1
|
Zhao C, Wang H, Xu C, Fang F, Gao L, Zhai N, Zhong Y, Wang X. The critical role of the Hippo signaling pathway in renal fibrosis. Cell Signal 2025; 130:111661. [PMID: 39988289 DOI: 10.1016/j.cellsig.2025.111661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Renal fibrosis is a fundamental pathological change in the progression of various chronic kidney diseases to the end stage of renal disease. The Hippo signaling pathway is an evolutionary highly conserved signaling pathway that is involved in the regulation of organ size, tissue regeneration, and human reproduction and development. Currently, many studies have shown that it is closely associated with renal diseases, such as, renal fibrosis, diabetic nephropathy, and renal cancer. Here, we review the current researches on the effect of Hippo signaling pathway on renal fibrosis, which provides new ideas and theoretical basis for clinical therapeutics of renal fibrosis.
Collapse
Affiliation(s)
- Chenchen Zhao
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Hongshuang Wang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Chang Xu
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Fang Fang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Lanjun Gao
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Nan Zhai
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China
| | - Yan Zhong
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Liver and Kidney Diseases of Integrated Traditional Chinese and Western Medicine 7th Floor, Scientific Research Building, Hebei University of Traditional Chinese Medicine, Shijiazhuang City, China.
| |
Collapse
|
2
|
Jiang M, Bu W, Wang X, Ruan J, Shi W, Yu S, Huang L, Xue P, Tang J, Zhao X, Su L, Cheng D. Pulmonary fibrosis: from mechanisms to therapies. J Transl Med 2025; 23:515. [PMID: 40340941 PMCID: PMC12063347 DOI: 10.1186/s12967-025-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/18/2025] [Indexed: 05/10/2025] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive interstitial lung disease characterized by excessive deposition of extracellular matrix (ECM) and abnormal fibroblast proliferation, which is mainly caused by air pollution, smoking, aging, occupational exposure, environmental pollutants exposure, and microbial infections. Although antifibrotic agents such as pirfenidone and nintedanib, approved by the United States (US) Food and Drug Administration (FDA), can slow the decline in lung function and disease progression, their side effects and delivery inefficiency limit the overall prognosis of PF. Therefore, there is an urgent need to develop effective therapeutic targets and delivery approaches for PF in clinical settings. This review provides an overview of the pathogenic mechanisms, therapeutic drug targeting signaling pathways, and promising drug delivery strategies for treating PF.
Collapse
Affiliation(s)
- Mengna Jiang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Jialing Ruan
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Weijian Shi
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Siqi Yu
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China
| | - Lizhen Huang
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China
| | - Peng Xue
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, 334000, China.
| | - Demin Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
3
|
Du L, Gao R, Chen Z. 5-Methylcytosine Methylation-Linked Hippo Pathway Molecular Interactions Regulate Lipid Metabolism. Int J Mol Sci 2025; 26:2560. [PMID: 40141201 PMCID: PMC11942534 DOI: 10.3390/ijms26062560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
5-methylcytosine (5mC) is a common form of DNA methylation, essentially acting as an epigenetic modification that regulates gene expression by affecting the binding of transcription factors to DNA or by recruiting proteins that make it difficult to recognize and transcribe genes. 5mC methylation is present in eukaryotes in a variety of places, such as in CpG islands, within gene bodies, and in regions of repetitive sequences, whereas in prokaryotic organisms, it is mainly present in genomic DNA. The Hippo pathway is a highly conserved signal transduction pathway, which is extremely important in cell proliferation and death, controlling the size of tissues and organs and regulating cell differentiation, in addition to its important regulatory roles in lipid synthesis, transport, and catabolism. Lipid metabolism is an important part of various metabolic pathways in the human body, and problems in lipid metabolism are related to abnormalities in key enzymes, related proteins, epigenetic inheritance, and certain specific amino acids, which are the key factors affecting its proper regulation. In this article, we will introduce the molecular mechanisms of 5mC methylation and the Hippo signaling pathway, and the possibility of their co-regulation of lipid metabolism, with the aim of providing new ideas for further research and novel therapeutic modalities for lipid metabolism and a reference for the development and exploration of related research.
Collapse
Affiliation(s)
- Lichen Du
- Agricultural College, Yangzhou University, Yangzhou 225009, China;
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Bock F, Li S, Pozzi A, Zent R. Integrins in the kidney - beyond the matrix. Nat Rev Nephrol 2025; 21:157-174. [PMID: 39643697 DOI: 10.1038/s41581-024-00906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/09/2024]
Abstract
The development and proper functioning of the kidney is dependent on the interaction of kidney cells with the surrounding extracellular matrix (ECM). These interactions are mediated by heterodimeric membrane-bound receptors called integrins, which bind to the ECM via their extracellular domain and via their cytoplasmic tail to intracellular adaptor proteins, to assemble large macromolecular adhesion complexes. These interactions enable integrins to control cellular functions such as intracellular signalling and organization of the actin cytoskeleton and are therefore crucial to organ function. The different nephron segments and the collecting duct system have unique morphologies, functions and ECM environments and are thus equipped with unique sets of integrins with distinct specificities for the ECM with which they interact. These cell-type-specific functions are facilitated by specific intracellular integrin binding proteins, which are critical in determining the integrin activation status, ligand-binding affinity and the type of ECM signals that are relayed to the intracellular structures. The spatiotemporal expression of integrins and their specific interactions with binding partners underlie the proper development, function and repair processes of the kidney. This Review summarizes our current understanding of how integrins, their binding partners and the actin cytoskeleton regulate kidney development, physiology and pathology.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
5
|
Villari G, Gioelli N, Gino M, Zhang H, Hodge K, Cordero F, Zanivan S, Zhu J, Serini G. Luminescent sensing of conformational integrin activation in living cells. Cell Rep 2025; 44:115319. [PMID: 39964812 PMCID: PMC11861568 DOI: 10.1016/j.celrep.2025.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Integrins are major receptors for secreted extracellular matrix, playing crucial roles in physiological and pathological contexts, such as angiogenesis and cancer. Regulation of the transition between inactive and active conformation is key for integrins to fulfill their functions, and pharmacological control of those dynamics may have therapeutic applications. We create and validate a prototypic luminescent β1 integrin activation sensor (β1IAS) by introducing a split luciferase into an activation reporting site between the βI and the hybrid domains. As a recombinant protein in both solution and living cells, β1IAS accurately reports β1 integrin activation in response to (bio)chemical and physical stimuli. A short interfering RNA (siRNA) high-throughput screening on live β1IAS knockin endothelial cells unveils hitherto unknown regulators of β1 integrin activation, such as β1 integrin inhibitors E3 ligase Pja2 and vascular endothelial growth factor B (VEGF-B). This split-luciferase-based strategy provides an in situ label-free measurement of integrin activation and may be applicable to other β integrins and receptors.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Noemi Gioelli
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Marta Gino
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy
| | - Heng Zhang
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Kelly Hodge
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jieqing Zhu
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, TO, Italy; Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, TO, Italy.
| |
Collapse
|
6
|
Wu M, Sarkar C, Guo B. Regulation of Cancer Metastasis by PAK2. Int J Mol Sci 2024; 25:13443. [PMID: 39769207 PMCID: PMC11676821 DOI: 10.3390/ijms252413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
PAK2 is a serine-threonine kinase and a member of the p21-activated kinase (PAK) family. PAK2 is activated by GTP-bound rho family GTPases, Rac, and Cdc42, and it regulates actin dynamics, cell adhesion to the extracellular matrix, and cell motility. In various types of cancers, PAK2 has been implicated in the regulation of cancer cell proliferation, cell cycle, and apoptosis. In addition, recent studies have shown that PAK2 plays an important role in cancer cell metastasis, indicating PAK2 as a potential therapeutic target. This review discusses recent discoveries on the functions of PAK2 in the regulation of various types of cancers. A better understanding of the mechanisms of function of PAK2 will facilitate future development of cancer therapies.
Collapse
Affiliation(s)
- Megan Wu
- The Kinkaid School, Houston, TX 77024, USA;
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh;
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
7
|
Bao Y, Shan Q, Lu K, Yang Q, Liang Y, Kuang H, Wang L, Hao M, Peng M, Zhang S, Cao G. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis. J Pharm Anal 2024; 14:100933. [PMID: 39247486 PMCID: PMC11377145 DOI: 10.1016/j.jpha.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 09/10/2024] Open
Abstract
Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system (UPS), autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (ER, unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including DNA, protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, ER stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.
Collapse
Affiliation(s)
- Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Keda Lu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying Liang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030600, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310009, China
| |
Collapse
|
8
|
Chowdhury D, Mistry A, Maity D, Bhatia R, Priyadarshi S, Wadan S, Chakraborty S, Haldar S. Pan-cancer analyses suggest kindlin-associated global mechanochemical alterations. Commun Biol 2024; 7:372. [PMID: 38548811 PMCID: PMC10978987 DOI: 10.1038/s42003-024-06044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Kindlins serve as mechanosensitive adapters, transducing extracellular mechanical cues to intracellular biochemical signals and thus, their perturbations potentially lead to cancer progressions. Despite the kindlin involvement in tumor development, understanding their genetic and mechanochemical characteristics across different cancers remains elusive. Here, we thoroughly examined genetic alterations in kindlins across more than 10,000 patients with 33 cancer types. Our findings reveal cancer-specific alterations, particularly prevalent in advanced tumor stage and during metastatic onset. We observed a significant co-alteration between kindlins and mechanochemical proteome in various tumors through the activation of cancer-related pathways and adverse survival outcomes. Leveraging normal mode analysis, we predicted structural consequences of cancer-specific kindlin mutations, highlighting potential impacts on stability and downstream signaling pathways. Our study unraveled alterations in epithelial-mesenchymal transition markers associated with kindlin activity. This comprehensive analysis provides a resource for guiding future mechanistic investigations and therapeutic strategies targeting the roles of kindlins in cancer treatment.
Collapse
Affiliation(s)
- Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, 700106, India.
| | - Ayush Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, 131029, India
| | - Debashruti Maity
- Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, 700106, India
| | - Riti Bhatia
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, 131029, India
| | - Shreyansh Priyadarshi
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, 131029, India
| | - Simran Wadan
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, 131029, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, 131029, India
| | - Shubhasis Haldar
- Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, 700106, India.
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, 131029, India.
- Technical Research Centre, S.N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, 700106, India.
| |
Collapse
|
9
|
Onodera W, Kawasaki K, Oishi M, Aoki S, Asahi T. Functional Divergence and Origin of the Vertebrate Praja Family. J Mol Evol 2024; 92:21-29. [PMID: 38158403 DOI: 10.1007/s00239-023-10150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
The Praja family is an E3 ubiquitin ligase, promoting polyubiquitination and subsequent degradation of substrates. It comprises two paralogs, praja1 and praja2. Prior research suggests these paralogs have undergone functional divergence, with examples, such as their distinct roles in neurite outgrowth. However, the specific evolutionary trajectories of each paralog remain largely unexplored preventing mechanistic understanding of functional differences between paralogs. Here, we investigated the phylogeny and divergence of the vertebrate Praja family through molecular evolutionary analysis. Phylogenetic examination of the vertebrate praja revealed that praja1 and praja2 originated from the common ancestor of placentals via gene duplication, with praja1 evolving at twice the rate of praja2 shortly after the duplication. Moreover, a unique evolutionary trajectory for praja1 relative to other vertebrate Praja was indicated, as evidenced by principal component analysis on GC content, codon usage frequency, and amino acid composition. Subsequent motif/domain comparison revealed conserved N terminus and C terminus in praja1 and praja2, together with praja1-specific motifs, including nuclear localization signal and Ala-Gly-Ser repeats. The nuclear localization signal was demonstrated to be functional in human neuroblastoma SH-SY5Y cells using deletion mutant, while praja2 was exclusively expressed in the nucleus. These discoveries contribute to a more comprehensive understanding of the Praja family's phylogeny and suggest a functional divergence between praja1 and praja2. Specifically, the shift of praja1 into the nucleus implies the degradation of novel substrates located in the nucleus as an evolutionary consequence.
Collapse
Affiliation(s)
- Wataru Onodera
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan.
| | - Kotaro Kawasaki
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan
| | - Mizuho Oishi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan
| | - Shiho Aoki
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-0056, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo, 162-0041, Japan.
| |
Collapse
|
10
|
Hou S, Zhao T, Deng B, Li C, Li W, Huang H, Hang Q. USP10 promotes migration and cisplatin resistance in esophageal squamous cell carcinoma cells. Med Oncol 2023; 41:33. [PMID: 38150085 DOI: 10.1007/s12032-023-02272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023]
Abstract
Cisplatin-based chemotherapy is the main treatment option for advanced or metastatic esophageal squamous cell carcinoma (ESCC). However, most ESCC patients develop drug resistance within 2 years after receiving cisplatin chemotherapy. Ubiquitin-specific protease 10 (USP10) is abnormally expressed in a variety of cancers, but the mechanistic roles of USP10 in ESCC are still obscure. Here, the effects of USP10 on the migration and cisplatin resistance of ESCC in vivo and in vitro and the underlying mechanisms have been investigated by bioinformatics analysis, RT-PCR, western blotting, immunoprecipitation, immunohistochemistry, cell migration and MTS cell proliferation assays, deubiquitination assay, and mouse tail vein injection model. USP10 was significantly up-regulated in ESCC tissues compared with adjacent normal tissues in both public databases and clinical samples and was closely associated with overall survival. Subsequent results revealed that USP10 contributed to the migration and cisplatin resistance of ESCC cells, while knocking down USP10 in cisplatin-resistant cells exhibited opposite effects in vitro and in vivo. Further Co-IP experiments showed that integrin β1 and YAP might be targets for USP10 deubiquitination. Moreover, deficiency of USP10 significantly inhibited the migrative and chemo-resistant abilities of ESCC cells, which could be majorly reversed by integrin β1 or YAP reconstitution. Altogether, USP10 was required for migration and cisplatin resistance in ESCC through deubiquinating and stabilizing integrin β1/YAP, highlighting that inhibition of USP10 may be a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Sicong Hou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Tiantian Zhao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Caimin Li
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Wenqian Li
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng, 224006, Jiangsu Province, China
- Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224006, Jiangsu Province, China
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, China.
| |
Collapse
|
11
|
Kim I, Lertpatipanpong P, Yoon Y, Lee J, Hong Y, Boonruang K, Ryu J, Baek SJ. Tolfenamic acid negatively regulates YAP and TAZ expression in human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119556. [PMID: 37544381 DOI: 10.1016/j.bbamcr.2023.119556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Several diseases are associated with improper regulation of the Hippo pathway, which plays an important role in cell proliferation and cancer metastasis. Overactivation of the YAP and TAZ proteins accelerates cell proliferation, invasion, and migration during tumorigenesis. Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug (NSAID) that exhibits activity against various types of cancer. In this study, we observed that TA decreased YAP and TAZ protein levels in cancer cells. TA increased the phosphorylation of YAP and TAZ, leading to the degradation of YAP and TAZ in the cytoplasm and nucleus. TA predominantly affected multiple phosphodegron sites in the YAP and TAZ and lowered 14-3-3β protein expression, causing YAP and TAZ to enter the ubiquitination pathway. Proteins that affect YAP and TAZ regulation, such as NAG-1 and several YAP/TAZ E3 ligases, were not involved in TA-mediated YAP/TAZ degradation. In summary, our results indicate that TA affects phosphodegron sites on YAP/TAZ, demonstrating a novel effect of TA in tumorigenesis.
Collapse
Affiliation(s)
- Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yongdae Yoon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Kanokkan Boonruang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Wang Z, Zhang L, Li B, Song J, Yu M, Zhang J, Chen C, Zhan J, Zhang H. Kindlin-2 in myoepithelium controls luminal progenitor commitment to alveoli in mouse mammary gland. Cell Death Dis 2023; 14:675. [PMID: 37833248 PMCID: PMC10576046 DOI: 10.1038/s41419-023-06184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Myoepithelium plays an important role in mammary gland development, but less is known about the molecular mechanism underlying how myoepithelium controls acinus differentiation during gestation. Herein, we found that loss of Kindlin-2 in myoepithelial cells impaired mammary morphogenesis, alveologenesis, and lactation. Using five genetically modified mouse lines combined with single-cell RNA sequencing, we found a Kindlin-2-Stat3-Dll1 signaling cascade in myoepithelial cells that inactivates Notch signaling in luminal cells and consequently drives luminal progenitor commitment to alveolar cells identity. Single-cell profiling revealed that Kindlin-2 loss significantly reduces the proportion of matured alveolar cells. Mechanistically, Kindlin-2 depletion in myoepithelial cells promotes Stat3 activation and upregulates Dll1, which activates the Notch pathway in luminal cells and inhibits luminal progenitor differentiation and maturation during gestation. Inhibition of Notch1 with tangeretin allowed luminal progenitors to regain commitment ability in the pregnant mice with Kindlin-2 depletion in myoepithelium. Taken together, we demonstrated that Kindlin-2 is essential to myoepithelium-controlled luminal progenitors to alveoli transition during gestation.
Collapse
Affiliation(s)
- Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Bing Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
- Department of Histology and Embryology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
13
|
Zuo Y, Pan X, Wang X, You Y. FKN secreted by kidney epithelial cells regulates macrophage activation in lupus nephritis via the Hippo signaling pathway. Lupus 2023; 32:1381-1393. [PMID: 37751892 DOI: 10.1177/09612033231204068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE), and its pathogenesis is not fully understood. Previously, we showed that fractalkine (FKN) expression was positively correlated with the severity of LN. Here, we aimed to study the role of the Hippo signaling pathway (HSP) and its interaction with FKN in LN in an attempt to provide novel strategies for LN treatment. METHODS In this study, lipopolysaccharide (LPS)/interferon-γ (IFN-γ)-stimulated THP-1 cells were co-cultured with FKN up-regulated or down-regulated kidney epithelial cells Hkb20. FKN-knockout (KO-FKN) mice were used to construct LN model. Flow cytometric analysis, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), pathological staining, Western blot, and immunofluorescence (IF) staining were employed to investigate the role of FKN and its interaction with the Hippo signaling pathway (HSP) in LN. RESULTS Up-regulation of FKN in kidney epithelial cells was associated with increased macrophage activation. FKN overexpression in kidney epithelial cells suppressed apoptosis, inflammation levels, and M1 polarization of THP-1 cells and inhibited the HSP. Oppositely, FKN knockdown in kidney epithelial cells increased apoptosis, inflammation, and M1 polarization and activated the HSP. HSP inhibitor reversed the effect of FKN knockdown on THP-1 cells. In LN mice, FKN knockout and YAP inhibitor decreased the levels of renal function markers, alleviated kidney injury induced by LN, and inhibited macrophage activation in LN mice. CONCLUSIONS FKN down-regulation reduced the activation of macrophages in renal tissue and alleviated kidney damage by activating HSP. The regulatory effect of FKN on HSP should be confirmed in patients with LN, and the mechanism of FKN in LN should be further explored.
Collapse
Affiliation(s)
- Yao Zuo
- First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Hematology & Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiuhong Pan
- Department of Hematology & Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaochao Wang
- Department of Hematology & Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanwu You
- Department of Nephrology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
14
|
Yu M, Wu W, Sun Y, Yan H, Zhang L, Wang Z, Gong Y, Wang T, Li Q, Song J, Wang M, Zhang J, Tang Y, Zhan J, Zhang H. FRMD8 targets both CDK4 activation and RB degradation to suppress colon cancer growth. Cell Rep 2023; 42:112886. [PMID: 37527040 DOI: 10.1016/j.celrep.2023.112886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) and retinoblastoma protein (RB) are both important cell-cycle regulators that function in different scenarios. Here, we report that FERM domain-containing 8 (FRMD8) inhibits CDK4 activation and stabilizes RB, thereby causing cell-cycle arrest and inhibiting colorectal cancer (CRC) cell growth. FRMD8 interacts separately with CDK7 and CDK4, and it disrupts the interaction of CDK7 with CDK4, subsequently inhibiting CDK4 activation. FRMD8 competes with MDM2 to bind RB and attenuates MDM2-mediated RB degradation. Frmd8 deficiency in mice accelerates azoxymethane/dextran-sodium-sulfate-induced colorectal adenoma formation. The FRMD8 promoter is hypermethylated, and low expression of FRMD8 predicts poor prognosis in CRC patients. Further, we identify an LKCHE-containing FRMD8 peptide that blocks MDM2 binding to RB and stabilizes RB. Combined application of the CDK4 inhibitor and FRMD8 peptide leads to marked suppression of CRC cell growth. Therefore, using an LKCHE-containing peptide to interfere with the MDM2-RB interaction may have therapeutic value in CDK4/6 inhibitor-resistant patients.
Collapse
Affiliation(s)
- Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Weijie Wu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yi Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haoyi Yan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuqing Gong
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
15
|
Lv J, Liu X, Zhou Y, Cheng F, Chen H, Li S, Wang D, Zhou L, Wang Z, Zhou N, Chen J, Huang B. YAP Inactivation by Soft Mechanotransduction Relieves MAFG for Tumor Cell Dedifferentiation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0215. [PMID: 37614365 PMCID: PMC10443527 DOI: 10.34133/research.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Solid tumor cells live in a highly dynamic mechanical microenvironment. How the extracellular-matrix-generated mechanotransduction regulates tumor cell development and differentiation remains an enigma. Here, we show that a low mechanical force generated from the soft matrix induces dedifferentiation of moderately stiff tumor cells to soft stem-cell-like cells. Mechanistically, integrin β8 was identified to transduce mechano-signaling to trigger tumor cell dedifferentiation by recruiting RhoGDI1 to inactivate RhoA and subsequently Yes-associated protein (YAP). YAP inactivation relieved the inhibition of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG), allowing MAFG to transactivate the stemness genes NANOG, SOX2, and NESTIN. Inactivation also restored β8 expression, thereby forming a closed mechanical loop. Importantly, MAFG expression is correlated with worse prognosis. Our findings provide mechanical insights into the regulation of tumor cell dedifferentiation, which has therapeutic implications for exploring innovative strategies to attack malignancies.
Collapse
Affiliation(s)
- Jiadi Lv
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Xiaohan Liu
- Department of Histology and Embryology, Basic Medical College,
China Medical University, Shenyang, Liaoning 110122, China
| | - Yabo Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Feiran Cheng
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Haoran Chen
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Shunshun Li
- Department of Immunology, Basic Medical College,
China Medical University, Shenyang, Liaoning 110122, China
| | - Dianheng Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Li Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Zhenfeng Wang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Nannan Zhou
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Jie Chen
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases,
Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College (PUMC), Beijing, 100005, China
- Department of Biochemistry & Molecular Biology, Tongji Medical College,
Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
17
|
Wang T, Guo H, Zhang L, Yu M, Li Q, Zhang J, Tang Y, Zhang H, Zhan J. FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression. Front Med 2023; 17:714-728. [PMID: 37060526 DOI: 10.1007/s11684-022-0959-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 04/16/2023]
Abstract
FRMD6, a member of the 4.1 ezrin-radixin-moesin domain-containing protein family, has been reported to inhibit tumor progression in multiple cancers. Here, we demonstrate the involvement of FRMD6 in lung cancer progression. We find that FRMD6 is overexpressed in lung cancer tissues relative to in normal lung tissues. In addition, the enhanced expression of FRMD6 is associated with poor outcomes in patients with lung squamous cell carcinoma (n = 75, P = 0.0054) and lung adenocarcinoma (n = 94, P = 0.0330). Cell migration and proliferation in vitro and tumor formation in vivo are promoted by FRMD6 but are suppressed by the depletion of FRMD6. Mechanistically, FRMD6 interacts and colocalizes with mTOR and S6K, which are the key molecules of the mTOR signaling pathway. FRMD6 markedly enhances the interaction between mTOR and S6K, subsequently increasing the levels of endogenous pS6K and downstream pS6 in lung cancer cells. Furthermore, knocking out FRMD6 inhibits the activation of the mTOR signaling pathway in Frmd6-/- gene KO MEFs and mice. Altogether, our results show that FRMD6 contributes to lung cancer progression by activating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Huiying Guo
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Beijing, 100191, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
18
|
Habshi T, Shelke V, Kale A, Lech M, Bhanudas Gaikwad A. Hippo signaling in acute kidney injury to chronic kidney disease transition: current understandings and future targets. Drug Discov Today 2023:103649. [PMID: 37268185 DOI: 10.1016/j.drudis.2023.103649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Acute kidney injury (AKI)-to-chronic kidney disease (CKD) transition is a slow but persistent progression toward end-stage kidney disease. Earlier reports have shown that Hippo components, such as Yes-associated protein (YAP) and its homolog TAZ (Transcriptional coactivator with PDZ-binding motif), regulate inflammation and fibrogenesis during the AKI-to-CKD transition. Notably, the roles and mechanisms of Hippo components vary during AKI, AKI-to-CKD transition, and CKD. Hence, it is important to understand these roles in detail. This review addresses the potential of Hippo regulators or components as future therapeutic targets for halting the AKI-to-CKD transition.
Collapse
Affiliation(s)
- Tahib Habshi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Maciej Lech
- Division of Nephrology, Department of Internal Medicine IV, Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India.
| |
Collapse
|
19
|
Chen X, Lu T, Cai Y, Han Y, Ding M, Chu Y, Zhou X, Wang X. KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo-YAP pathway. Cell Mol Biol Lett 2023; 28:32. [PMID: 37076815 PMCID: PMC10114474 DOI: 10.1186/s11658-023-00445-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) has been shown to participate in various essential biological processes by regulating the level of target genes. However, the function of m6A modification mediated by KIAA1429 [alias virus-like m6A methyltransferase-associated protein (VIRMA)] during the progression of diffuse large B-cell lymphoma (DLBCL) remains undefined. METHODS The expression and clinical significance of KIAA1429 were verified by our clinical data. CRISPR/Cas9 mediated KIAA1429 deletion, and CRISPR/dCas9-VP64 for activating endogenous KIAA1429 was used to evaluate its biological function. RNA sequencing (RNA-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA immunoprecipitation (RIP) assays, luciferase activity assay, RNA stability experiments, and co-immunoprecipitation were performed to investigate the regulatory mechanism of KIAA1429 in DLBCL. Tumor xenograft models were established for in vivo experiments. RESULTS Dysregulated expression of m6A regulators was observed, and a novel predictive model based on m6A score was established in DLBCL. Additionally, elevated KIAA1429 expression was associated with poor prognosis of patients with DLBCL. Knockout of KIAA1429 repressed DLBCL cell proliferation, facilitated cell cycle arrest in the G2/M phase, induced apoptosis in vitro, and inhibited tumor growth in vivo. Furthermore, carbohydrate sulfotransferase 11 (CHST11) was identified as a downstream target of KIAA1429, which mediated m6A modification of CHST11 mRNA and then recruited YTHDF2 for reducing CHST11 stability and expression. Inhibition of CHST11 diminished MOB1B expression, resulting in inactivation of Hippo-YAP signaling, reprogramming the expression of Hippo target genes. CONCLUSIONS Our results revealed a new mechanism by which the Hippo-YAP pathway in DLBCL is inactivated by KIAA1429/YTHDF2-coupled epitranscriptional repression of CHST11, highlighting the potential of KIAA1429 as a novel predictive biomarker and therapeutic target for DLBCL progression.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
20
|
Feng L, Chen Y, Li N, Yang X, Zhou L, Li H, Wang T, Xie M, Liu H. Dapagliflozin delays renal fibrosis in diabetic kidney disease by inhibiting YAP/TAZ activation. Life Sci 2023; 322:121671. [PMID: 37023953 DOI: 10.1016/j.lfs.2023.121671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
In diabetic kidney disease (DKD), the long-term hyperactivation of yes-associated protein (YAP)/transcriptional coactivator PDZ-binding motif (TAZ) in renal proximal tubule epithelial cells (RPTCs) plays an important role in progressive tubulointerstitial fibrosis. Sodium-glucose cotransporter 2 (SGLT2) is highly expressed in RPTCs, but its relationship with YAP/TAZ in tubulointerstitial fibrosis in DKD is still unknown. The purpose of this study was to clarify whether the SGLT2 inhibitor (SGLT2i) dapagliflozin could alleviate renal tubulointerstitial fibrosis in DKD by regulating YAP/TAZ. We examined 58 patients with DKD confirmed by renal biopsy and found that the expression and nuclear translocation of YAP/TAZ increased with the exacerbation of chronic kidney disease classification. In models of DKD, dapagliflozin showed similar effects to verteporfin, an inhibitor of YAP/TAZ, in reducing the activation of YAP/TAZ and downregulating the expression of their target genes, connective tissue growth factor (CTGF) and amphiregulin in vivo and in vitro. Silencing SGLT2 also confirmed this effect. Importantly, dapagliflozin showed a better effect than verteporfin in inhibiting inflammation, oxidative stress and fibrosis in the kidney in DKD rats. Taken together, this study proved for the first time that dapagliflozin delayed tubulointerstitial fibrosis at least partly by inhibiting YAP/TAZ activation, which further enriched the antifibrotic effect of SGLT2i.
Collapse
Affiliation(s)
- Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China; Department of Aerospace Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yang Chen
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Ni Li
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiaojuan Yang
- Department of Nephrology, Yan'an University Affiliated Hospital, Yan'an, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Huirong Li
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Tingting Wang
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| |
Collapse
|
21
|
Amatuni A, Shuster A, Abegg D, Adibekian A, Renata H. Comprehensive Structure-Activity Relationship Studies of Cepafungin Enabled by Biocatalytic C-H Oxidations. ACS CENTRAL SCIENCE 2023; 9:239-251. [PMID: 36844499 PMCID: PMC9951290 DOI: 10.1021/acscentsci.2c01219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 06/18/2023]
Abstract
The cepafungins are a class of highly potent and selective eukaryotic proteasome inhibitor natural products with potential to treat refractory multiple myeloma and other cancers. The structure-activity relationship of the cepafungins is not fully understood. This Article chronicles the development of a chemoenzymatic approach to cepafungin I. A failed initial route involving derivatization of pipecolic acid prompted us to examine the biosynthetic pathway for the production of 4-hydroxylysine, which culminated in the development of a 9-step synthesis of cepafungin I. An alkyne-tagged analogue enabled chemoproteomic studies of cepafungin and comparison of its effects on global protein expression in human multiple myeloma cells to the clinical drug bortezomib. A preliminary series of analogues elucidated critical determinants of potency in proteasome inhibition. Herein we report the chemoenzymatic syntheses of 13 additional analogues of cepafungin I guided by a proteasome-bound crystal structure, 5 of which are more potent than the natural product. The lead analogue was found to have 7-fold greater proteasome β5 subunit inhibitory activity and has been evaluated against several multiple myeloma and mantle cell lymphoma cell lines in comparison to the clinical drug bortezomib.
Collapse
Affiliation(s)
- Alexander Amatuni
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps
Research, La Jolla, California 92037, United States
| | - Anton Shuster
- Skaggs
Doctoral Program in the Chemical and Biological Sciences, Scripps
Research, La Jolla, California 92037, United States
| | - Daniel Abegg
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United
States
| | - Alexander Adibekian
- Department
of Chemistry, University of Illinois at
Chicago, Chicago, Illinois 60607, United
States
| | - Hans Renata
- Department
of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
22
|
Chiuso F, Delle Donne R, Giamundo G, Rinaldi L, Borzacchiello D, Moraca F, Intartaglia D, Iannucci R, Senatore E, Lignitto L, Garbi C, Conflitti P, Catalanotti B, Conte I, Feliciello A. Ubiquitylation of BBSome is required for ciliary assembly and signaling. EMBO Rep 2023; 24:e55571. [PMID: 36744302 PMCID: PMC10074118 DOI: 10.15252/embr.202255571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.
Collapse
Affiliation(s)
- Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Giuliana Giamundo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.,Net4Science srl, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | | | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Paolo Conflitti
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
23
|
Mao ZH, Gao ZX, Liu Y, Liu DW, Liu ZS, Wu P. Single-cell transcriptomics: A new tool for studying diabetic kidney disease. Front Physiol 2023; 13:1053850. [PMID: 36685214 PMCID: PMC9846140 DOI: 10.3389/fphys.2022.1053850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The kidney is a complex organ comprising various functional partitions and special cell types that play important roles in maintaining homeostasis in the body. Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is an independent risk factor for cardiovascular diseases. Owing to the complexity and heterogeneity of kidney structure and function, the mechanism of DKD development has not been fully elucidated. Single-cell sequencing, including transcriptomics, epigenetics, metabolomics, and proteomics etc., is a powerful technology that enables the analysis of specific cell types and states, specifically expressed genes or pathways, cell differentiation trajectories, intercellular communication, and regulation or co-expression of genes in various diseases. Compared with other omics, RNA sequencing is a more developed technique with higher utilization of tissues or samples. This article reviewed the application of single-cell transcriptomics in the field of DKD and highlighted the key signaling pathways in specific tissues or cell types involved in the occurrence and development of DKD. The comprehensive understanding of single-cell transcriptomics through single-cell RNA-seq and single-nucleus RNA-seq will provide us new insights into the pathogenesis and treatment strategy of various diseases including DKD.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yong Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|
24
|
Jiang Y, Lin X, Mao Y, Zhao J, Zhang G, Yu J, Dong R, Zha Y. Acteoside Alleviates Renal Fibrosis by Inhibiting β-Catenin/CTGF Signaling Pathway in UUO Rats. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Acteoside (ACT) has been reported to regulate the inflammation and immune response. The study aims to explore the effect of ACT on renal fibrosis in unilateral ureteral obstruction (UUO) rats. Methods: Eighteen Sprague-Dawley rats were randomly divided into 3 groups: sham group, opened the abdominal cavity and sutured abdominal; UUO group, performed UUO surgery; and ACT + UUO group, ACT (40 mg/kg) was given by gavage every day after UUO surgery. After 2 weeks of rat model construction, urine and blood samples were collected for biochemical analysis, while kidney tissues were harvested for hematoxylin and eosin (H&E), Masson's trichrome, and immunohistochemistry staining. The expression of connective tissue growth factor (CTGF), alpha smooth muscle actin (α-SMA), collagen III, heat shock protein 47 (HSP47), and β-catenin in the renal tissue was detected and the correlation between these proteins was analyzed. Results: ACT improved the parameters of renal function in UUO rats, including decreased creatinine and urea nitrogen, and declined urinary protein. Pathological analysis suggested that ACT improved the conditions of renal tubule lesion (including structure destruction, atrophy and lumen obstruction), renal interstitial fibrosis and inflammatory cell infiltration in UUO rats. It also down-regulated the expressions of fibrin-related proteins β-catenin, CTGF, α-SMA, collagen III, and HSP47. Correlation analysis found that β-catenin and CTGF were correlated with the expressions of α-SMA, collagen III, and HSP47. Conclusions: ACT could alleviate renal fibrosis in UUO rats probably via inhibiting β-catenin/CTGF signaling pathway.
Collapse
Affiliation(s)
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital & Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, China
| | - Yan Mao
- School of Medicine, Guizhou University, Guiyang, China
| | - Jianqiu Zhao
- Department of Nephrology, Guizhou Provincial People's Hospital & Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, China
| | - Guihua Zhang
- Department of Nephrology, Guizhou Provincial People's Hospital & Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, China
| | - Jiali Yu
- Department of Nephrology, Guizhou Provincial People's Hospital & Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, China
| | - Rong Dong
- Department of Nephrology, Guizhou Provincial People's Hospital & Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, China
| | - Yan Zha
- Graduate School, Zunyi Medical University, Zunyi, China
- Department of Nephrology, Guizhou Provincial People's Hospital & Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, China
| |
Collapse
|
25
|
张 京, 宋 佳, 王 振, 龚 玉, 王 天, 周 津, 战 军, 张 宏. [Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:846-852. [PMID: 36241227 PMCID: PMC9568384 DOI: 10.19723/j.issn.1671-167x.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice. METHODS Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway. RESULTS The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated. CONCLUSION Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.
Collapse
Affiliation(s)
- 京 张
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 佳桂 宋
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
- 北京大学第三医院医学创新研究院基础医学研究中心,北京 100191Center of Basic Medical Research, Institute of Medical Innovation and Research, Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - 振斌 王
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 玉清 龚
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 天卓 王
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 津羽 周
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 军 战
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 宏权 张
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| |
Collapse
|
26
|
CAF-derived exosomal WEE2-AS1 facilitates colorectal cancer progression via promoting degradation of MOB1A to inhibit the Hippo pathway. Cell Death Dis 2022; 13:796. [PMID: 36123327 PMCID: PMC9485119 DOI: 10.1038/s41419-022-05240-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal components in the tumor microenvironment (TME) and closely involved in tumor progression. However, the precise biological functions and molecular mechanisms of CAFs in the TME have yet to be understood. Here, we demonstrate that WEE2-AS1 is highly expressed in the CAF-derived small extracellular vesicles (sEVs). Moreover, WEE2-AS1 is markedly higher in plasma sEVs of CRC patients than in healthy subjects and its high level predicts advanced pathological staging and poor survival. Then, we conducted a series of in vitro and in vivo experiments. Elevated expression of WEE2-AS1 in sEVs increases CRC cell proliferation in vitro. Importantly, aberrant CAF-sEVsWEE2-AS1 leads to tumor formation and progression in BALB/c nude mice and promotes AOM/DSS-induced tumorigenesis. Mechanistically, WEE2-AS1 functions as a modular scaffold for the MOB1A and E3 ubiquitin-protein ligase praja2 complexes, leading to MOB1A degradation via the ubiquitin-proteasome pathway. The Hippo pathway is then inhibited and more YAP are transported into the nucleus, where they activate downstream gene transcription. Together, our data reveal that CAF-sEVsWEE2-AS1 interacts with MOB1A, promotes degradation of MOB1A, inhibits the Hippo pathway, and facilitates the growth of CRC cells. Hence, exosomal WEE2-AS1 may be a promising therapeutic target and circulating biomarker for CRC diagnosis and prognosis.
Collapse
|
27
|
Learning and memory impairment and transcriptomic profile in hippocampus of offspring after maternal fructose exposure during gestation and lactation. Food Chem Toxicol 2022; 169:113394. [PMID: 36049592 DOI: 10.1016/j.fct.2022.113394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Increased fructose intake is a global issue, especially in mothers. Maternal fructose exposure during gestation and lactation can affect learning and memory in offspring; however, the detailed mechanism is still unknown. The hippocampus is a mind locale liable for learning and memory. Here, we established a maternal high-fructose diet model by administering 13% and 40% fructose water, applied the Morris Water Maze test on postnatal day 60 offspring, and performed full-length RNA sequencing using the Oxford Nanopore Technologies platform to explore the changes in gene expression in the hippocampus. The results showed that learning and memory in offspring were negatively affected. Compared with the control group, 369 differentially expressed transcripts (DETs) were identified in the 13% fructose group, and 501 DETs were identified in the 40% fructose group. Gene Ontology enriched term and Kyoto Encyclopedia of Genes and Genomes enriched pathway analyses identified several terms and pathways related to brain development and cognitive function. Furthermore, we confirmed that the Wnt/β-catenin signaling pathway was down-regulated and neuron degeneration was enhanced. In summary, our results indicate that maternal fructose exposure during gestation and lactation can impair learning and memory in offspring and affect brain function at the transcriptome level.
Collapse
|
28
|
Wang T, Guo H, Li Q, Wu W, Yu M, Zhang L, Li C, Song J, Wang Z, Zhang J, Tang Y, Kang L, Zhang H, Zhan J. The AMPK-HOXB9-KRAS axis regulates lung adenocarcinoma growth in response to cellular energy alterations. Cell Rep 2022; 40:111210. [PMID: 36001969 DOI: 10.1016/j.celrep.2022.111210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/20/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
HOXB9 is an important transcription factor associated with unfavorable outcomes in patients with lung adenocarcinoma (LUAD). However, its degradation mechanism remains unclear. Here, we show that HOXB9 is a substrate of AMP kinase alpha (AMPKα). AMPK mediates HOXB9 T133 phosphorylation and downregulates the level of HOXB9 in mice and LUAD cells. Mechanistically, phosphorylated HOXB9 promoted E3 ligase Praja2-mediated HOXB9 degradation. Blocking HOXB9 phosphorylation by depleting AMPKα1/2 or employing the HOXB9 T133A mutant promoted tumor cell growth in cell culture and mouse xenografts via upregulation of HOXB9 and KRAS that is herein identified as a target of HOXB9. Clinically, AMPK activation levels in LUAD samples were positively correlated with pHOXB9 levels; higher pHOXB9 levels were associated with better survival of patients with LUAD. We thus present a HOXB9 degradation mechanism and demonstrate an AMPK-HOXB9-KRAS axis linking glucose-level-regulated AMPK activation to HOXB9 stability and KRAS gene expression, ultimately controlling LUAD progression.
Collapse
Affiliation(s)
- Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Huiying Guo
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Weijie Wu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Cuicui Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Kang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
29
|
Delle Donne R, Iannucci R, Rinaldi L, Roberto L, Oliva MA, Senatore E, Borzacchiello D, Lignitto L, Giurato G, Rizzo F, Sellitto A, Chiuso F, Castaldo S, Scala G, Campani V, Nele V, De Rosa G, D'Ambrosio C, Garbi C, Scaloni A, Weisz A, Ambrosino C, Arcella A, Feliciello A. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun Biol 2022; 5:780. [PMID: 35918402 PMCID: PMC9345969 DOI: 10.1038/s42003-022-03639-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth.
Collapse
Affiliation(s)
- Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rosa Iannucci
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | | | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Luca Lignitto
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Giovanni Scala
- Department of Biology, University Federico II, Naples, Italy
| | | | - Valeria Nele
- Department of Pharmacy, University Federico II, Naples, Italy
| | | | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici (Naples), Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
- Genome Research Center for Health, Campus of Medicine, University of Salerno, Salerno, Italy
| | - Concetta Ambrosino
- Biogem, Ariano Irpino, Avellino, Italy
- Department of Science and Technology University of Sannio, Benevento, Italy
| | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
30
|
New Insights into Hippo/YAP Signaling in Fibrotic Diseases. Cells 2022; 11:cells11132065. [PMID: 35805148 PMCID: PMC9265296 DOI: 10.3390/cells11132065] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/20/2022] Open
Abstract
Fibrosis results from defective wound healing processes often seen after chronic injury and/or inflammation in a range of organs. Progressive fibrotic events may lead to permanent organ damage/failure. The hallmark of fibrosis is the excessive accumulation of extracellular matrix (ECM), mostly produced by pathological myofibroblasts and myofibroblast-like cells. The Hippo signaling pathway is an evolutionarily conserved kinase cascade, which has been described well for its crucial role in cell proliferation, apoptosis, cell fate decisions, and stem cell self-renewal during development, homeostasis, and tissue regeneration. Recent investigations in clinical and pre-clinical models has shown that the Hippo signaling pathway is linked to the pathophysiology of fibrotic diseases in many organs including the lung, heart, liver, kidney, and skin. In this review, we have summarized recent evidences related to the contribution of the Hippo signaling pathway in the development of organ fibrosis. A better understanding of this pathway will guide us to dissect the pathophysiology of fibrotic disorders and develop effective tissue repair therapies.
Collapse
|
31
|
Kindlin-2 Promotes Chondrogenesis and Ameliorates IL-1beta-Induced Inflammation in Chondrocytes Cocultured with BMSCs in the Direct Contact Coculture System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3156245. [PMID: 35450413 PMCID: PMC9018182 DOI: 10.1155/2022/3156245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
The osteoarthritis caused by trauma or inflammation is associated with severe patient morbidity and economic burden. Accumulating studies are focusing on the repair of articular cartilage defects by constructing tissue-engineered cartilage. Recent evidence suggests that optimizing the source and quality of seed cells is one of the key points of cartilage tissue engineering. In this study, we demonstrated that Kindlin-2 and its activated PI3K/AKT signaling played an essential role in promoting extracellular matrix (ECM) secretion and ameliorating IL-1beta-induced inflammation in chondrocytes cocultured with bone marrow stem cells (BMSCs). In vivo experiments revealed that coculture significantly promoted hyaline cartilage regeneration. In vitro studies further uncovered that chondrocytes cocultured with BMSCs in the direct contact coculture system upregulated Kindlin-2 expression and subsequently activated the PI3K/AKT signaling pathway, which not only increases Sox9 and Col2 expression but also restores mitochondrial membrane potential and reduces ROS levels and apoptosis under inflammatory conditions. Overall, our findings indicated that direct contact BMSC-chondrocyte coculture system could promote chondrogenesis, and identified Kindlin-2 represents a key regulator in this process.
Collapse
|
32
|
Xu P, Zhang J, Wang M, Liu B, Li R, Li H, Zhai N, Liu W, Lv C, Song X. hnRNP L-activated circANKRD42 Reverse Splicing and the circANKRD42-mediated Crosstalk between Mechanical Stiffness and Biochemical Signals to Drive Pulmonary Fibrogenesis. Mol Ther 2022; 30:2370-2387. [PMID: 35278674 DOI: 10.1016/j.ymthe.2022.01.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing circular RNAs (circRNAs) are involved in the progression of idiopathic pulmonary fibrosis (IPF). However, circRNA biogenesis and circRNA-mediated crosstalk between mechanical stiffness and biochemical signals in IPF remain obscure. In this study, a novel circRNA-ANKRD42 from peripheral blood of patients with IPF, which participated in pulmonary fibrosis through the close communication of mechanical stiffness and biochemical signals, was identified. Mechanistic studies revealed that the heterogeneous nuclear ribonucleoprotein L (hnRNP L) activated the circANKRD42 reverse splicing biogenesis. The biogenetic circANKRD42 sponged miR-324-5p to promote the AJUBA expression, which blocked the binding between phosphorylated yes-associated protein 1 (YAP1) and large tumor suppressor kinase 1/2 (LATS1/2), leading to increased YAP1 entering the nucleus. circANKRD42 also sponged miR-136-5p to promote the YAP1 translation. Accumulating YAP1 in nucleus bound to TEAD, which initiated the transcription of genes related to mechanical stiffness. Finally, the therapeutic effect of circANKRD42 was evaluated in mice and the association between circANKRD42 and clinicopathological features was analyzed in IPF patients. Our findings supported that circANKRD42 is a promising biomarker and a potential therapeutic target related to cytoskeleton tension for IPF treatment.
Collapse
Affiliation(s)
- Pan Xu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Medical Research Center, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital to Binzhou Medical University, Yantai 264003, China
| | - Bo Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Rongrong Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Nailiang Zhai
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China.
| |
Collapse
|
33
|
Liu G, Liu X, Yang Y. Comparative transcriptome analysis of miRNA in hydronephrosis male children caused by ureteropelvic junction obstruction with or without renal functional injury. PeerJ 2022; 10:e12962. [PMID: 35237468 PMCID: PMC8884061 DOI: 10.7717/peerj.12962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are non-coding RNAs that contribute to pathological processes of various kidney diseases. Renal function injury represents a final common outcome of congenital obstructive nephropathy and has attracted a great deal of attention. However the molecular mechanisms are still not fully established. In this study, we compared transcriptome sequencing data of miRNAs of renal tissues from congenital hydronephrosis children with or without renal functional injury, in order to better understand whether microRNAs could play important roles in renal functional injury after ureteropelvic junction obstruction. A total of 22 microRNAs with significant changes in their expression were identified. Five microRNAs were up-regulated and 17 microRNAs were down-regulated in the renal tissues of the hydronephrosis patients with renal function injury compared with those without renal function injury. MicroRNA target genes were predicted by three major online miRNA target prediction algorithms, and all these mRNAs were used to perform the gene ontology analysis and Kyoto Encyclopedia of Gene and Genomes pathway analysis. Then, twelve candidate human and rat homologous miRNAs were selected for validation using RT-qPCR in vitro and in vivo; only miR-187-3p had a trend identical to that detected by the sequencing results among the human tissues, in vivo and in vitro experimental models. In addition, we found that the change of miR-187-3p in vivo was consistent with results in vitro models and showed a decrease trend in time dependence. These results provided a detailed catalog of candidate miRNAs to investigate their regulatory role in renal injury of congenital hydronephrosis, indicating that they may serve as candidate biomarkers or therapeutic targets in the future.
Collapse
Affiliation(s)
- Ge Liu
- Urology Division, Pediatric Surgery Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xin Liu
- Urology Division, Pediatric Surgery Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yi Yang
- Urology Division, Pediatric Surgery Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
34
|
Huang YD, Fang Y, Ma L, Feng PJ, Li WL, Zhou YQ, Qin YH, You ZJ, Dong L. Kindlin-2 Mediates Lipopolysaccharide-Induced Acute Lung Injury Partially via Pyroptosis in Mice. Inflammation 2022; 45:1199-1208. [PMID: 35133562 DOI: 10.1007/s10753-021-01613-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022]
Abstract
Acute lung injury (ALI) is characteristic of the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of pro-inflammatory leukocytes, and intractable hypoxemia, contributing to high mortality. Kindlin-2 is involved in the process of tumor- and wound healing-associated inflammation. However, the effects of kindlin-2 on lipopolysaccharide (LPS)-induced ALI and its mechanisms remain unknown. In this study, we found that the concentration of kindlin-2 was elevated in the lungs of ALI mice. The specific deletion of kindlin-2 by kindlin-2 siRNA attenuated the severity of lung injury, which was demonstrated by the reduced number of pro-inflammatory cells in bronchoalveolar lavage fluid and lung wet/dry weight ratio, and ameliorated pathologic changes in the lungs of ALI mice. Furthermore, kindlin-2 siRNA decreased the mRNA levels of pro-inflammatory factors (IL-1β, IL-6, and TNF-α) and the protein levels of pyroptosis-related proteins. In vitro studies confirmed that LPS + ATP promoted the expressions of pro-inflammatory factors and pyroptosis-related proteins, which was prevented by kindlin-2 siRNA pretreatment in endothelial cells (ECs). In conclusion, inhibition of kindlin-2 developes protective effects against LPS-induced ALI and the cytotoxicity of ECs, which may depend on blocking pyroptosis.
Collapse
Affiliation(s)
- Yi-Dan Huang
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yu Fang
- Medical Laboratory and Pathology Center, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan, China
| | - Li Ma
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Peng-Jiu Feng
- Department of Anesthesiology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, 545001, Guangxi, China
| | - Wen-Long Li
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yi-Qi Zhou
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yuan-Hao Qin
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Zhi-Jian You
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China.
| | - Liang Dong
- Department of Anesthesiology, Liuzhou Municipal People's Hospital, Liuzhou, 545006, Guangxi, China.
| |
Collapse
|
35
|
Jin J, Zhang L, Li X, Xu W, Yang S, Song J, Zhang W, Zhan J, Luo J, Zhang H. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3817-3834. [PMID: 35349706 PMCID: PMC9023286 DOI: 10.1093/nar/gkac189] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are constantly produced in cells, an excess of which causes oxidative stress. ROS has been linked to regulation of the Hippo pathway; however, the underlying detailed mechanisms remain unclear. Here, we report that MOB1, a substrate of MST1/2 and co-activator of LATS1/2 in the canonical Hippo pathway, interacts with and is acetylated at lysine 11 by acetyltransferase CBP and deacetylated by HDAC6. MOB1-K11 acetylation stabilizes itself by reducing its binding capacity with E3 ligase Praja2 and subsequent ubiquitination. MOB1-K11 acetylation increases its phosphorylation and activates LATS1. Importantly, upstream oxidative stress signals promote MOB1 acetylation by suppressing CBP degradation, independent of MST1/2 kinase activity and HDAC6 deacetylation effect, thereby linking oxidative stress to activation of the Hippo pathway. Functionally, the acetylation-deficient mutant MOB1-K11R promotes lung cancer cell proliferation, migration and invasion in vitro and accelerates tumor growth in vivo, compared to the wild-type MOB1. Clinically, acetylated MOB1 corresponds to better prediction of overall survival in patients with non-small cell lung cancer. Therefore, as demonstrated, an oxidative stress-CBP regulatory axis controls MOB1-K11 acetylation and activates LATS1, thereby activating the Hippo pathway and suppressing YAP/TAZ nuclear translocation and tumor progression.
Collapse
Affiliation(s)
- Jiaqi Jin
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Siyuan Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Wenhao Zhang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- To whom correspondence should be addressed. Tel: +86 10 82802424; Fax: +86 10 82802424;
| |
Collapse
|
36
|
Delgado ILS, Tavares A, Francisco S, Santos D, Coelho J, Basto AP, Zúquete S, Müller J, Hemphill A, Meissner M, Soares H, Leitão A, Nolasco S. Characterization of a MOB1 Homolog in the Apicomplexan Parasite Toxoplasma gondii. BIOLOGY 2021; 10:biology10121233. [PMID: 34943148 PMCID: PMC8698288 DOI: 10.3390/biology10121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary Monopolar spindle One Binder1 (MOB1) proteins regulate key cellular functions, namely cell multiplication and cell division. The unicellular parasite Toxoplasma gondii transitions between several morphological stages, with the need to control the number of parasites in its cellular environment. We hypothesized that MOB1 proteins could participate in the regulation of the T. gondii life cycle, having identified one MOB1 protein (TgMOB1) coded in its genome. However, this study shows that TgMOB1 presents divergent features. While in organisms studied to date the lack of MOB1 has led to cell division defects, this did not occur in T. gondii in vitro cultures where mob1 was not an essential gene. Additionally, the identification of TgMOB1 proximity interacting partners detected novel MOB1 interactors. Still, TgMOB1 localizes to the region between the new-forming nuclei during cell division, and T. gondii parasites multiply slower with TgMOB1 overexpression and faster when there is a lack of TgMOB1, indicating an intricate role for TgMOB1 in T. gondii. This study uncovers new features of the T. gondii biology, a zoonotic parasite and model organism for the phylum Apicomplexa, and highlights the complex roles MOB1 proteins may assume, with possible implications for disease processes. Abstract Monopolar spindle One Binder1 (MOB1) proteins are conserved components of the tumor-suppressing Hippo pathway, regulating cellular processes such as cytokinesis. Apicomplexan parasites present a life cycle that relies on the parasites’ ability to differentiate between stages and regulate their proliferation; thus, Hippo signaling pathways could play an important role in the regulation of the apicomplexan life cycle. Here, we report the identification of one MOB1 protein in the apicomplexan Toxoplasma gondii. To characterize the function of MOB1, we generated gain-of-function transgenic lines with a ligand-controlled destabilization domain, and loss-of-function clonal lines obtained through CRISPR/Cas9 technology. Contrary to what has been characterized in other eukaryotes, MOB1 is not essential for cytokinesis in T. gondii. However, this picture is complex since we found MOB1 localized between the newly individualized daughter nuclei at the end of mitosis. Moreover, we detected a significant delay in the replication of overexpressing tachyzoites, contrasting with increased replication rates in knockout tachyzoites. Finally, using the proximity-biotinylation method, BioID, we identified novel members of the MOB1 interactome, a probable consequence of the observed lack of conservation of some key amino acid residues. Altogether, the results point to a complex evolutionary history of MOB1 roles in apicomplexans, sharing properties with other eukaryotes but also with divergent features, possibly associated with their complex life cycle.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona, 1749-024 Lisboa, Portugal
| | - Alexandra Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Samuel Francisco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Dulce Santos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - João Coelho
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Afonso P. Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sara Zúquete
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Markus Meissner
- Institute for Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität Munich, D-82152 Munich, Germany;
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sofia Nolasco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Correspondence: or
| |
Collapse
|
37
|
Wang J, Huo C, Yin J, Tian L, Ma L, Wang D. Hypermethylation of the Promoter of miR-338-5p Mediates Aberrant Expression of ETS-1 and Is Correlated With Disease Severity Of Astrocytoma Patients. Front Oncol 2021; 11:773644. [PMID: 34858853 PMCID: PMC8632532 DOI: 10.3389/fonc.2021.773644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
The pro-oncogene ETS-1 (E26 transformation-specific sequence 1) is a key regulator of the proliferation and invasion of cancer cells. The present work examined the correlation of the aberrant expression of ETS-1 with histological or clinical classification of astrocytoma: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). MicroRNA, miR-338-5p, was predicted by an online tool (miRDB) to potentially target the 3' untranslated region of ETS-1; this was confirmed by multi-assays, including western blot experiments or the point mutation of the targeting sites of miR-338-5p in ETS-1's 3'untralation region (3'UTR). The expression of miR-338-5p was negatively associated with that of ETS-1 in astrocytoma, and deficiency of miR-338-5p would mediate aberrant expression of ETS-1 in astrocytoma. Mechanistically, hypermethylation of miR-338-5p by DNA methyltransferase 1 (DNMT1) resulted in repression of miR-338-5p expression and the aberrant expression of ETS-1. Knockdown or deactivation of DNMT1 decreased the methylation rate of the miR-338-5p promoter, increased the expression of miR-338-5p, and repressed the expression of ETS-1 in astrocytoma cell lines U251 and U87. These results indicate that hypermethylation of the miR-338-5p promoter by DNMT1 mediates the aberrant expression of ETS-1 related to disease severity of patients with astrocytoma.
Collapse
Affiliation(s)
- Junping Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Cheng Huo
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Jinzhu Yin
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Lixia Tian
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Lili Ma
- Department of Neurology, The Yantaishan Hospital, Yantai, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Huang S, Liao J, Luo X, Liu F, Shi G, Wen W. Kindlin-2 promoted the progression of keloids through the Smad pathway and Fas/FasL pathway. Exp Cell Res 2021; 408:112813. [PMID: 34492266 DOI: 10.1016/j.yexcr.2021.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Keloids are benign skin tumors characterized by aggressive growth. To date, there is no exact treatment because little is known about its pathological mechanism. Therefore, it is important to investigate the mechanism of its occurrence and development to identify therapeutic targets. In this study, the expression of Kindlin-2 was higher in keloid fibroblasts (KFs) than in normal skin fibroblasts (NFs). In vitro experiments showed that knocking down Kindlin-2 in KFs could promote cell apoptosis and inhibit cell proliferation, cell migration and invasion, and contractile capability. Western blot results showed that the phosphorylation of Smad3 in KFs was inhibited after knocking down Kindlin-2, inhibiting the activation of the Smad pathway. Moreover, knocking down Kindlin-2 increased the expression of Fas and FasL in KFs, which demonstrated that knocking down Kindlin-2 promoted the activation of the exogenous apoptotic pathway of KFs and then facilitated apoptosis. The above results revealed that knocking down Kindlin-2 in KFs can inhibit the activation of the Smad pathway and promote the activation of the Fas/FasL exogenous apoptosis pathway, thereby altering the cytological function of KFs. Therefore, Kindlin-2 might play an important role in the occurrence and development of keloids and could become a new target to treat keloids.
Collapse
Affiliation(s)
- Shaobin Huang
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohua Luo
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Weiping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Chi X, Luo W, Song J, Li B, Su T, Yu M, Wang T, Wang Z, Liu C, Li Z, He H, Zhan J, Zhang H. Kindlin-2 in Sertoli cells is essential for testis development and male fertility in mice. Cell Death Dis 2021; 12:604. [PMID: 34117213 PMCID: PMC8196014 DOI: 10.1038/s41419-021-03885-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Kindlin-2 is known to play important roles in the development of mesoderm-derived tissues including myocardium, smooth muscle, cartilage and blood vessels. However, nothing is known for the role of Kindlin-2 in mesoderm-derived reproductive organs. Here, we report that loss of Kindlin-2 in Sertoli cells caused severe testis hypoplasia, abnormal germ cell development and complete infertility in male mice. Functionally, loss of Kindlin-2 inhibits proliferation, increases apoptosis, impairs phagocytosis in Sertoli cells and destroyed the integration of blood-testis barrier structure in testes. Mechanistically, Kindlin-2 interacts with LATS1 and YAP, the key components of Hippo pathway. Kindlin-2 impedes LATS1 interaction with YAP, and depletion of Kindlin-2 enhances LATS1 interaction with YAP, increases YAP phosphorylation and decreases its nuclear translocation. For clinical relevance, lower Kindlin-2 expression and decreased nucleus localization of YAP was found in SCOS patients. Collectively, we demonstrated that Kindlin-2 in Sertoli cells is essential for sperm development and male reproduction.
Collapse
Affiliation(s)
- Xiaochun Chi
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Weiwei Luo
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jiagui Song
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Bing Li
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Tiantian Su
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Miao Yu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenbin Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Cheng Liu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Zhen Li
- Department of Histology and Embryology, the Fourth Military Medical University, Xi'an, 710032, China
| | - Huiying He
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Jun Zhan
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
40
|
Qiu Y, Huang D, Sheng Y, Huang J, Li N, Zhang S, Hong Z, Yin X, Yan J. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp Cell Res 2021; 405:112646. [PMID: 34029571 DOI: 10.1016/j.yexcr.2021.112646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
The deubiquitinating enzyme USP46 (ubiquitin-specific protease 46) is implicated in various cancers. However, its role and regulatory mechanism in HCC (hepatocellular carcinoma) are still unknown. In this study, we showed that USP46 is downregulated in HCC tissues and that low USP46 levels are associated with poor prognosis in HCC patients. In functional experiments, overexpression of USP46 impaired proliferation and metastasis of HCC cells, whereas knockdown of USP46 enhanced cell proliferation and invasiveness in vitro and in vivo. Furthermore, we found that USP46 suppresses HCC cell proliferation and metastasis by inhibiting YAP1. Ectopic expression of YAP1 rescued the inhibition of cell proliferation and metastasis caused by USP46 overexpression. Mechanistically, USP46 promotes the degradation of YAP1 by increasing expression of MST1, and the increase in MST1 protein antagonizes YAP1 to suppress HCC progression. Finally, we demonstrated that USP46 stabilizes the MST1 protein by directly binding to it and decreasing its ubiquitination. Taken together, our results demonstrated that USP46 may be a novel tumor suppressor in HCC. Moreover, USP46 acts as a deubiquitinating enzyme of MST1 to potentiate MST1 kinase activity to suppress tumor growth and metastasis, indicating that USP46 activation may represent a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Huang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yanling Sheng
- Department of Ultrasound, The Affliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330006, China
| | - Jinshi Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Zhengdong Hong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiangbao Yin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
41
|
Senatore E, Chiuso F, Rinaldi L, Intartaglia D, Delle Donne R, Pedone E, Catalanotti B, Pirone L, Fiorillo B, Moraca F, Giamundo G, Scala G, Raffeiner A, Torres-Quesada O, Stefan E, Kwiatkowski M, van Pijkeren A, Morleo M, Franco B, Garbi C, Conte I, Feliciello A. The TBC1D31/praja2 complex controls primary ciliogenesis through PKA-directed OFD1 ubiquitylation. EMBO J 2021; 40:e106503. [PMID: 33934390 PMCID: PMC8126939 DOI: 10.15252/embj.2020106503] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The primary cilium is a microtubule‐based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X‐linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin‐proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G‐protein‐coupled receptor (GPCR)‐cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2‐UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non‐phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.
Collapse
Affiliation(s)
- Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | | | - Rossella Delle Donne
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University Federico II, Naples, Italy
| | - Federica Moraca
- Department of Pharmacy, University Federico II, Naples, Italy.,Net4Science srl, University "Magna Graecia", Catanzaro, Italy
| | | | - Giovanni Scala
- Department of Biology, University Federico II, Naples, Italy
| | - Andrea Raffeiner
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Omar Torres-Quesada
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.,Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | | | | | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Corrado Garbi
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Biology, University Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| |
Collapse
|
42
|
Praja2 suppresses the growth of gastric cancer by ubiquitylation of KSR1 and inhibiting MEK-ERK signal pathways. Aging (Albany NY) 2021; 13:3886-3897. [PMID: 33461174 PMCID: PMC7906149 DOI: 10.18632/aging.202356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is a common malignant tumor, which has a high incidence and fatality. Therefore, it is important to clarify the molecular mechanism of the occurrence and development for GC and to find more effective treatments and targeted drugs. In this study, we found that the kinase suppressor of Ras1 (KSR1) was increased in GC tissues and cell lines. Silencing of KSR1 inhibited the proliferation, migration and invasion of MKN-45 cells. E3 ligase Praja2 was downregulated in GC tissues and cell lines. In addition, praja2 promoted ubiquitylation of KSR1, but inhibited MEK-ERK signal pathways. Functional analysis indicated overexpression of praja2 inhibited the proliferation, migration and invasion of MKN-45 cells, while MG132 or FGF2 treatment removed the inhibitory effects of praja2 on GC progression. In vivo tumorigenesis experiments indicated praja2 inhibited tumor growth via KSR1-MEK-ERK axis. In conclusion, praja2 promoted the ubiquitylation and degradation of KSR1, which disturbed MEK- ERK signaling and inhibited GC progression. Our study might provide a novel target for GC clinical treatment.
Collapse
|
43
|
Kindlin-2 regulates skeletal homeostasis by modulating PTH1R in mice. Signal Transduct Target Ther 2020; 5:297. [PMID: 33361757 PMCID: PMC7762753 DOI: 10.1038/s41392-020-00328-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/16/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, the type 1 parathyroid hormone receptor (PTH1R) is a critical regulator of skeletal development and homeostasis; however, how it is modulated is incompletely understood. Here we report that deleting Kindlin-2 in osteoblastic cells using the mouse 10-kb Dmp1-Cre largely neutralizes the intermittent PTH-stimulated increasing of bone volume fraction and bone mineral density by impairing both osteoblast and osteoclast formation in murine adult bone. Single-cell profiling reveals that Kindlin-2 loss increases the proportion of osteoblasts, but not mesenchymal stem cells, chondrocytes and fibroblasts, in non-hematopoietic bone marrow cells, with concomitant depletion of osteoblasts on the bone surfaces, especially those stimulated by PTH. Furthermore, haploinsufficiency of Kindlin-2 and Pth1r genes, but not that of either gene, in mice significantly decreases basal and, to a larger extent, PTH-stimulated bone mass, supporting the notion that both factors function in the same genetic pathway. Mechanistically, Kindlin-2 interacts with the C-terminal cytoplasmic domain of PTH1R via aa 474–475 and Gsα. Kindlin-2 loss suppresses PTH induction of cAMP production and CREB phosphorylation in cultured osteoblasts and in bone. Interestingly, PTH promotes Kindlin-2 expression in vitro and in vivo, thus creating a positive feedback regulatory loop. Finally, estrogen deficiency induced by ovariectomy drastically decreases expression of Kindlin-2 protein in osteocytes embedded in the bone matrix and Kindlin-2 loss essentially abolishes the PTH anabolic activity in bone in ovariectomized mice. Thus, we demonstrate that Kindlin-2 functions as an intrinsic component of the PTH1R signaling pathway in osteoblastic cells to regulate bone mass accrual and homeostasis.
Collapse
|
44
|
Delgado ILS, Carmona B, Nolasco S, Santos D, Leitão A, Soares H. MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. BIOLOGY 2020; 9:biology9120413. [PMID: 33255245 PMCID: PMC7761452 DOI: 10.3390/biology9120413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023]
Abstract
The MOB family proteins are constituted by highly conserved eukaryote kinase signal adaptors that are often essential both for cell and organism survival. Historically, MOB family proteins have been described as kinase activators participating in Hippo and Mitotic Exit Network/ Septation Initiation Network (MEN/SIN) signaling pathways that have central roles in regulating cytokinesis, cell polarity, cell proliferation and cell fate to control organ growth and regeneration. In metazoans, MOB proteins act as central signal adaptors of the core kinase module MST1/2, LATS1/2, and NDR1/2 kinases that phosphorylate the YAP/TAZ transcriptional co-activators, effectors of the Hippo signaling pathway. More recently, MOBs have been shown to also have non-kinase partners and to be involved in cilia biology, indicating that its activity and regulation is more diverse than expected. In this review, we explore the possible ancestral role of MEN/SIN pathways on the built-in nature of a more complex and functionally expanded Hippo pathway, by focusing on the most conserved components of these pathways, the MOB proteins. We discuss the current knowledge of MOBs-regulated signaling, with emphasis on its evolutionary history and role in morphogenesis, cytokinesis, and cell polarity from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
| | - Dulce Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Alexandre Leitão
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: or
| |
Collapse
|
45
|
Liu J, Shi Z, Ma Y, Fu L, Yi M. MOB1 Inhibits Malignant Progression of Colorectal Cancer by Targeting PAK2. Onco Targets Ther 2020; 13:8803-8811. [PMID: 32943885 PMCID: PMC7481273 DOI: 10.2147/ott.s253470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Objective We aimed at studying the mechanism of MOB1 inhibiting the proliferation and metastasis of colorectal cancer (CRC), to provide a new guidance for the early diagnosis and treatment of CRC. Methods MOB1 expression level in 68 pairs of CRC tissues and adjacent ones was detected by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and the associations between the expression level of MOB1 and the clinicopathological indicators as well as the prognosis of CRC patients were analyzed. After constructing CRC cell lines that stably overexpressing or silencing MOB1, the changes of cell proliferation and metastasis ability were examined by Cell Counting Kit (CCK-8) and Transwell assay. In addition, the interaction between MOB1 and PAK2 and how the these two genes affect the biological functions of CRC cell lines were investigated by luciferase assay, qRT-PCR and Western Blot experiments. Results Our data showed that MOB1 expression level in CRC tissues was remarkably lower than that in adjacent ones. In comparison to patients of the group of high MOB1 expression, these patients of low MOB1 expression group showed higher incidence of distant or lymph node metastasis and lower survival rate. Cell functional experiments revealed that overexpression of MOB1 markedly attenuated the proliferation and migration ability of CRC cell lines compared to the NC group; In contrast, knockdown of MOB1 enhanced the above-mentioned cell abilities compared to anti-NC group. Luciferase assay verified an interaction between MOB1 and PAK2; and Western blot analysis showed a negative correlation between the expression of the MOB1 and PAK2 protein levels in CRC tissues. Subsequently, we demonstrated that MOB1 interacted with PAK2 to regulate its expression and affected the proliferation and migration capacity of CRC cell lines in vitro. Conclusion In summary, the lowly expressed MOB1 in CRC tissues and cell lines may accelerate the proliferation and migration through modulating PAK2 expression.
Collapse
Affiliation(s)
- Jie Liu
- Department of Proctology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zhitao Shi
- Department of General Surgery, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yunyun Ma
- Department of Proctology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Liang Fu
- Department of Proctology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, People's Republic of China
| | - Man Yi
- Department of Proctology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
46
|
He X, Song J, Cai Z, Chi X, Wang Z, Yang D, Xie S, Zhou J, Fu Y, Li W, Kong W, Zhan J, Zhang H. Kindlin-2 deficiency induces fatal intestinal obstruction in mice. Am J Cancer Res 2020; 10:6182-6200. [PMID: 32483447 PMCID: PMC7255029 DOI: 10.7150/thno.46553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Smooth muscle-motility disorders are mainly characterized by impaired contractility and functional intestinal obstruction. Some of these cases are caused by genetic mutations of smooth muscle genes ACTA2, ACTG2, MYH11, MYLK and LMOD1. Still the etiology is complex and multifactorial and the underlying pathology is poorly understood. Integrin interaction protein Kindlin-2 is widely expressed in striated and smooth muscle cells (SMC). However, the function of Kindlin-2 in the smooth muscle remains elusive. Methods: We generated two mouse models using different cre promoter transgenic mice, Kindlin-2fl/fl SM22α-cre+ (cKO mice) and Kindlin-2fl/fl; MYH-cre+ (iKO mice). Embryos and adult tissues were prepared for hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) apoptosis assay. We investigated ultrastructure changes of mouse smooth muscle using transmission electron microscopy (TEM) and measured smooth muscle contractile force in mounting aortic and intestinal rings using the multiwire myograph system (DMT 620M). In addition, cell traction force microscopy (CTFM) was applied to observe the functional change of primary SMC after Kindlin-2 depletion by RNAi. Results: Depletion of Kindlin-2 encoding gene Fermt2 in embryonic smooth muscles leads to apoptosis, downregulates the key components of SMC, impairs smooth muscle development, and finally causes embryonic death at E14.5. Tamoxifen-induced Kindlin-2-specific knockout in adult mouse smooth muscle showed decreased blood pressure, intestinal hypoperistalsis, and eventually died of intestinal obstruction. Kindlin-2 depletion also leads to downregulated Myh11, α-SMA, and CNN, shortened myofilament, broken myofibrils, and impaired contractility of the smooth muscles in iKO mice. Mechanistically, loss of Kindlin-2 decreases Ca2+ influx in primary vascular smooth muscle cells (PVSMC) by downregulating the expression of calcium-binding protein S100A14 and STIM1. Conclusion: We demonstrated that Kindlin-2 is essential for maintaining the normal structure and function of smooth muscles. Loss of Kindlin-2 impairs smooth muscle formation during embryonic development by inducing apoptosis and jeopardizes the contraction of adult smooth muscle by blocking Ca2+ influx that leads to intestinal obstruction. Mice with Kindlin-2 depletion in adult smooth muscle could be a potent animal model of intestinal obstruction for disease research, drug treatment and prognosis.
Collapse
|