1
|
Zheng H, Xu B, Fan Y, Tuekprakhon A, Stamataki Z, Wang F. The role of immune regulation in HBV infection and hepatocellular carcinogenesis. Front Immunol 2025; 16:1506526. [PMID: 40160817 PMCID: PMC11949809 DOI: 10.3389/fimmu.2025.1506526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a well-documented independent risk factor for developing hepatocellular carcinoma (HCC). Consequently, extensive research has focused on elucidating the mechanisms by which HBV induces hepatocarcinogenesis. The majority of studies are dedicated to understanding how HBV DNA integration into the host genome, viral RNA expression, and the resulting protein transcripts affect cellular processes and promote the malignant transformation of hepatocytes. However, considering that most acute HBV infections are curable, immune suppression potentially contributes to the critical challenges in the treatment of chronic infections. Regulatory T cells (Tregs) are crucial in immune tolerance. Understanding the interplay of Tregs within the liver microenvironment following HBV infection could offer novel therapeutic approaches for treating HBV infections and preventing HBV-related HCC. Two viewpoints to targeting Tregs in the liver microenvironment include means of reducing their inhibitory function and decreasing Treg frequency. As these strategies may disrupt the immune balance and lead to autoimmune responses, careful and comprehensive profiling of the patient's immunological status and genetic factors is required to successfully employ this promising therapeutic approach.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Bingchen Xu
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yiyu Fan
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Aekkachai Tuekprakhon
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Fei Wang
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Xu W, Xu J, Liu J, Wang N, Zhou L, Guo J. Liver Metastasis in Cancer: Molecular Mechanisms and Management. MedComm (Beijing) 2025; 6:e70119. [PMID: 40027151 PMCID: PMC11868442 DOI: 10.1002/mco2.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Liver metastasis is a leading cause of mortality from malignant tumors and significantly impairs the efficacy of therapeutic interventions. In recent years, both preclinical and clinical research have made significant progress in understanding the molecular mechanisms and therapeutic strategies of liver metastasis. Metastatic tumor cells from different primary sites undergo highly similar biological processes, ultimately achieving ectopic colonization and growth in the liver. In this review, we begin by introducing the inherent metastatic-friendly features of the liver. We then explore the panorama of liver metastasis and conclude the three continuous, yet distinct phases based on the liver's response to metastasis. This includes metastatic sensing stage, metastatic stress stage, and metastasis support stage. We discuss the intricate interactions between metastatic tumor cells and various resident and recruited cells. In addition, we emphasize the critical role of spatial remodeling of immune cells in liver metastasis. Finally, we review the recent advancements and the challenges faced in the clinical management of liver metastasis. Future precise antimetastatic treatments should fully consider individual heterogeneity and implement different targeted interventions based on stages of liver metastasis.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jia Xu
- State Key Laboratory of Fine ChemicalsDepartment of Pharmaceutical SciencesSchool of Chemical EngineeringDalian University of TechnologyDalianChina
| | - Jianzhou Liu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nanzhou Wang
- Department of Colorectal SurgeryState Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Li Zhou
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junchao Guo
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Bozward AG, Davies SP, Morris SM, Kayani K, Oo YH. Cellular interactions in self-directed immune mediated liver diseases. J Hepatol 2025:S0168-8278(25)00006-6. [PMID: 39793614 DOI: 10.1016/j.jhep.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The lymphocyte population must traverse a complex path throughout their journey to the liver. The signals which these cells must detect, including cytokines, chemokines and other soluble factors, steer their course towards further crosstalk with other hepatic immune cells, hepatocytes and biliary epithelial cells. A series of specific chemokine receptors and adhesion molecules drive not only the recruitment, migration, and retention of these cells within the liver, but also their localisation. Perturbation of these interactions and failure of self-recognition drives the development of several autoimmune liver diseases. Understanding the nature of these interactions develops our understanding of immune mediated liver disease pathogenesis, providing new opportunities for intervention to resolve uncontrolled inflammation. In this review, we provide an overview of the complex recruitment pathways and cellular interactions which position lymphocyte populations in the liver. We discuss how these are disrupted in autoimmune diseases and highlight the mechanism of immune cells inside hepatocytes (emperipolesis) in autoimmune hepatitis and immune cells inside biliary epithelial cells (intra-epithelial lymphocyte) in primary biliary cholangitis as well as avenues to manipulate these pathways for therapy. We also cover the immune mediated tissue injury mechanisms impacted by checkpoint inhibitors, leading to checkpoint inhibitor-induced liver injury (CHILI). Finally, we describe emerging immune-based therapies, including regulatory T cell, anti-cytokine and anti-chemokine therapies, cytokine supplementation such as interleukin-2 as well as numerous modalities of co-inhibitory molecule manipulation, including bispecific T cell engagers (BiTEs) and checkpoint inhibitor bispecific T cell engagers (CiTEs) and discuss their potential application in the treatment of autoimmune liver diseases. Immune-mediated liver disease encompasses two broad categories: autoimmune and inflammatory liver injury, the former resulting from a breakdown in immunological self-tolerance. These share common features, namely histologically dense immune infiltrates, autoantibody positivity and immunoglobulin elevation. Whilst well defined in their epidemiology, presentation and diagnostic evaluation, their treatment remains an unmet clinical need. Our incomplete understanding of the mechanisms leading to breakdown in immunological self-tolerance and our inability to restore immune homeostasis hampers present progress in treatment. This review summarises recent advances in our understanding of the loss of hepatic tolerance and the cellular interactions leading to this, including immune cell invasion towards hepatocytes and biliary epithelial cells, checkpoint-induced immune-mediated liver injury (CHILI) and concludes with current progress in treatment strategies.
Collapse
Affiliation(s)
- Amber G Bozward
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK.
| | - Scott P Davies
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK
| | - Sean M Morris
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK
| | - Kayani Kayani
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver and Gastroenterology research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; National Institute of Health Research Biomedical Research Centre, University of Birmingham and University Hospital Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Rare Diseases, European Reference Network on Hepatological Diseases (ERN-RARE-LIVER) centre, University of Birmingham, Birmingham, UK; Liver Transplant and Hepatobiliary department, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
4
|
Tong M, Yang X, Qiao Y, Liu G, Ge H, Huang G, Wang Y, Yang Y, Fan W. Serine protease inhibitor from the muscle larval Trichinella spiralis ameliorates non-alcoholic fatty liver disease in mice via anti-inflammatory properties and gut-liver crosstalk. Biomed Pharmacother 2024; 172:116223. [PMID: 38325266 DOI: 10.1016/j.biopha.2024.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Trichinella spiralis is recognized for its ability to regulate host immune responses. The serine protease inhibitor of T. spiralis (Ts-SPI) participates in T. spiralis-mediated immunoregulatory effects. Studies have shown that helminth therapy exhibits therapeutic effects on metabolic diseases. In addition, we previously found that T. spiralis-derived crude antigens could alleviate diet-induced obesity. Thus, Ts-SPI was hypothesized to alleviate non-alcoholic fatty liver disease (NAFLD). Herein, recombinant Ts-SPI (rTs-SPI) was prepared from the muscle larvae T. spiralis. The relative molecular mass of rTs-SPI was approximately 35,000 Da, and western blot analysis indicated good immunoreactivity. rTs-SPI ameliorated hepatic steatosis, inflammation, and pyroptosis in NAFLD mice, which validated the hypothesis. rTs-SPI also reduced macrophage infiltration, significantly expanded Foxp3+ Treg population, and inactivated TLR4/NF-κB/NLRP3 signaling in the liver. Furthermore, rTs-SPI treatment significantly shifted the gut microbiome structure, with a remarkable increase in beneficial bacteria and reduction in harmful bacteria to improve gut barrier integrity. Finally, Abx-treated mice and FMT confirmed that gut-liver crosstalk contributed to NAFLD improvement after rTs-SPI treatment. Taken together, Taken together, these findings suggest that rTs-SPI exerts therapeutic effects in NAFLD via anti-inflammatory activity and gut-liver crosstalk.
Collapse
Affiliation(s)
- Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Xiaodan Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yuyu Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Ge Liu
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Huihui Ge
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Guangrong Huang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China
| | - Yanhong Wang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030619, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, and Shanxi Key Laboratory of Cellular Physiology, Taiyuan 030001, China.
| |
Collapse
|
5
|
Higashi T, Saigo C, Chikaishi W, Hayashi H, Hanamatsu Y, Futamura M, Matsuhashi N, Takeuchi T. Implication of IZUMO2 in the cell-in-cell phenomenon: A potential therapeutic target for triple-negative breast cancer. Thorac Cancer 2024; 15:513-518. [PMID: 38258402 PMCID: PMC10912533 DOI: 10.1111/1759-7714.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by the loss of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aggressive clinicopathological features and resistance to currently available therapeutics of the disease warrant an urgent need for the development of novel alternate therapeutic options. We have previously reported adiponectin-expressing regulatory T cells (A-Tregs), which can induce apoptosis in TNBC through the cell-in-cell phenomenon. In this study, we aimed to elucidate the molecule that allows TNBC cells to engulf A-Tregs. METHODS A monoclonal antibody, which repressed the engulfment of A-Tregs by TNBC cells, was developed. Immunoprecipitation followed by mass spectrometry and small interfering RNAs-mediated gene silencing was performed to characterize the antigen. RESULTS We successfully generated a monoclonal antibody, designated G1D7, which abrogated the engulfment of A-Tregs by TNBC and subsequent A-Treg-mediated apoptosis. G1D7 detected the immunoglobulin-like type I membrane protein IZUMO2, a molecule related to IZUMO1 that is essential for cell-cell membrane binding and fusion of sperm to oocyte. CONCLUSION The findings highlight the importance of IZUMO2 on TNBC cells in facilitating the cell-in-cell phenomenon by A-Tregs.
Collapse
Affiliation(s)
- Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Chiemi Saigo
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- The United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Yuki Hanamatsu
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Manabu Futamura
- Department of Breast SurgeryGifu University HospitalGifuJapan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| |
Collapse
|
6
|
Davies SP, Ronca V, Wootton GE, Krajewska NM, Bozward AG, Fiancette R, Patten DA, Yankouskaya K, Reynolds GM, Pat S, Osei-Bordom DC, Richardson N, Grover LM, Weston CJ, Oo YH. Expression of E-cadherin by CD8 + T cells promotes their invasion into biliary epithelial cells. Nat Commun 2024; 15:853. [PMID: 38286990 PMCID: PMC10825166 DOI: 10.1038/s41467-024-44910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The presence of CD8+ T cells in the cytoplasm of biliary epithelial cells (BEC) has been correlated with biliary damage associated with primary biliary cholangitis (PBC). Here, we characterise the mechanism of CD8+ T cell invasion into BEC. CD8+ T cells observed within BEC were large, eccentric, and expressed E-cadherin, CD103 and CD69. They were also not contained within secondary vesicles. Internalisation required cytoskeletal rearrangements which facilitated contact with BEC. Internalised CD8+ T cells were observed in both non-cirrhotic and cirrhotic diseased liver tissues but enriched in PBC patients, both during active disease and at the time of transplantation. E-cadherin expression by CD8+ T cells correlated with frequency of internalisation of these cells into BEC. E-cadherin+ CD8+ T cells formed β-catenin-associated interactions with BEC, were larger than E-cadherin- CD8+ T cells and invaded into BEC more frequently. Overall, we unveil a distinct cell-in-cell structure process in the liver detailing the invasion of E-cadherin+ CD103+ CD69+ CD8+ T cells into BEC.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK.
| | - Vincenzo Ronca
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
| | - Grace E Wootton
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK
| | - Natalia M Krajewska
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Amber G Bozward
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK
| | - Rémi Fiancette
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Katharina Yankouskaya
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gary M Reynolds
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Sofia Pat
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Daniel C Osei-Bordom
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Naomi Richardson
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK
| | - Liam M Grover
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK
| | - Christopher J Weston
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ye H Oo
- Centre for Liver and Gastrointestinal Research, Institute of Biomedical Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
- National Institute of Health Research Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), Birmingham, UK.
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Chikaishi W, Higashi T, Hayashi H, Hanamatsu Y, Futamura M, Matsuhashi N, Saigo C, Takeuchi T. Adiponectin-expressing Treg-containing T cell fraction inhibits tumor growth in orthotopically implanted triple-negative breast cancer. Thorac Cancer 2023; 14:3058-3062. [PMID: 37674354 PMCID: PMC10599968 DOI: 10.1111/1759-7714.15102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND In our previous study, we identified a population of adiponectin expressing regulatory T cells (Tregs) residing within thymic nurse cell complexes, which were capable of inhibiting the development of breast cancer in vitro. Triple-negative breast cancer (TNBC) with no proper treatment at present is characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2. In this study, we aimed to investigate the potential of a cultured T cell fraction comprising adiponectin-expressing Tregs, referred to as A-TregTF (adiponectin-expressing Treg-containing T cell fraction), in inhibiting the progression of TNBC in vivo. METHODS The efficacy of a spontaneously expanding T cell fraction comprising adiponectin-expressing Treg in inhibiting tumor growth was analyzed in a murine orthotopic 4 T1-Luc TNBC model. RESULTS The treatment with T cell fraction containing adiponectin-expressing Tregs significantly inhibited the growth and metastasis of orthotopically transplanted 4 T1-Luc tumor cells. Histopathological examination further revealed that the adiponectin-expressing Tregs infiltrated the tumor tissue via a cell-in-cell mechanism and were found to be specifically localized around the necrotic areas. CONCLUSIONS Based on our findings, the T cell fraction comprising adiponectin-expressing Tregs, represents a potential candidate for adoptive cell therapy against TNBC.
Collapse
Affiliation(s)
- Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Yuki Hanamatsu
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
| | - Manabu Futamura
- Department of Breast SurgeryGifu University HospitalGifuJapan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric SurgeryGifu University Graduate School of MedicineGifuJapan
| | - Chiemi Saigo
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- The United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational ResearchGifu University Graduate School of MedicineGifuJapan
- Center for One Medicine Innovative Translational Research; COMITGifu UniversityGifuJapan
| |
Collapse
|
8
|
Zhang S, Weng Z, Wang Z, Wang B, Zeng Y, Li J, Hu C. Attenuation of alcohol-induced hepatocyte damage by ginsenoside Rg1 evaluated using atomic force microscopy. Microsc Res Tech 2023; 86:1037-1046. [PMID: 37382340 DOI: 10.1002/jemt.24381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Alcoholic liver disease is an important cause of death worldwide. Hepatocyte apoptosis is commonly observed in alcoholic liver disease. In this study, we investigated the effect of ginsenoside Rg1 (G-Rg1), an organic component of ginseng, on the alcohol-induced morphological and biophysical properties of hepatocytes. Human hepatocytes (HL-7702) were treated in vitro with alcohol and G-Rg1. The cell morphology was observed using scanning electron microscopy. Cell height, roughness, adhesion, and elastic modulus were detected using atomic force microscopy. We found that alcohol significantly induced hepatocyte apoptosis, whereas G-Rg1 attenuated the alcohol-induced hepatocyte damage. Scanning electron microscopy revealed that alcohol-induced significant morphological changes in hepatocytes, including decreased cell contraction, roundness, and pseudopods, whereas G-Rg1 inhibited these negative changes. Atomic force microscopy revealed that alcohol increased the cell height and decreased the adhesion and elastic modulus of hepatocytes. Following treatment with G-Rg1, the cell height, adhesion, and elastic modulus of alcohol-injured hepatocytes were all similar to those of normal cells. Thus, G-Rg1 can attenuate the alcohol-induced damage to hepatocytes by modulating the morphology and biomechanics of the cells. RESEARCH HIGHLIGHTS: In this study, the morphological characteristics of hepatocytes were observed using SEM. The changes in hepatocyte three-dimensional images and biomechanical action caused by alcohol and G-Rg1 were examined at the nanoscale using AFM under near-physiological conditions. Alcohol-induced hepatocytes showed abnormal morphology and biophysical properties. G-Rg1 attenuated the alcohol-induced damage to hepatocytes by modulating the morphology and biomechanics of the cells.
Collapse
Affiliation(s)
- Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zhankun Weng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yi Zeng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Jiani Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Cuihua Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
9
|
Druzhkova I, Ignatova N, Shirmanova M. Cell-in-Cell Structures in Gastrointestinal Tumors: Biological Relevance and Clinical Applications. J Pers Med 2023; 13:1149. [DOI: https:/doi.org/10.3390/jpm13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
Abstract
This review summarizes information about cell-in-cell (CIC) structures with a focus on gastrointestinal tumors. The phenomenon when one cell lives in another one has attracted an attention of researchers over the past decades. We briefly discuss types of CIC structures and mechanisms of its formation, as well as the biological basis and consequences of the cell-engulfing process. Numerous clinico-histopathological studies demonstrate the significance of these structures as prognostic factors, mainly correlated with negative prognosis. The presence of CIC structures has been identified in all gastrointestinal tumors. However, the majority of studies concern pancreatic cancer. In this field, in addition to the assessment of the prognostic markers, the attempts to manipulate the ability of cells to form CISs have been done in order to stimulate the death of the inner cell. Number of CIC structures also correlates with genetic features for some gastrointestinal tu-mors. The role of CIC structures in the responses of tumors to therapies, both chemotherapy and immunotherapy, seems to be the most poorly studied. However, there is some evidence of involvement of CIC structures in treatment failure. Here, we summarized the current literature on CIC structures in cancer with a focus on gastrointestinal tumors and specified future perspectives for investigation.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Nadezhda Ignatova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | - Marina Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| |
Collapse
|
10
|
Druzhkova I, Ignatova N, Shirmanova M. Cell-in-Cell Structures in Gastrointestinal Tumors: Biological Relevance and Clinical Applications. J Pers Med 2023; 13:1149. [PMID: 37511762 PMCID: PMC10381133 DOI: 10.3390/jpm13071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
This review summarizes information about cell-in-cell (CIC) structures with a focus on gastrointestinal tumors. The phenomenon when one cell lives in another one has attracted an attention of researchers over the past decades. We briefly discuss types of CIC structures and mechanisms of its formation, as well as the biological basis and consequences of the cell-engulfing process. Numerous clinico-histopathological studies demonstrate the significance of these structures as prognostic factors, mainly correlated with negative prognosis. The presence of CIC structures has been identified in all gastrointestinal tumors. However, the majority of studies concern pancreatic cancer. In this field, in addition to the assessment of the prognostic markers, the attempts to manipulate the ability of cells to form CISs have been done in order to stimulate the death of the inner cell. Number of CIC structures also correlates with genetic features for some gastrointestinal tu-mors. The role of CIC structures in the responses of tumors to therapies, both chemotherapy and immunotherapy, seems to be the most poorly studied. However, there is some evidence of involvement of CIC structures in treatment failure. Here, we summarized the current literature on CIC structures in cancer with a focus on gastrointestinal tumors and specified future perspectives for investigation.
Collapse
Affiliation(s)
- Irina Druzhkova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (N.I.); (M.S.)
| | | | | |
Collapse
|
11
|
Chikaishi W, Higashi T, Hayashi H, Hanamatsu Y, Kito Y, Futamura M, Matsuhashi N, Saigo C, Takeuchi T. Potential activity of adiponectin-expressing regulatory T cells against triple-negative breast cancer cells through the cell-in-cell phenomenon. Thorac Cancer 2023. [PMID: 37220892 DOI: 10.1111/1759-7714.14940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND A population of regulatory T cells (Treg), which reside within thymic nurse cell complexes, express adiponectin and abrogate breast cancer development in transgenic mice. In this study, we examined whether adiponectin-expressing Treg could impair triple-negative breast cancer, which is defined by a lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor-2. METHODS CD4- and CD25-positive cells were sorted from cultured T lymphocytes of a previously characterized experimental thymic tumor model composed of thymic nurse cells and abundant lymphoid stroma. These sorted cells were examined for FOXP3 and adiponectin immunoreactivity and subsequently exposed to triple-negative breast cancer MDA-MB-157 and -231 cells. RESULTS Adiponectin-expressing Treg were obtained by CD4- and CD25-positive sorting and cell death was induced in triple-negative breast cancer cells through the cell-in-cell phenomenon. CONCLUSIONS Adiponectin-expressing Treg may be candidates for adoptive cell therapy against triple-negative breast cancer.
Collapse
Affiliation(s)
- Wakana Chikaishi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiya Higashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirokatsu Hayashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Manabu Futamura
- Department of Breast Surgery, Gifu University Hospital, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
13
|
Kang Y, Kuang X, Yan H, Ren P, Yang X, Liu H, Liu Q, Yang H, Kang X, Shen X, Tong M, Li L, Wang X, Guo L, Ma J, Zhang F, Fan W. A Novel Synbiotic Alleviates Autoimmune Hepatitis by Modulating the Gut Microbiota-Liver Axis and Inhibiting the Hepatic TLR4/NF-κB/NLRP3 Signaling Pathway. mSystems 2023; 8:e0112722. [PMID: 36794950 PMCID: PMC10134874 DOI: 10.1128/msystems.01127-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a liver disease characterized by chronic liver inflammation. The intestinal barrier and microbiome play critical roles in AIH progression. AIH treatment remains challenging because first-line drugs have limited efficacy and many side effects. Thus, there is growing interest in developing synbiotic therapies. This study investigated the effects of a novel synbiotic in an AIH mouse model. We found that this synbiotic (Syn) ameliorated liver injury and improved liver function by reducing hepatic inflammation and pyroptosis. The Syn reversed gut dysbiosis, as indicated by an increase in beneficial bacteria (e.g., Rikenella and Alistipes) and a decrease in potentially harmful bacteria (e.g., Escherichia-Shigella) and lipopolysaccharide (LPS)-bearing Gram-negative bacterial levels. The Syn maintained intestinal barrier integrity, reduced LPS, and inhibited the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathway. In addition, microbiome phenotype prediction by BugBase and bacterial functional potential prediction using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that Syn improved gut microbiota function involving inflammatory injury, metabolism, immune response, and pathopoiesia. Furthermore, the new Syn was as effective as prednisone against AIH. Therefore, this novel Syn could be a candidate drug for alleviating AIH through its anti-inflammatory and antipyroptosis properties that relieve endothelial dysfunction and gut dysbiosis. IMPORTANCE Synbiotics can ameliorate liver injury and improve liver function by reducing hepatic inflammation and pyroptosis. Our data indicate that our new Syn not only reverses gut dysbiosis by increasing beneficial bacteria and decreasing lipopolysaccharide (LPS)-bearing Gram-negative bacteria but also maintains intestinal barrier integrity. Thus, its mechanism might be associated with modulating gut microbiota composition and intestinal barrier function by inhibiting the TLR4/NF-κB/NLRP3/pyroptosis signaling pathway in the liver. This Syn is as effective as prednisone in treating AIH without side effects. Based on these findings, this novel Syn represents a potential therapeutic agent for AIH in clinical practice.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Kuang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Yan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peng Ren
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaodan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haixia Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingqing Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaorong Shen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingwei Tong
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohui Wang
- Laboratory of Morphology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Linzhi Guo
- Laboratory of Morphology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jieqiong Ma
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fan Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Műzes G, Sipos F. Autoimmunity and Carcinogenesis: Their Relationship under the Umbrella of Autophagy. Biomedicines 2023; 11:1130. [PMID: 37189748 PMCID: PMC10135912 DOI: 10.3390/biomedicines11041130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The immune system and autophagy share a functional relationship. Both innate and adaptive immune responses involve autophagy and, depending on the disease's origin and pathophysiology, it may have a detrimental or positive role on autoimmune disorders. As a "double-edged sword" in tumors, autophagy can either facilitate or impede tumor growth. The autophagy regulatory network that influences tumor progression and treatment resistance is dependent on cell and tissue types and tumor stages. The connection between autoimmunity and carcinogenesis has not been sufficiently explored in past studies. As a crucial mechanism between the two phenomena, autophagy may play a substantial role, though the specifics remain unclear. Several autophagy modifiers have demonstrated beneficial effects in models of autoimmune disease, emphasizing their therapeutic potential as treatments for autoimmune disorders. The function of autophagy in the tumor microenvironment and immune cells is the subject of intensive study. The objective of this review is to investigate the role of autophagy in the simultaneous genesis of autoimmunity and malignancy, shedding light on both sides of the issue. We believe our work will assist in the organization of current understanding in the field and promote additional research on this urgent and crucial topic.
Collapse
Affiliation(s)
| | - Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| |
Collapse
|
15
|
Wang R, Zhong H, Wang C, Huang X, Huang A, Du N, Wang D, Sun Q, He M. Tumor malignancy by genetic transfer between cells forming cell-in-cell structures. Cell Death Dis 2023; 14:195. [PMID: 36914619 PMCID: PMC10011543 DOI: 10.1038/s41419-023-05707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
Cell-in-cell structures (CICs) refer to a type of unique structure with one or more cells within another one, whose biological outcomes are poorly understood. The present study aims to investigate the effects of CICs formation on tumor progression. Using genetically marked hepatocellular cancer cell lines, we explored the possibility that tumor cells might acquire genetic information and malignant phenotypes from parental cells undergoing CICs formation. The present study showed that the derivatives, isolated from CICs formed between two subpopulations by flow cytometry sorting, were found to inherit aggressive features from the parental cells, manifested with increased abilities in both proliferation and invasiveness. Consistently, the CICs clones expressed a lower level of E-cadherin and a higher level of Vimentin, ZEB-1, Fibronectin, MMP9, MMP2 and Snail as compared with the parental cells, indicating epithelial-mesenchymal transition. Remarkably, the new derivatives exhibited significantly enhanced tumorigenicity in the xenograft mouse models. Moreover, whole exome sequencing analysis identified a group of potential genes which were involved in CIC-mediated genetic transfer. These results are consistent with a role of genetic transfer by CICs formation in genomic instability and malignancy of tumor cells, which suggest that the formation of CICs may promote genetic transfer and gain of malignancy during tumor progression.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Zhong
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Anpei Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nannan Du
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China. .,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China.
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Mann JP, Lenz D, Stamataki Z, Kelly D. Common mechanisms in pediatric acute liver failure. Trends Mol Med 2023; 29:228-240. [PMID: 36496278 DOI: 10.1016/j.molmed.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Acute liver failure (ALF) is a rare but potentially fatal disease in children. The etiology is multifactorial, including infection, autoimmune, and genetic disorders, as well as indeterminate hepatitis, which has a higher requirement for liver transplantation. Activation of the innate and adaptive immune systems leads to hepatocyte-specific injury which is mitigated by T regulatory cell activation. Recovery of the native liver depends on activation of apoptotic and regenerative pathways, including the integrated stress response (ISR; e.g., PERK), p53, and HNF4α. Loss-of-function mutations in these pathways cause recurrent ALF in response to non-hepatotropic viruses. Deeper understanding of these mechanisms will lead to improved diagnosis, management, and outcomes for pediatric ALF.
Collapse
Affiliation(s)
- Jake P Mann
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, and University of Birmingham, Birmingham, UK; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Gong J, Tu W, Liu J, Tian D. Hepatocytes: A key role in liver inflammation. Front Immunol 2023; 13:1083780. [PMID: 36741394 PMCID: PMC9890163 DOI: 10.3389/fimmu.2022.1083780] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, are responsible for a variety of cellular functions including carbohydrate, lipid and protein metabolism, detoxification and immune cell activation to maintain liver homeotasis. Recent studies show hepatocytes play a pivotal role in liver inflammation. After receiving liver insults and inflammatory signals, hepatocytes may undergo organelle damage, and further respond by releasing mediators and expressing molecules that can act in the microenvironment as well as initiate a robust inflammatory response. In this review, we summarize how the hepatic organelle damage link to liver inflammation and introduce numerous hepatocyte-derived pro-inflammatory factors in response to chronic liver injury.
Collapse
Affiliation(s)
| | | | | | - Dean Tian
- *Correspondence: Jingmei Liu, ; Dean Tian,
| |
Collapse
|
18
|
Zerbato JM, Avihingsanon A, Singh KP, Zhao W, Deleage C, Rosen E, Cottrell ML, Rhodes A, Dantanarayana A, Tumpach C, Tennakoon S, Crane M, Price DJ, Braat S, Mason H, Roche M, Kashuba AD, Revill PA, Audsley J, Lewin SR. HIV DNA persists in hepatocytes in people with HIV-hepatitis B co-infection on antiretroviral therapy. EBioMedicine 2022; 87:104391. [PMID: 36502576 PMCID: PMC9763386 DOI: 10.1016/j.ebiom.2022.104391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV can infect multiple cells in the liver including hepatocytes, Kupffer cells and infiltrating T cells, but whether HIV can persist in the liver in people with HIV (PWH) on suppressive antiretroviral therapy (ART) remains unknown. METHODS In a prospective longitudinal cohort of PWH and hepatitis B virus (HBV) co-infection living in Bangkok, Thailand, we collected blood and liver biopsies from 18 participants prior to and following ART and quantified HIV and HBV persistence using quantitative (q)PCR and RNA/DNAscope. Antiretroviral (ARV) drug levels were quantified using mass spectroscopy. FINDINGS In liver biopsies taken prior to ART, HIV DNA and HIV RNA were detected by qPCR in 53% (9/17) and 47% (8/17) of participants respectively. Following a median ART duration of 3.4 years, HIV DNA was detected in liver in 61% (11/18) of participants by either qPCR, DNAscope or both, but only at very low and non-quantifiable levels. Using immunohistochemistry, HIV DNA was observed in both hepatocytes and liver infiltrating CD4+ T cells on ART. HIV RNA was not detected in liver biopsies collected on ART, by either qPCR or RNAscope. All ARVs were clearly detected in liver tissue. INTERPRETATION Persistence of HIV DNA in liver in PWH on ART represents an additional reservoir that warrants further investigation. FUNDING National Health and Medical Research Council of Australia (Project Grant APP1101836, 1149990, and 1135851); This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024.
Collapse
Affiliation(s)
- Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anchalee Avihingsanon
- HIV-NAT, Thai Red Cross AIDS Research Centre and Centre of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kasha P. Singh
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Wei Zhao
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Elias Rosen
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Surekha Tennakoon
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Megan Crane
- National Centre for Infections in Cancer, Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David J. Price
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Melbourne, Australia
| | - Sabine Braat
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Melbourne, Australia,MISCH (Methods and Implementation Support for Clinical Health) Research Hub, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Hugh Mason
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Michael Roche
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Angela D.M. Kashuba
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia,Corresponding author. Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 786-798 Elizabeth Street, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
19
|
Tang M, Su Y, Zhao W, Niu Z, Ruan B, Li Q, Zheng Y, Wang C, Zhang B, Zhou F, Wang X, Huang H, Shi H, Sun Q. AIM-CICs: an automatic identification method for cell-in-cell structures based on convolutional neural network. J Mol Cell Biol 2022; 14:mjac044. [PMID: 35869978 PMCID: PMC9701057 DOI: 10.1093/jmcb/mjac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Edited by Luonan Chen Whereas biochemical markers are available for most types of cell death, current studies on non-autonomous cell death by entosis rely strictly on the identification of cell-in-cell structures (CICs), a unique morphological readout that can only be quantified manually at present. Moreover, the manual CIC quantification is generally over-simplified as CIC counts, which represents a major hurdle against profound mechanistic investigations. In this study, we take advantage of artificial intelligence technology to develop an automatic identification method for CICs (AIM-CICs), which performs comprehensive CIC analysis in an automated and efficient way. The AIM-CICs, developed on the algorithm of convolutional neural network, can not only differentiate between CICs and non-CICs (the area under the receiver operating characteristic curve (AUC) > 0.99), but also accurately categorize CICs into five subclasses based on CIC stages and cell number involved (AUC > 0.97 for all subclasses). The application of AIM-CICs would systemically fuel research on CIC-mediated cell death, such as high-throughput screening.
Collapse
Affiliation(s)
- Meng Tang
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
- Comprehensive Oncology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Su
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Wei Zhao
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Qinqin Li
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Bo Zhang
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric & State Key Laboratory of Kidney, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyan Huang
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - Hanping Shi
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| |
Collapse
|
20
|
Chen Q, Wang X, He M. Cell-in-Cell: From Cell Biology to Translational Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7608521. [PMID: 36158876 PMCID: PMC9492417 DOI: 10.1155/2022/7608521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
Cell-in-cell structures (CICs) refer to cytoplasmic internalization of a cell by another cell, which are found throughout various biological systems and have been a part of scientific dogma for a long time. However, neither the mechanisms underlying this phenomenon nor their possible roles in disease development have resulted in major breakthroughs until recent years. In view of the ubiquity of CICs in inflammatory tissue and tumors, it is tempting to think that these specific structures could be associated with clinical diagnosis and treatment and thus would become a new hotspot for translational medicine. Translational medicine is a new concept in the field of international biomedical research that appeared in the last 20 years, which transforms basic research into clinical application. With the growing interest in this field, this review addresses recent research on CICs and their potential clinical implications in cytomorphological diagnosis and the pathology of human diseases, while discussing as yet unanswered questions. We also put forward future directions to reduce the gap in our knowledge caused by our currently limited understanding of CICs.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric & the State Key Laboratory of Kidney, The Chinese PLA General Hospital, Beijing, China
| | - Meifang He
- Department of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Riaz F, Wei P, Pan F. Fine-tuning of regulatory T cells is indispensable for the metabolic steatosis-related hepatocellular carcinoma: A review. Front Cell Dev Biol 2022; 10:949603. [PMID: 35912096 PMCID: PMC9337771 DOI: 10.3389/fcell.2022.949603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The majority of chronic hepatic diseases are caused by nutritional imbalance. These nutritional inequities include excessive intake of alcohol and fat, which causes alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), respectively. The pathogenesis of hepatic diseases is mainly dependent on oxidative stress, autophagy, DNA damage, and gut microbiota and their metabolites. These factors influence the normal physiology of the liver and impact the hepatic microenvironment. The hepatic microenvironment contains several immune cells and inflammatory cytokines which interact with each other and contribute to the progression of chronic hepatic diseases. Among these immune cells, Foxp3+ CD4+ regulatory T cells (Tregs) are the crucial subset of CD4+ T cells that create an immunosuppressive environment. This review emphasizes the function of Tregs in the pathogenesis of ALD and NAFLD and their role in the progression of NAFLD-associated hepatocellular carcinoma (HCC). Briefly, Tregs establish an immunosuppressive landscape in the liver by interacting with the innate immune cells and gut microbiota and their metabolites. Meanwhile, with the advancement of steatosis, these Tregs inhibit the proliferation, activation and functions of other cytotoxic T cells and support the progression of simple steatosis to HCC. Briefly, it can be suggested that targeting Tregs can act as a favourable prognostic indicator by modulating steatosis and insulin resistance during the pathogenesis of hepatic steatosis and NAFLD-associated HCC.
Collapse
Affiliation(s)
- Farooq Riaz
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wei
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Chongqing Key Laboratory of Pediatrics, Department of otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Fan Pan
- Center for Cancer Immunology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Fan Pan,
| |
Collapse
|
22
|
Siquara da Rocha LDO, Souza BSDF, Lambert DW, Gurgel Rocha CDA. Cell-in-Cell Events in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:931092. [PMID: 35847959 PMCID: PMC9280122 DOI: 10.3389/fonc.2022.931092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
For over a century, cells within other cells have been detected by pathologists as common histopathological findings in tumors, being generally identified as “cell-in-cell” structures. Despite their characteristic morphology, these structures can originate from various processes, such as cannibalism, entosis and emperipolesis. However, only in the last few decades has more attention been given to these events due to their importance in tumor development. In cancers such as oral squamous cell carcinoma, cell-in-cell events have been linked to aggressiveness, metastasis, and therapeutic resistance. This review aims to summarize relevant information about the occurrence of various cell-in-cell phenomena in the context of oral squamous cell carcinoma, addressing their causes and consequences in cancer. The lack of a standard terminology in diagnosing these events makes it difficult to classify the existing cases and to map the behavior and impacts of these structures. Despite being frequently reported in oral squamous cell carcinoma and other cancers, their impacts on carcinogenesis aren’t fully understood. Cell-in-cell formation is seen as a survival mechanism in the face of a lack of nutritional availability, an acid microenvironment and potential harm from immune cell defense. In this deadly form of competition, cells that engulf other cells establish themselves as winners, taking over as the predominant and more malignant cell population. Understanding the link between these structures and more aggressive behavior in oral squamous cell carcinoma is of paramount importance for their incorporation as part of a therapeutic strategy.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Daniel W. Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Clarissa de Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Clinical Propedeutics, School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
- *Correspondence: Clarissa de Araújo Gurgel Rocha,
| |
Collapse
|
23
|
Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, Tang M, Niu Z, Wang C, Wang Y, Zhang Z, Liang J, Ruan B, Gao L, Chen Z, Melino G, Wang X, Sun Q. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov 2022; 8:35. [PMID: 35436988 PMCID: PMC9016064 DOI: 10.1038/s41421-022-00387-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Penetration of immune cells into tumor cells was believed to be immune-suppressive via cell-in-cell (CIC) mediated death of the internalized immune cells. We unexpectedly found that CIC formation largely led to the death of the host tumor cells, but not the internalized immune cells, manifesting typical features of death executed by NK cells; we named this "in-cell killing" which displays the efficacy superior to the canonical way of "kiss-killing" from outside. By profiling isogenic cells, CD44 on tumor cells was identified as a negative regulator of "in-cell killing" via inhibiting CIC formation. CD44 functions to antagonize NK cell internalization by reducing N-cadherin-mediated intercellular adhesion and by enhancing Rho GTPase-regulated cellular stiffness as well. Remarkably, antibody-mediated blockade of CD44 signaling potentiated the suppressive effects of NK cells on tumor growth associated with increased heterotypic CIC formation. Together, we identified CIC-mediated "in-cell killing" as a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Su
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - You Zheng
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jie Fan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - He Ren
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Meng Tang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Zubiao Niu
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Chenxi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Yuqi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhengrong Zhang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jianqing Liang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Banzhan Ruan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Lihua Gao
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhaolie Chen
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Gerry Melino
- Departments of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Xiaoning Wang
- National Research Center of Geriatrics Diseases, Chinese PLA General Hospital, Beijing, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China.
| |
Collapse
|
24
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
25
|
Zhang C, Yang M. Targeting T Cell Subtypes for NAFLD and NAFLD-Related HCC Treatment: An Opinion. Front Med (Lausanne) 2021; 8:789859. [PMID: 34869507 PMCID: PMC8637206 DOI: 10.3389/fmed.2021.789859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| |
Collapse
|
26
|
Borensztejn K, Tyrna P, Gaweł AM, Dziuba I, Wojcik C, Bialy LP, Mlynarczuk-Bialy I. Classification of Cell-in-Cell Structures: Different Phenomena with Similar Appearance. Cells 2021; 10:cells10102569. [PMID: 34685548 PMCID: PMC8534218 DOI: 10.3390/cells10102569] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
A phenomenon known for over 100 years named “cell-in-cell” (CIC) is now undergoing its renaissance, mostly due to modern cell visualization techniques. It is no longer an esoteric process studied by a few cell biologists, as there is increasing evidence that CICs may have prognostic and diagnostic value for cancer patients. There are many unresolved questions stemming from the difficulties in studying CICs and the limitations of current molecular techniques. CIC formation involves a dynamic interaction between an outer or engulfing cell and an inner or engulfed cell, which can be of the same (homotypic) or different kind (heterotypic). Either one of those cells appears to be able to initiate this process, which involves signaling through cell–cell adhesion, followed by cytoskeleton activation, leading to the deformation of the cellular membrane and movements of both cells that subsequently result in CICs. This review focuses on the distinction of five known forms of CIC (cell cannibalism, phagoptosis, enclysis, entosis, and emperipolesis), their unique features, characteristics, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Karol Borensztejn
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Agata M. Gaweł
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Ireneusz Dziuba
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
- Faculty of Medicine, University of Technology, Rolna 43, 40-555 Katowice, Poland
| | - Cezary Wojcik
- US Cardiovascular, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA;
| | - Lukasz P. Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Izabela Mlynarczuk-Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6295282
| |
Collapse
|
27
|
Liang JB, Chen Y, Chen RL, Li YK, Li B, You ZR, Li Y, Zhang J, Huang BY, Wei YR, Lyu ZW, Lian M, Xiao X, Wang QX, Tang RQ, Fang JY, Chen XY, Ma X, Miao Q. CD8 + T cells actively penetrate hepatocytes via the CD44/p-ERM/F-actin pathway in autoimmune hepatitis. J Dig Dis 2021; 22:351-362. [PMID: 33928766 DOI: 10.1111/1751-2980.12995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/02/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Emperipolesis is a pathological feature for the diagnosis of autoimmune hepatitis (AIH). We have previously found that CD8+ T cells participated in the emperipolesis in AIH. In this study we aimed to clarify the characteristics and molecular mechanisms of emperipolesis in patients with AIH in vitro and in mice with α-Galactosylceramide (α-GalCer)-induced acute hepatitis. METHODS The peripheral blood mononuclear cells (PBMC) of patients with various chronic liver diseases and healthy controls were co-cultured with hepatic cell lines to induce emperipolesis in vitro. Confocal staining was performed to illustrate the cellular types and potential mechanisms of emperipolesis in AIH. In addition, a murine model of α-GalCer-induced acute hepatitis that mimics human AIH was used to confirm the role of CD44/p-ERM/F-actin in the emperipolesis process in vivo. RESULTS In the co-cultured system of PBMC and hepatic cell line, emperipolesis was observed most commonly in patients with AIH. The main cells participating in emperipolesis were CD8+ T cells, and they penetrated hepatic cells actively via the CD44/p-ERM/F-actin pathway. As a result, most CD8+ T cells engulfed by hepatic cells underwent apoptosis. In the α-GalCer-induced acute hepatitis model, emperipolesis was observed around the inflammatory foci and was inhibited by the ezrin phosphorylation inhibitor NSC668394. Similarly, activated murine CD8+ T cells penetrated primary hepatocytes via the CD44/p-ERM/F-actin pathway in vitro. CONCLUSIONS CD8+ T cells penetrate hepatic cells actively via the CD44/p-ERM/F-actin signaling pathway and undergo apoptosis. This may be a compensatory mechanism to attenuate the overwhelming immune attack in AIH.
Collapse
Affiliation(s)
- Ju Bo Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Rui Ling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Kang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zheng Rui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bing Yuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Ran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhu Wan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Xia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ru Qi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Yu Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
28
|
Aghabi YO, Yasin A, Kennedy JI, Davies SP, Butler AE, Stamataki Z. Targeting Enclysis in Liver Autoimmunity, Transplantation, Viral Infection and Cancer. Front Immunol 2021; 12:662134. [PMID: 33953725 PMCID: PMC8089374 DOI: 10.3389/fimmu.2021.662134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent liver inflammation can lead to cirrhosis, which associates with significant morbidity and mortality worldwide. There are no curative treatments beyond transplantation, followed by long-term immunosuppression. The global burden of end stage liver disease has been increasing and there is a shortage of donor organs, therefore new therapies are desperately needed. Harnessing the power of the immune system has shown promise in certain autoimmunity and cancer settings. In the context of the liver, regulatory T cell (Treg) therapies are in development. The hypothesis is that these specialized lymphocytes that dampen inflammation may reduce liver injury in patients with chronic, progressive diseases, and promote transplant tolerance. Various strategies including intrinsic and extracorporeal expansion of Treg cells, aim to increase their abundance to suppress immune responses. We recently discovered that hepatocytes engulf and delete Treg cells by enclysis. Herein, we propose that inhibition of enclysis may potentiate existing regulatory T cell therapeutic approaches in patients with autoimmune liver diseases and in patients receiving a transplant. Moreover, in settings where the abundance of Treg cells could hinder beneficial immunity, such us in chronic viral infection or liver cancer, enhancement of enclysis could result in transient, localized reduction of Treg cell numbers and tip the balance towards antiviral and anti-tumor immunity. We describe enclysis as is a natural process of liver immune regulation that lends itself to therapeutic targeting, particularly in combination with current Treg cell approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Zania Stamataki
- College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Giotakis AI, Dudas J, Glueckert R, Dejaco D, Ingruber J, Fleischer F, Innerhofer V, Pinggera L, Bektic-Tadic L, Gabriel SAM, Riechelmann H. Characterization of epithelial cells, connective tissue cells and immune cells in human upper airway mucosa by immunofluorescence multichannel image cytometry: a pilot study. Histochem Cell Biol 2021; 155:405-421. [PMID: 33251550 PMCID: PMC8021535 DOI: 10.1007/s00418-020-01945-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
Epithelial, connective tissue and immune cells contribute in various ways to the pathophysiology of chronic rhinosinusitis (CRS). However, data of their distribution in upper airway mucosa are sparse. We aimed to provide quantitative, purely informative data on the distribution of these cell lineages and their coexpression patterns, which might help identifying, e.g., cells in the epithelium undergoing through epithelial-mesenchymal transition (EMT). For this purpose, we used immunofluorescence multichannel image cytometry (IMIC). We examined fixed paraffin-embedded tissue samples (FFPE) of six patients with chronic rhinosinusitis (CRS) and of three patients without CRS (controls). The direct-conjugated antibodies pancytokeratin, vimentin and CD45/CD18 were used for coexpression analysis in epithelial layer and lamina propria. Image acquisition and analysis were performed with TissueFAXS and StrataQuest, respectively. To distinguish positive from negative expression, a ratio between cell-specific immunostaining intensity and background was developed. Isotype controls were used as negative controls. Per patient, a 4.5-mm2 tissue area was scanned and a median of 14,875 cells was recognized. The most common cell types were cytokeratin-single-positive (26%), vimentin-single-positive (13%) and CD45/CD18-single-positive with CD45/CD18-vimentin-double-positive cells (29%). In the patients with CRS, CD45/CD18-single-positive cells were 3-6 times higher compared to the control patients. In the epithelial layer, cytokeratin-vimentin-double-positive EMT cells were observed 3-5 times higher in the patients with CRS than in the control patients. This study provided quantitative data for the distribution of crucial cell types in CRS. Future studies may focus on the distribution and coexpression patterns of different immune cells in CRS or even cancer tissue.
Collapse
Affiliation(s)
- Aris I Giotakis
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Ingruber
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Fleischer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Veronika Innerhofer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Leyla Pinggera
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ljilja Bektic-Tadic
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah A M Gabriel
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Su Y, Ren H, Tang M, Zheng Y, Zhang B, Wang C, Hou X, Niu Z, Wang Z, Gao X, Gao L, Jiang H, Chen Z, Luo T, Sun Q. Role and dynamics of vacuolar pH during cell-in-cell mediated death. Cell Death Dis 2021; 12:119. [PMID: 33483474 PMCID: PMC7822940 DOI: 10.1038/s41419-021-03396-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
The nonautonomous cell death by entosis was mediated by the so-called cell-in-cell structures, which were believed to kill the internalized cells by a mechanism dependent on acidified lysosomes. However, the precise values and roles of pH critical for the death of the internalized cells remained undetermined yet. We creatively employed keima, a fluorescent protein that displays different excitation spectra in responding to pH changes, to monitor the pH dynamics of the entotic vacuoles during cell-in-cell mediated death. We found that different cells varied in their basal intracellular pH, and the pH was relatively stable for entotic vacuoles containing live cells, but sharply dropped to a narrow range along with the inner cell death. In contrast, the lipidation of entotic vacuoles by LC3 displayed previously underappreciated complex patterns associated with entotic and apoptotic death, respectively. The pH decline seemed to play distinct roles in the two types of inner cell deaths, where apoptosis is preceded with moderate pH decline while a profound pH decline is likely to be determinate for entotic death. Whereas the cancer cells seemed to be lesser tolerant to acidified environments than noncancerous cells, manipulating vacuolar pH could effectively control inner cell fates and switch the ways whereby inner cell die. Together, this study demonstrated for the first time the pH dynamics of entotic vacuoles that dictate the fates of internalized cells, providing a rationale for tuning cellular pH as a potential way to treat cell-in-cell associated diseases such as cancer.
Collapse
Affiliation(s)
- Yan Su
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - He Ren
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Meng Tang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Bo Zhang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Xinyu Hou
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Zhongyi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Xiaoyan Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Hong Jiang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China.
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.
- Research Unit of Cell Death Mechanism, 2020RU009, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
31
|
O’Brien A, Gasheva O, Alpini G, Zawieja D, Gashev A, Glaser S. The Role of Lymphatics in Cholestasis: A Comprehensive Review. Semin Liver Dis 2020; 40:403-410. [PMID: 32906164 PMCID: PMC9624117 DOI: 10.1055/s-0040-1713675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholestatic liver disease affects millions of people worldwide and stems from a plethora of causes such as immune dysfunction, genetics, cancerous growths, and lifestyle choices. While not considered a classical lymphatic organ, the liver plays a vital role in the lymph system producing up to half of the body's lymph per day. The lymphatic system is critical to the health of an organism with its networks of vessels that provide drainage for lymphatic fluid and routes for surveilling immune cells. Cholestasis results in an increase of inflammatory cytokines, growth factors, and inflammatory infiltrate. Left unchecked, further disease progression will include collagen deposition which impedes both the hepatic and lymphatic ducts, eventually resulting in an increase in hepatic decompensation, increasing portal pressures, and accumulation of fluid within the abdominal cavity (ascites). Despite the documented interplay between these vital systems, little is known about the effect of liver disease on the lymph system and its biological response. This review looks at the current cholestatic literature from the perspective of the lymphatic system and summarizes what is known about the role of the lymph system in liver pathogenesis during hepatic injury and remodeling, immune-modulating events, or variations in interstitial pressures.
Collapse
Affiliation(s)
- April O’Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, Texas
| | - Olga Gasheva
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, Texas
| | - Gianfranco Alpini
- Department of Medicine, Division of Gastroenterology, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, Indiana,Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, Texas
| | - Anatoliy Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, Texas
| |
Collapse
|
32
|
Li L, Zeng Z. Live Imaging of Innate and Adaptive Immune Responses in the Liver. Front Immunol 2020; 11:564768. [PMID: 33042143 PMCID: PMC7527534 DOI: 10.3389/fimmu.2020.564768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
Immune response in the liver is determined by the spatial organization and cellular dynamics of hepatic immune cells. The liver vasculature accommodates abundant tissue-resident innate immune cells, such as Kupffer cells, natural killer cells, and natural killer T cells, to ensure efficient intravascular immunosurveillance. The fenestrated sinusoids also allow direct contact between circulating T cells and non-canonical antigen-presenting cells, such as hepatocytes, to instruct adaptive immune responses. Distinct cellular behaviors are exploited by liver immune cells to exert proper functions. Intravital imaging enables real-time visualization of individual immune cell in living animals, representing a powerful tool in dissecting the spatiotemporal features of intrahepatic immune cells during steady state and liver diseases. This review summarizes current advances in liver immunology prompted by in vivo imaging, with a particular focus on liver-resident innate immune cells and hepatic T cells.
Collapse
Affiliation(s)
- Lu Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhutian Zeng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer Within the Liver. Front Physiol 2020; 11:990. [PMID: 32982772 PMCID: PMC7485256 DOI: 10.3389/fphys.2020.00990] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) form a unique barrier between the liver sinusoids and the underlying parenchyma, and thus play a crucial role in maintaining metabolic and immune homeostasis, as well as actively contributing to disease pathophysiology. Whilst their endocytic and scavenging function is integral for nutrient exchange and clearance of waste products, their capillarisation and dysfunction precedes fibrogenesis. Furthermore, their ability to promote immune tolerance and recruit distinct immunosuppressive leukocyte subsets can allow persistence of chronic viral infections and facilitate tumour development. In this review, we present the immunological and barrier functions of LSEC, along with their role in orchestrating fibrotic processes which precede tumourigenesis. We also summarise the role of LSEC in modulating the tumour microenvironment, and promoting development of a pre-metastatic niche, which can drive formation of secondary liver tumours. Finally, we summarise closely inter-linked disease pathways which collectively perpetuate pathogenesis, highlighting LSEC as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
Wang M, Niu Z, Qin H, Ruan B, Zheng Y, Ning X, Gu S, Gao L, Chen Z, Wang X, Huang H, Ma L, Sun Q. Mechanical Ring Interfaces between Adherens Junction and Contractile Actomyosin to Coordinate Entotic Cell-in-Cell Formation. Cell Rep 2020; 32:108071. [PMID: 32846129 DOI: 10.1016/j.celrep.2020.108071] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/21/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Entosis is a cell-in-cell (CIC)-mediated death program. Contractile actomyosin (CA) and the adherens junction (AJ) are two core elements essential for entotic CIC formation, but the molecular structures interfacing them remain poorly understood. Here, we report the characterization of a ring-like structure interfacing between the peripheries of invading and engulfing cells. The ring-like structure is a multi-molecular complex consisting of adhesive and cytoskeletal proteins, in which the mechanical sensor vinculin is highly enriched. The vinculin-enriched structure senses mechanical force imposed on cells, as indicated by fluorescence resonance energy transfer (FRET) analysis, and is thus termed the mechanical ring (MR). The MR actively interacts with CA and the AJ to help establish and maintain polarized actomyosin that drives cell internalization. Vinculin depletion leads to compromised MR formation, CA depolarization, and subsequent CIC failure. In summary, we suggest that the vinculin-enriched MR, in addition to CA and AJ, is another core element essential for entosis.
Collapse
Affiliation(s)
- Manna Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Zubiao Niu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Hongquan Qin
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China; Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China
| | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiangkai Ning
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Songzhi Gu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric, the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Li Ma
- Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, China.
| |
Collapse
|
35
|
Osei-Bordom D, Bozward AG, Oo YH. The hepatic microenvironment and regulatory T cells. Cell Immunol 2020; 357:104195. [PMID: 32861844 DOI: 10.1016/j.cellimm.2020.104195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The human liver is regarded as a lymphoid organ that contributes to both local and systemic immune response. Intrahepatic immune cells including regulatory T cells (Tregs) reside in the hepatic microenvironment which is enriched with proinflammatory cytokines, chemokines and metabolites. In addition, the hepatic microenvironment has the unique ability to establish and maintain immune tolerance despite the continuous influx of the gut derived microbial products via the portal vein. Regulatory T cells play a crucial role in maintaining the hepatic tolerogenic state; however, the phenotypic stability, function and survival of Tregs in the inflamed liver microenvironment is still poorly understood. Despite this, Tregs immunotherapy remains as an appealing therapeutic option in autoimmune and immune mediated liver diseases. In order to advance cell therapy, it is important for us to further our understanding of the hepatic microenvironment, with the aim of developing ways to modify the hostile, inflamed environment to one which is more favourable. By doing so, T cell stability and function would be enhanced, resulting in improved clinical outcomes.
Collapse
Affiliation(s)
- Daniel Osei-Bordom
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom
| | - Amber G Bozward
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom
| | - Ye Htun Oo
- Centre for Liver Research and NIHR BRC, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom; European Reference Network Centre: Rare Liver, United Kingdom; Queen Elizabeth Hospital, University Hospital of Birmingham NHS Foundation Trust, United Kingdom.
| |
Collapse
|
36
|
Castellarin M, Sands C, Da T, Scholler J, Graham K, Buza E, Fraietta JA, Zhao Y, June CH. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight 2020; 5:136012. [PMID: 32544101 PMCID: PMC7453898 DOI: 10.1172/jci.insight.136012] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Off-tumor targeting of human antigens is difficult to predict in preclinical animal studies and can lead to serious adverse effects in patients. To address this, we developed a mouse model with stable and tunable human Her2 (hHer2) expression on normal hepatic tissue and compared toxicity between affinity-tuned Her2 chimeric antigen receptor T cells (CARTs). In mice with hHer2-high livers, both the high-affinity (HA) and low-affinity (LA) CARTs caused lethal liver damage due to immunotoxicity. In mice with hHer2-low livers, LA-CARTs exhibited less liver damage and lower systemic levels of IFN-γ than HA-CARTs. We then compared affinity-tuned CARTs for their ability to control a hHer2-positive tumor xenograft in our model. Surprisingly, the LA-CARTs outperformed the HA-CARTs with superior antitumor efficacy in vivo. We hypothesized that this was due, in part, to T cell trafficking differences between LA and HA-CARTs and found that the LA-CARTs migrated out of the liver and infiltrated the tumor sooner than the HA-CARTs. These findings highlight the importance of T cell targeting in reducing toxicity of normal tissue and also in preventing off-tumor sequestration of CARTs, which reduces their therapeutic potency. Our model may be useful to evaluate various CARTs that have conditional expression of more than 1 single-chain variable fragment (scFv).
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Humans
- Immunotherapy, Adoptive/methods
- Interferon-gamma/genetics
- Liver/drug effects
- Liver/pathology
- Mice
- Receptor, ErbB-2/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/pharmacology
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mauro Castellarin
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine
| | - Caroline Sands
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
| | - Tong Da
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
| | - John Scholler
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
| | - Kathleen Graham
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
| | - Elizabeth Buza
- Department of Pathobiology, School of Veterinary Medicine, and
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine
| | - Carl H. June
- Center for Cellular Immunotherapies, Abramson Cancer Center, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine
| |
Collapse
|
37
|
Stamataki Z, Swadling L. The liver as an immunological barrier redefined by single-cell analysis. Immunology 2020; 160:157-170. [PMID: 32176810 PMCID: PMC7218664 DOI: 10.1111/imm.13193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a front-line immune tissue that plays a major role in the detection, capture and clearance of pathogens and foreign antigens entering the bloodstream, especially from the gut. Our largest internal organ maintains this immune barrier in the face of constant exposure to external but harmless antigens through a highly specialized network of liver-adapted immune cells. Mapping the immune resident compartment in the liver has been challenging because it requires multimodal single-cell deep phenotyping approaches of often rare cell populations in difficult to access samples. We can now measure the RNA transcripts present in a single cell (scRNA-seq), which is revolutionizing the way we characterize cell types. scRNA-seq has been applied to the diverse array of immune cells present in murine and human livers in health and disease. Here, we summarize how emerging single-cell technologies have advanced or redefined our understanding of the immunological barrier provided by the liver.
Collapse
Affiliation(s)
- Zania Stamataki
- Institute of Immunology and ImmunotherapyCentre for Liver and Gastrointestinal ResearchUniversity of BirminghamBirminghamUK
- NIHR Birmingham Liver Biomedical Research CentreUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Leo Swadling
- Division of Infection & ImmunityUniversity College LondonLondonUK
| |
Collapse
|
38
|
Davies SP, Terry LV, Wilkinson AL, Stamataki Z. Cell-in-Cell Structures in the Liver: A Tale of Four E's. Front Immunol 2020; 11:650. [PMID: 32528462 PMCID: PMC7247839 DOI: 10.3389/fimmu.2020.00650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is our largest internal organ and it plays major roles in drug detoxification and immunity, where the ingestion of extracellular material through phagocytosis is a critical pathway. Phagocytosis is the deliberate endocytosis of large particles, microbes, dead cells or cell debris and can lead to cell-in-cell structures. Various types of cell endocytosis have been recently described for hepatic epithelia (hepatocytes), which are non-professional phagocytes. Given that up to 80% of the liver comprises hepatocytes, the biological impact of cell-in-cell structures in the liver can have profound effects in liver regeneration, inflammation and cancer. This review brings together the latest reports on four types of endocytosis in the liver -efferocytosis, entosis, emperipolesis and enclysis, with a focus on hepatocyte biology.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Lauren V Terry
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Alex L Wilkinson
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|