: PMC10108034 DOI: 10.1242/dev.201163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
The regenerative capacity of the mammalian heart is poor, with one potential reason being that adult cardiomyocytes cannot proliferate at sufficient levels to replace lost tissue. During development and neonatal stages, cardiomyocytes can successfully divide under injury conditions; however, as these cells mature their ability to proliferate is lost. Therefore, understanding the regulatory programs that can induce post-mitotic cardiomyocytes into a proliferative state is essential to enhance cardiac regeneration. Here, we report that the forkhead transcription factor Foxm1 is required for cardiomyocyte proliferation after injury through transcriptional regulation of cell cycle genes. Transcriptomic analysis of injured zebrafish hearts revealed that foxm1 expression is increased in border zone cardiomyocytes. Decreased cardiomyocyte proliferation and expression of cell cycle genes in foxm1 mutant hearts was observed, suggesting it is required for cell cycle checkpoints. Subsequent analysis of a candidate Foxm1 target gene, cenpf, revealed that this microtubule and kinetochore binding protein is also required for cardiac regeneration. Moreover, cenpf mutants show increased cardiomyocyte binucleation. Thus, foxm1 and cenpf are required for cardiomyocytes to complete mitosis during zebrafish cardiac regeneration.
Collapse
Affiliation(s)
- Daniel A. Zuppo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Maria A. Missinato
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
- Avidity Biosciences, 10578 Science Center Dr. Suite 125, San Diego, CA 92121, USA
| | - Lucas Santana-Santos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Guang Li
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Erhardt S, Wang J. Cardiac Neural Crest and Cardiac Regeneration. Cells 2022; 12:cells12010111. [PMID: 36611905 PMCID: PMC9818523 DOI: 10.3390/cells12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that have the ability to migrate and differentiate into various cell populations throughout the embryo during embryogenesis. The heart is a muscular and complex organ whose primary function is to pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish, have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the neural crest's regenerative capacity in various tissues and organs, and in particular, we summarize the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We further discuss emerging and future work to determine the potential contributions of NCCs for disease treatment.
Collapse
Affiliation(s)
- Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
12
|
Vaidyanathan S, Salmi TM, Sathiqu RM, McConville MJ, Cox AG, Brown KK. YAP regulates an SGK1/mTORC1/SREBP-dependent lipogenic program to support proliferation and tissue growth. Dev Cell 2022; 57:719-731.e8. [PMID: 35216681 DOI: 10.1016/j.devcel.2022.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 11/19/2022]
Abstract
The coordinated regulation of growth control and metabolic pathways is required to meet the energetic and biosynthetic demands associated with proliferation. Emerging evidence suggests that the Hippo pathway effector Yes-associated protein 1 (YAP) reprograms cellular metabolism to meet the anabolic demands of growth, although the mechanisms involved are poorly understood. Here, we demonstrate that YAP co-opts the sterol regulatory element-binding protein (SREBP)-dependent lipogenic program to facilitate proliferation and tissue growth. Mechanistically, YAP stimulates de novo lipogenesis via mechanistic target of rapamcyin (mTOR) complex 1 (mTORC1) signaling and subsequent activation of SREBP. Importantly, YAP-dependent regulation of serum- and glucocorticoid-regulated kinase 1 (SGK1) is required to activate mTORC1/SREBP and stimulate de novo lipogenesis. We also find that the SREBP target genes fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) are conditionally required to support YAP-dependent proliferation and tissue growth. These studies reveal that de novo lipogenesis is a metabolic vulnerability that can be targeted to disrupt YAP-dependent proliferation and tissue growth.
Collapse
Affiliation(s)
- Srimayee Vaidyanathan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Talhah M Salmi
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rasan M Sathiqu
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew G Cox
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Kristin K Brown
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
13
|
NRG1/ErbB signalling controls the dialogue between macrophages and neural crest-derived cells during zebrafish fin regeneration. Nat Commun 2021; 12:6336. [PMID: 34732706 PMCID: PMC8566576 DOI: 10.1038/s41467-021-26422-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Fish species, such as zebrafish (Danio rerio), can regenerate their appendages after amputation through the formation of a heterogeneous cellular structure named blastema. Here, by combining live imaging of triple transgenic zebrafish embryos and single-cell RNA sequencing we established a detailed cell atlas of the regenerating caudal fin in zebrafish larvae. We confirmed the presence of macrophage subsets that govern zebrafish fin regeneration, and identified a foxd3-positive cell population within the regenerating fin. Genetic depletion of these foxd3-positive neural crest-derived cells (NCdC) showed that they are involved in blastema formation and caudal fin regeneration. Finally, chemical inhibition and transcriptomic analysis demonstrated that these foxd3-positive cells regulate macrophage recruitment and polarization through the NRG1/ErbB pathway. Here, we show the diversity of the cells required for blastema formation, identify a discrete foxd3-positive NCdC population, and reveal the critical function of the NRG1/ErbB pathway in controlling the dialogue between macrophages and NCdC. Some fish can regenerate appendages by formation of a structure called the blastema. Here, the authors use single-cell RNA sequencing to characterize the cells required for blastema formation and fin regeneration and identified neural crest cells that orchestrate regeneration via the NRG1/ErbB axis
Collapse
|
14
|
Kokotović T, Langeslag M, Lenartowicz EM, Manion J, Fell CW, Alehabib E, Tafakhori A, Darvish H, Bellefroid EJ, Neely GG, Kress M, Penninger JM, Nagy V. PRDM12 Is Transcriptionally Active and Required for Nociceptor Function Throughout Life. Front Mol Neurosci 2021; 14:720973. [PMID: 34646120 PMCID: PMC8502974 DOI: 10.3389/fnmol.2021.720973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
PR domain-containing member 12 (PRDM12) is a key developmental transcription factor in sensory neuronal specification and survival. Patients with rare deleterious variants in PRDM12 are born with congenital insensitivity to pain (CIP) due to the complete absence of a subtype of peripheral neurons that detect pain. In this paper, we report two additional CIP cases with a novel homozygous PRDM12 variant. To elucidate the function of PRDM12 during mammalian development and adulthood, we generated temporal and spatial conditional mouse models. We find that PRDM12 is expressed throughout the adult nervous system. We observed that loss of PRDM12 during mid-sensory neurogenesis but not in the adult leads to reduced survival. Comparing cellular biophysical nociceptive properties in developmental and adult-onset PRDM12 deletion mouse models, we find that PRDM12 is necessary for proper nociceptive responses throughout life. However, we find that PRDM12 regulates distinct age-dependent transcriptional programs. Together, our results implicate PRDM12 as a viable therapeutic target for specific pain therapies even in adults.
Collapse
Affiliation(s)
- Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michiel Langeslag
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.,Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ewelina M Lenartowicz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Manion
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elham Alehabib
- Student Research Committee, Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Eric J Bellefroid
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michaela Kress
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, VBC - Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Advances in Cardiac Development and Regeneration Using Zebrafish as a Model System for High-Throughput Research. J Dev Biol 2021; 9:jdb9040040. [PMID: 34698193 PMCID: PMC8544412 DOI: 10.3390/jdb9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Heart disease is the leading cause of death in the United States and worldwide. Understanding the molecular mechanisms of cardiac development and regeneration will improve diagnostic and therapeutic interventions against heart disease. In this direction, zebrafish is an excellent model because several processes of zebrafish heart development are largely conserved in humans, and zebrafish has several advantages as a model organism. Zebrafish transcriptomic profiles undergo alterations during different stages of cardiac development and regeneration which are revealed by RNA-sequencing. ChIP-sequencing has detected genome-wide occupancy of histone post-translational modifications that epigenetically regulate gene expression and identified a locus with enhancer-like characteristics. ATAC-sequencing has identified active enhancers in cardiac progenitor cells during early developmental stages which overlap with occupancy of histone modifications of active transcription as determined by ChIP-sequencing. CRISPR-mediated editing of the zebrafish genome shows how chromatin modifiers and DNA-binding proteins regulate heart development, in association with crucial signaling pathways. Hence, more studies in this direction are essential to improve human health because they answer fundamental questions on cardiac development and regeneration, their differences, and why zebrafish hearts regenerate upon injury, unlike humans. This review focuses on some of the latest studies using state-of-the-art technology enabled by the elegant yet simple zebrafish.
Collapse
|
16
|
Maldonado-Velez G, Firulli AB. Mechanisms Underlying Cardiomyocyte Development: Can We Exploit Them to Regenerate the Heart? Curr Cardiol Rep 2021; 23:81. [PMID: 34081213 DOI: 10.1007/s11886-021-01510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW It is well established that the adult mammalian cardiomyocytes retain a low capacity for cell cycle activity; however, it is insufficient to effectively respond to myocardial injury and facilitate cardiac regenerative repair. Lessons learned from species in which cardiomyocytes do allow for proliferative regeneration/repair have shed light into the mechanisms underlying cardiac regeneration post-injury. Importantly, many of these mechanisms are conserved across species, including mammals, and efforts to tap into these mechanisms effectively within the adult heart are currently of great interest. RECENT FINDINGS Targeting the endogenous gene regulatory networks (GRNs) shown to play roles in the cardiac regeneration of conducive species is seen as a strong approach, as delivery of a single or combination of genes has promise to effectively enhance cell cycle activity and CM proliferation in adult hearts post-myocardial infarction (MI). In situ re-induction of proliferative gene regulatory programs within existing, local, non-damaged cardiomyocytes helps overcome significant technical hurdles, such as successful engraftment of implanted cells or achieving complete cardiomyocyte differentiation from cell-based approaches. Although many obstacles currently exist and need to be overcome to successfully translate these approaches to clinical settings, the current efforts presented here show great promise.
Collapse
Affiliation(s)
- Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
17
|
Ellman DG, Slaiman IM, Mathiesen SB, Andersen KS, Hofmeister W, Ober EA, Andersen DC. Apex Resection in Zebrafish ( Danio rerio) as a Model of Heart Regeneration: A Video-Assisted Guide. Int J Mol Sci 2021; 22:5865. [PMID: 34070781 PMCID: PMC8199168 DOI: 10.3390/ijms22115865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic heart disease is one of the leading causes of deaths worldwide. A major hindrance to resolving this challenge lies in the mammalian hearts inability to regenerate after injury. In contrast, zebrafish retain a regenerative capacity of the heart throughout their lifetimes. Apex resection (AR) is a popular zebrafish model for studying heart regeneration, and entails resecting 10-20% of the heart in the apex region, whereafter the regeneration process is monitored until the heart is fully regenerated within 60 days. Despite this popularity, video tutorials describing this technique in detail are lacking. In this paper we visualize and describe the entire AR procedure including anaesthesia, surgery, and recovery. In addition, we show that the concentration and duration of anaesthesia are important parameters to consider, to balance sufficient levels of sedation and minimizing mortality. Moreover, we provide examples of how zebrafish heart regeneration can be assessed both in 2D (immunohistochemistry of heart sections) and 3D (analyses of whole, tissue cleared hearts using multiphoton imaging). In summary, this paper aims to aid beginners in establishing and conducting the AR model in their laboratory, but also to spur further interest in improving the model and its evaluation.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ibrahim Mohamad Slaiman
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Sabrina Bech Mathiesen
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Kristian Skriver Andersen
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Wolfgang Hofmeister
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
- Faculty of Health and Medical Sciences, DanStem (Novo Nordisk Foundation Center for Stem Cell Biology), Blegdamsvej 3B, 2200 København H, Denmark;
| | - Elke Annette Ober
- Faculty of Health and Medical Sciences, DanStem (Novo Nordisk Foundation Center for Stem Cell Biology), Blegdamsvej 3B, 2200 København H, Denmark;
| | - Ditte Caroline Andersen
- DCA-Lab, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 1. Floor, 5000 Odense C, Denmark; (D.G.E.); (I.M.S.); (S.B.M.); (K.S.A.); (W.H.)
- DCA-Lab, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| |
Collapse
|
18
|
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1236-1280. [PMID: 33893979 DOI: 10.1007/s11427-020-1915-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology, or Evo-Devo for short, has become an established field that, broadly speaking, seeks to understand how changes in development drive major transitions and innovation in organismal evolution. It does so via integrating the principles and methods of many subdisciplines of biology. Although we have gained unprecedented knowledge from the studies on model organisms in the past decades, many fundamental and crucially essential processes remain a mystery. Considering the tremendous biodiversity of our planet, the current model organisms seem insufficient for us to understand the evolutionary and physiological processes of life and its adaptation to exterior environments. The currently increasing genomic data and the recently available gene-editing tools make it possible to extend our studies to non-model organisms. In this review, we review the recent work on the regulatory signaling of developmental and regeneration processes, environmental adaptation, and evolutionary mechanisms using both the existing model animals such as zebrafish and Drosophila, and the emerging nonstandard model organisms including amphioxus, ascidian, ciliates, single-celled phytoplankton, and marine nematode. In addition, the challenging questions and new directions in these systems are outlined as well.
Collapse
|
19
|
Brezitski KD, Goff AW, DeBenedittis P, Karra R. A Roadmap to Heart Regeneration Through Conserved Mechanisms in Zebrafish and Mammals. Curr Cardiol Rep 2021; 23:29. [PMID: 33655359 DOI: 10.1007/s11886-021-01459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The replenishment of lost or damaged myocardium has the potential to reverse heart failure, making heart regeneration a goal for cardiovascular medicine. Unlike adult mammals, injury to the zebrafish or neonatal mouse heart induces a robust regenerative program with minimal scarring. Recent insights into the cellular and molecular mechanisms of heart regeneration suggest that the machinery for regeneration is conserved from zebrafish to mammals. Here, we will review conserved mechanisms of heart regeneration and their translational implications. RECENT FINDINGS Based on studies in zebrafish and neonatal mice, cardiomyocyte proliferation has emerged as a primary strategy for effecting regeneration in the adult mammalian heart. Recent work has revealed pathways for stimulating cardiomyocyte cell cycle reentry; potential developmental barriers for cardiomyocyte proliferation; and the critical role of additional cell types to support heart regeneration. Studies in zebrafish and neonatal mice have established a template for heart regeneration. Continued comparative work has the potential to inform the translation of regenerative biology into therapeutics.
Collapse
Affiliation(s)
- Kyla D Brezitski
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA
| | - Alexander W Goff
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA
| | - Paige DeBenedittis
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA.,Regeneration Next, Durham, NC, USA
| | - Ravi Karra
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA. .,Regeneration Next, Durham, NC, USA. .,Department of Pathology, Durham, NC, USA. .,Center for Aging, Durham, NC, USA.
| |
Collapse
|
20
|
RNAseq shows an all-pervasive day-night rhythm in the transcriptome of the pacemaker of the heart. Sci Rep 2021; 11:3565. [PMID: 33574422 PMCID: PMC7878777 DOI: 10.1038/s41598-021-82202-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological systems vary in a day-night manner anticipating increased demand at a particular time. Heart is no exception. Cardiac output is primarily determined by heart rate and unsurprisingly this varies in a day-night manner and is higher during the day in the human (anticipating increased day-time demand). Although this is attributed to a day-night rhythm in post-translational ion channel regulation in the heart's pacemaker, the sinus node, by the autonomic nervous system, we investigated whether there is a day-night rhythm in transcription. RNAseq revealed that ~ 44% of the sinus node transcriptome (7134 of 16,387 transcripts) has a significant day-night rhythm. The data revealed the oscillating components of an intrinsic circadian clock. Presumably this clock (or perhaps the master circadian clock in the suprachiasmatic nucleus) is responsible for the rhythm observed in the transcriptional machinery, which in turn is responsible for the rhythm observed in the transcriptome. For example, there is a rhythm in transcripts responsible for the two principal pacemaker mechanisms (membrane and Ca2+ clocks), transcripts responsible for receptors and signalling pathways known to control pacemaking, transcripts from genes identified by GWAS as determinants of resting heart rate, and transcripts from genes responsible for familial and acquired sick sinus syndrome.
Collapse
|
21
|
Helston O, Amaya E. Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies. Wound Repair Regen 2021; 29:211-224. [PMID: 33471940 PMCID: PMC8611801 DOI: 10.1111/wrr.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
In humans, myocardial infarction (MI) is associated with irreversible damage to heart tissue, resulting in increased morbidity and mortality in patients. By comparison, the zebrafish (Danio rerio) is capable of repairing damaged and injured hearts by activating a full regenerative response. By studying model organisms that can regenerate loss heart tissue following injury, such as the zebrafish, a greater insight will be gained into the molecular pathways that can induce and sustain a regenerative response following injury. There is hope that such information may lead to new treatments or therapies aimed at stimulating a better regenerative response in humans that have suffered heart attacks. Recent findings in zebrafish have highlighted an important role for sustained elevated levels of Reactive Oxygen Species (ROS), including hydrogen peroxide (H2O2) in the promotion of a regenerative response. Given that elevated levels of H2O2 can be harmful, simply elevating ROS levels directly may not be easy or practical to translate clinically. An alternative approach would be to identify the critical downstream targets of ROS in the promotion of heart regeneration, and then target these clinically using drugs. One such family of potential downstream targets of ROS during heart regeneration are the family of protein tyrosine phosphatases (PTPs), which are known to be exquisitely sensitive to redox regulation and whose inhibition have been linked to the promotion of heart regeneration in zebrafish. In this review, we present an overview of the zebrafish as a model organism for studying cardiac regeneration, including the molecular mechanisms by which cardiac regeneration occurs in response to injury. We then present recent findings linking elevated ROS levels to heart regeneration and their potential downstream targets, the PTPs, including protein tyrosine phosphatase 1B (PTP1B) and the dual specificity phosphatase 6 (DUSP6) in the promotion of heart regeneration.
Collapse
Affiliation(s)
- Olivia Helston
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Hatzistergos KE, Durante MA, Valasaki K, Wanschel ACBA, Harbour JW, Hare JM. A novel cardiomyogenic role for Isl1 + neural crest cells in the inflow tract. SCIENCE ADVANCES 2020; 6:6/49/eaba9950. [PMID: 33268364 PMCID: PMC7821887 DOI: 10.1126/sciadv.aba9950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The degree to which populations of cardiac progenitors (CPCs) persist in the postnatal heart remains a controversial issue in cardiobiology. To address this question, we conducted a spatiotemporally resolved analysis of CPC deployment dynamics, tracking cells expressing the pan-CPC gene Isl1 Most CPCs undergo programmed silencing during early cardiogenesis through proteasome-mediated and PRC2 (Polycomb group repressive complex 2)-mediated Isl1 repression, selectively in the outflow tract. A notable exception is a domain of cardiac neural crest cells (CNCs) in the inflow tract. These "dorsal CNCs" are regulated through a Wnt/β-catenin/Isl1 feedback loop and generate a limited number of trabecular cardiomyocytes that undergo multiple clonal divisions during compaction, to eventually produce ~10% of the biventricular myocardium. After birth, CNCs continue to generate cardiomyocytes that, however, exhibit diminished clonal amplification dynamics. Thus, although the postnatal heart sustains cardiomyocyte-producing CNCs, their regenerative potential is likely diminished by the loss of trabeculation-like proliferative properties.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Aristotle University of Thessaloniki, Faculty of Sciences, School of Biology, Department of Genetics, Development and Molecular Biology, Thessaloniki 54124, Greece.
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A Durante
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J William Harbour
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
Tang W, Bronner ME. Neural crest lineage analysis: from past to future trajectory. Development 2020; 147:147/20/dev193193. [PMID: 33097550 DOI: 10.1242/dev.193193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery 150 years ago, the neural crest has intrigued investigators owing to its remarkable developmental potential and extensive migratory ability. Cell lineage analysis has been an essential tool for exploring neural crest cell fate and migration routes. By marking progenitor cells, one can observe their subsequent locations and the cell types into which they differentiate. Here, we review major discoveries in neural crest lineage tracing from a historical perspective. We discuss how advancing technologies have refined lineage-tracing studies, and how clonal analysis can be applied to questions regarding multipotency. We also highlight how effective progenitor cell tracing, when combined with recently developed molecular and imaging tools, such as single-cell transcriptomics, single-molecule fluorescence in situ hybridization and high-resolution imaging, can extend the scope of neural crest lineage studies beyond development to regeneration and cancer initiation.
Collapse
Affiliation(s)
- Weiyi Tang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
24
|
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 2020; 147:147/20/dev188706. [PMID: 33060096 DOI: 10.1242/dev.188706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
25
|
Das RN, Yaniv K. Discovering New Progenitor Cell Populations through Lineage Tracing and In Vivo Imaging. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035618. [PMID: 32041709 DOI: 10.1101/cshperspect.a035618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of progenitor cells that generate differentiated cell types during development, regeneration, and disease states is central to understanding the mechanisms governing such transitions. For more than a century, different lineage-tracing strategies have been developed, which helped disentangle the complex relationship between progenitor cells and their progenies. In this review, we discuss how lineage-tracing analyses have evolved alongside technological advances, and how this approach has contributed to the identification of progenitor cells in different contexts of cell differentiation. We also highlight a few examples in which lineage-tracing experiments have been instrumental for resolving long-standing debates and for identifying unexpected cellular origins. This discussion emphasizes how this century-old quest to delineate cellular lineage relationships is still active, and new discoveries are being made with the development of newer methodologies.
Collapse
Affiliation(s)
- Rudra Nayan Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
26
|
Zullo L, Bozzo M, Daya A, Di Clemente A, Mancini FP, Megighian A, Nesher N, Röttinger E, Shomrat T, Tiozzo S, Zullo A, Candiani S. The Diversity of Muscles and Their Regenerative Potential across Animals. Cells 2020; 9:cells9091925. [PMID: 32825163 PMCID: PMC7563492 DOI: 10.3390/cells9091925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of “non-canonical” animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Collapse
Affiliation(s)
- Letizia Zullo
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence: (L.Z.); (A.Z.)
| | - Matteo Bozzo
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Alon Daya
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Alessio Di Clemente
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), 16132 Genova, Italy;
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, CNRS, INSERM, 06107 Nice, France;
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel; (A.D.); (N.N.); (T.S.)
| | - Stefano Tiozzo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, 06230 Paris, France;
| | - Alberto Zullo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy;
- Correspondence: (L.Z.); (A.Z.)
| | - Simona Candiani
- Laboratory of Developmental Neurobiology, Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy; (M.B.); (S.C.)
| |
Collapse
|
27
|
Guo L, Glover J, Risner A, Wang C, Fulmer D, Moore K, Gensemer C, Rumph MK, Moore R, Beck T, Norris RA. Dynamic Expression Profiles of β-Catenin during Murine Cardiac Valve Development. J Cardiovasc Dev Dis 2020; 7:jcdd7030031. [PMID: 32824435 PMCID: PMC7570242 DOI: 10.3390/jcdd7030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
β-catenin has been widely studied in many animal and organ systems across evolution, and gain or loss of function has been linked to a number of human diseases. Yet fundamental knowledge regarding its protein expression and localization remains poorly described. Thus, we sought to define whether there was a temporal and cell-specific regulation of β-catenin activities that correlate with distinct cardiac morphological events. Our findings indicate that activated nuclear β-catenin is primarily evident early in gestation. As development proceeds, nuclear β-catenin is down-regulated and becomes restricted to the membrane in a subset of cardiac progenitor cells. After birth, little β-catenin is detected in the heart. The co-expression of β-catenin with its main transcriptional co-factor, Lef1, revealed that Lef1 and β-catenin expression domains do not extensively overlap in the cardiac valves. These data indicate mutually exclusive roles for Lef1 and β-catenin in most cardiac cell types during development. Additionally, these data indicate diverse functions for β-catenin within the nucleus and membrane depending on cell type and gestational timing. Cardiovascular studies should take into careful consideration both nuclear and membrane β-catenin functions and their potential contributions to cardiac development and disease.
Collapse
|
28
|
Sanz-Morejón A, Mercader N. Recent insights into zebrafish cardiac regeneration. Curr Opin Genet Dev 2020; 64:37-43. [PMID: 32599303 DOI: 10.1016/j.gde.2020.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
In humans, myocardial infarction results in ventricular remodeling, progressing ultimately to cardiac failure, one of the leading causes of death worldwide. In contrast to the adult mammalian heart, the zebrafish model organism has a remarkable regenerative capacity, offering the possibility to research the bases of natural regeneration. Here, we summarize recent insights into the cellular and molecular mechanisms that govern cardiac regeneration in the zebrafish.
Collapse
Affiliation(s)
- Andrés Sanz-Morejón
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
29
|
Juul Belling H, Hofmeister W, Andersen DC. A Systematic Exposition of Methods used for Quantification of Heart Regeneration after Apex Resection in Zebrafish. Cells 2020; 9:cells9030548. [PMID: 32111059 PMCID: PMC7140516 DOI: 10.3390/cells9030548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction (MI) is a worldwide condition that affects millions of people. This is mainly caused by the adult human heart lacking the ability to regenerate upon injury, whereas zebrafish have the capacity through cardiomyocyte proliferation to fully regenerate the heart following injury such as apex resection (AR). But a systematic overview of the methods used to evidence heart regrowth and regeneration in the zebrafish is lacking. Herein, we conducted a systematical search in Embase and Pubmed for studies on heart regeneration in the zebrafish following injury and identified 47 AR studies meeting the inclusion criteria. Overall, three different methods were used to assess heart regeneration in zebrafish AR hearts. 45 out of 47 studies performed qualitative (37) and quantitative (8) histology, whereas immunohistochemistry for various cell cycle markers combined with cardiomyocyte specific proteins was used in 34 out of 47 studies to determine cardiomyocyte proliferation qualitatively (6 studies) or quantitatively (28 studies). For both methods, analysis was based on selected heart sections and not the whole heart, which may bias interpretations. Likewise, interstudy comparison of reported cardiomyocyte proliferation indexes seems complicated by distinct study designs and reporting manners. Finally, six studies performed functional analysis to determine heart function, a hallmark of human heart injury after MI. In conclusion, our data implies that future studies should consider more quantitative methods eventually taking the 3D of the zebrafish heart into consideration when evidencing myocardial regrowth after AR. Furthermore, standardized guidelines for reporting cardiomyocyte proliferation and sham surgery details may be considered to enable inter study comparisons and robustly determine the effect of given genes on the process of heart regeneration.
Collapse
Affiliation(s)
- Helene Juul Belling
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark; (H.J.B.); (W.H.)
- Clinical Institute, University of Southern Denmark, Winsloewparken 25, 1. floor, 5000 Odense C, Denmark
| | - Wolfgang Hofmeister
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark; (H.J.B.); (W.H.)
- Clinical Institute, University of Southern Denmark, Winsloewparken 25, 1. floor, 5000 Odense C, Denmark
- Faculty of Health and Medical Sciences, DanStem, Novo Nordisk Foundation Center for Stem Cell Biology, 2200 København H, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark; (H.J.B.); (W.H.)
- Clinical Institute, University of Southern Denmark, Winsloewparken 25, 1. floor, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|