1
|
Opalka AN, Dougherty KJ, Wang DV. A Distinct Down-to-Up Transition Assembly in the Retrosplenial Cortex during Slow-Wave Sleep. J Neurosci 2025; 45:e1484242025. [PMID: 39952672 PMCID: PMC11968548 DOI: 10.1523/jneurosci.1484-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Understanding the intricate mechanisms underlying slow-wave sleep (SWS) is crucial for deciphering the brain's role in memory consolidation and cognitive functions. It is well established that cortical delta oscillations (0.5-4 Hz) coordinate communications among cortical, hippocampal, and thalamic regions during SWS. These delta oscillations feature periods of Up and Down states, with the latter previously thought to represent complete cortical silence; however, new evidence suggests that Down states serve important functions for information exchange during memory consolidation. The retrosplenial cortex (RSC) is pivotal for memory consolidation due to its extensive connectivity with memory-associated regions, although it remains unclear how RSC neurons engage in delta-associated consolidation processes. Here, we employed multichannel in vivo electrophysiology to study RSC neuronal activity in ad libitum behaving male mice during natural SWS. We discovered a discrete assembly of putative excitatory RSC neurons (∼20%) that initiated firing at SWS Down states and reached maximal firing at the Down-to-Up transitions. Therefore, we termed these RSC neurons the Down-to-Up transition assembly (DUA) and the remaining RSC excitatory neurons as non-DUA. Compared with non-DUA, DUA neurons appear to exhibit higher firing rates and larger cell body size and lack monosynaptic connectivity with nearby RSC neurons. Furthermore, optogenetics combined with electrophysiology revealed differential innervation of RSC excitatory neurons by memory-associated inputs. Collectively, these findings provide insight into the distinct activity patterns of RSC neuronal subpopulations during sleep and their potential role in memory processes.
Collapse
Affiliation(s)
- Ashley N Opalka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
2
|
Hall AF, Wang DV. A cortical-hippocampal communication undergoes rebalancing after new learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645547. [PMID: 40196557 PMCID: PMC11974847 DOI: 10.1101/2025.03.26.645547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The brain's ability to consolidate a wide range of memories while maintaining their distinctiveness across experiences remains poorly understood. Sharp-wave ripples, neural oscillations that occur predominantly within CA1 of the hippocampus during immobility and sleep, have been shown to play a critical role in the consolidation process. More recently, evidence has uncovered functional heterogeneity of pyramidal neurons within distinct sublayers of CA1 that display unique properties during ripples, potentially contributing to memory specificity. Despite this, it remains unclear exactly how ripples shift the activity of CA1 neuronal populations to accommodate the consolidation of specific memories and how sublayer differences manifest. Here, we studied interactions between the anterior cingulate cortex (ACC) and CA1 neurons during ripples and discovered a reorganization of their communication following learning. Notably, this reorganization appeared specifically for CA1 superficial (CA1sup) sublayer neurons. Utilizing a generalized linear model decoder, we demonstrate the pre-existence of ACC-to-CA1sup communication, which is suppressed during new learning and subsequent sleep suggesting that ACC activity may reallocate the contribution of CA1sup neurons during memory acquisition and consolidation. Further supporting this notion, we found that optogenetic stimulations of the ACC preferentially suppressed CA1sup interneurons while activating a unique subset of CA1 interneurons. Overall, these findings highlight a possible role of the ACC in rebalancing CA1 neuronal populations' contribution to ripple contents surrounding learning.
Collapse
Affiliation(s)
- Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
3
|
Swanson RA, Chinigò E, Levenstein D, Vöröslakos M, Mousavi N, Wang XJ, Basu J, Buzsáki G. Topography of putative bi-directional interaction between hippocampal sharp-wave ripples and neocortical slow oscillations. Neuron 2025; 113:754-768.e9. [PMID: 39874961 DOI: 10.1016/j.neuron.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/26/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across the neocortex and the mechanisms enabling it remains unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with wide-field imaging of the dorsal neocortex, we found spatially and temporally precise bi-directional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability were correlated with UP/DOWN states in the default mode network (DMN), with the highest modulation by the RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN DOWN → UP transitions, whereas large-amplitude SWRs were often followed by DOWN states originating in the RSC. We explain these electrophysiological results with a model in which the HPC and RSC are weakly coupled excitable systems capable of bi-directional perturbation and suggest that the RSC may act as a gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of DOWN states.
Collapse
Affiliation(s)
- Rachel A Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Elisa Chinigò
- Center for Neural Science, New York University, New York, NY, USA
| | - Daniel Levenstein
- Department of Neurology and Neurosurgery, McGill University Montreal, QC, Canada; Mila - The Quebec AI Institute, Montreal, QC, Canada
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Navid Mousavi
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jayeeta Basu
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA; Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA; Department of Psychiatry, Langone Medical Center, New York University, New York, NY, USA.
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA; Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
4
|
Xian Q, Chen ZS. Inferring directed spectral information flow between mixed-frequency time series. RESEARCH SQUARE 2025:rs.3.rs-4926819. [PMID: 40060047 PMCID: PMC11888547 DOI: 10.21203/rs.3.rs-4926819/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Identifying directed spectral information flow between multivariate time series is important for many applications in finance, climate, geophysics and neuroscience. Spectral Granger causality (SGC) is a prediction-based measure characterizing directed information flow at specific oscillatory frequencies. However, traditional vector autoregressive (VAR) approaches are insufficient to assess SGC when time series have mixed frequencies (MF) or are coupled by nonlinearity. Here we propose a time-frequency canonical correlation analysis approach ("MF-TFCCA") to assess the strength and driving frequency of spectral information flow. We validate the approach with extensive computer simulations on MF time series under various interaction conditions and further assess statistical significance of the estimate with surrogate data. In various benchmark comparisons, MF-TFCCA consistently outperforms the traditional parametric MF-VAR model in both computational efficiency and detection accuracy, and recovers the dominant driving frequencies. We further apply MF-TFCCA to real-life finance, climate and neuroscience data. Our analysis framework provides an exploratory and computationally efficient nonparametric approach to quantify directed information flow between MF time series in the presence of complex and nonlinear interactions.
Collapse
Affiliation(s)
- Qiqi Xian
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- School of the Gifted Young, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
5
|
Huang W, Hall AF, Kawalec N, Opalka AN, Liu J, Wang DV. Anterior cingulate cortex in complex associative learning: monitoring action state and action content. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635442. [PMID: 39975180 PMCID: PMC11838375 DOI: 10.1101/2025.01.29.635442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Environmental changes necessitate adaptive responses, and thus the ability to monitor one's actions and their connection to specific cues and outcomes is crucial for survival. The anterior cingulate cortex (ACC) is implicated in these processes, yet its precise role in action monitoring and outcome evaluation remains unclear. To investigate this, we developed a novel discrimination-avoidance task for mice, designed with clear temporal separation between actions and outcomes. Our findings show that ACC neurons primarily encode post-action variables over extended periods, reflecting the animal's preceding actions rather than the outcomes or values of those actions. Specifically, we identified two distinct subpopulations of ACC neurons: one encoding the action state (whether an action was taken) and the other encoding the action content (which action was taken). Importantly, increased post-action ACC activity was associated with better performance in subsequent trials. These findings suggest that the ACC supports complex associative learning through extended signaling of rich action-relevant information, thereby bridging cue, action, and outcome associations.
Collapse
Affiliation(s)
- Wenqiang Huang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Natalia Kawalec
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
- School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley N Opalka
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
6
|
Hou R, Liu Z, Jin Z, Huang D, Hu Y, Du W, Zhu D, Yang L, Weng Y, Yuan T, Lu B, Wang Y, Ping Y, Xiao X. Coordinated Interactions between the Hippocampus and Retrosplenial Cortex in Spatial Memory. RESEARCH (WASHINGTON, D.C.) 2024; 7:0521. [PMID: 39483173 PMCID: PMC11525046 DOI: 10.34133/research.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024]
Abstract
While a hippocampal-cortical dialogue is generally thought to mediate memory consolidation, which is crucial for engram function, how it works remains largely unknown. Here, we examined the interplay of neural signals from the retrosplenial cortex (RSC), a neocortical region, and from the hippocampus in memory consolidation by simultaneously recording sharp-wave ripples (SWRs) of dorsal hippocampal CA1 and neural signals of RSC in free-moving mice during the delayed spatial alternation task (DSAT) and subsequent sleep. Hippocampal-RSC coordination during SWRs was identified in nonrapid eye movement (NREM) sleep, reflecting neural reactivation of decision-making in the task, as shown by a peak reactivation strength within SWRs. Using modified generalized linear models (GLMs), we traced information flow through the RSC-CA1-RSC circuit around SWRs during sleep following DSAT. Our findings show that after spatial training, RSC excitatory neurons typically increase CA1 activity prior to hippocampal SWRs, potentially initiating hippocampal memory replay, while inhibitory neurons are activated by hippocampal outputs in post-SWRs. We further identified certain excitatory neurons in the RSC that encoded spatial information related to the DSAT. These neurons, classified as splitters and location-related cells, showed varied responses to hippocampal SWRs. Overall, our study highlights the complex dynamics between the RSC and hippocampal CA1 region during SWRs in NREM sleep, underscoring their critical interplay in spatial memory consolidation.
Collapse
Affiliation(s)
- Ruiqing Hou
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Ziyue Liu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Zichen Jin
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Dongxue Huang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yue Hu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Danyi Zhu
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Leiting Yang
- School of Life Science,
Fudan University, Shanghai 200032, China
| | - Yuanfeng Weng
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center,
Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huadong Hospital,
Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education),
Shanghai JiaoTong University, Shanghai 200240, China
| | - Xiao Xiao
- Department of Anesthesiology, Huashan Hospital; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science,
Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Swanson R, Chinigò E, Levenstein D, Vöröslakos M, Mousavi N, Wang XJ, Basu J, Buzsáki G. Topography of putative bidirectional interaction between hippocampal sharp wave ripples and neocortical slow oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619879. [PMID: 39484611 PMCID: PMC11526890 DOI: 10.1101/2024.10.23.619879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across neocortex and the mechanisms enabling it remain unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with widefield imaging of dorsal neocortex, we found spatially and temporally precise bidirectional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability was correlated with UP/DOWN states in mouse default mode network, with highest modulation by RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN DOWN→UP transitions, while large-amplitude SWRs were often followed by DOWN states originating in RSC. We explain these electrophysiological results with a model in which HPC and RSC are weakly coupled excitable systems capable of bi-directional perturbation and suggest RSC may act as a gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of DOWN states.
Collapse
Affiliation(s)
- Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Elisa Chinigò
- Center for Neural Science, New York University, New York, NY, USA
| | - Daniel Levenstein
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Mila – The Quebec AI Institute, Montreal, QC, Canada
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Navid Mousavi
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jayeeta Basu
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Psychiatry, Langone Medical Center, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| |
Collapse
|
8
|
Zouridis IS, Balsamo G, Preston-Ferrer P, Burgalossi A. Anatomical and electrophysiological analysis of the fasciola cinerea of the mouse hippocampus. Hippocampus 2024; 34:528-539. [PMID: 39105449 DOI: 10.1002/hipo.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
The hippocampus is considered essential for several forms of declarative memory, including spatial and social memory. Despite the extensive research of the classic subfields of the hippocampus, the fasciola cinerea (FC)-a medially located structure within the hippocampal formation-has remained largely unexplored. In the present study, we performed a morpho-functional characterization of principal neurons in the mouse FC. Using in vivo juxtacellular recording of single neurons, we found that FC neurons are distinct from neighboring CA1 pyramidal cells, both morphologically and electrophysiologically. Specifically, FC neurons displayed non-pyramidal morphology and granule cell-like apical dendrites. Compared to neighboring CA1 pyramidal neurons, FC neurons exhibited more regular in vivo firing patterns and a lower tendency to fire spikes at short interspike intervals. Furthermore, tracing experiments revealed that the FC receives inputs from the lateral but not the medial entorhinal cortex and CA3, and it provides a major intra-hippocampal projection to the septal CA2 and sparser inputs to the distal CA1. Overall, our results indicate that the FC is a morphologically and electrophysiologically distinct subfield of the hippocampal formation; given the established role of CA2 in social memory and seizure initiation, the unique efferent intra-hippocampal connectivity of the FC points to possible roles in social cognition and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience-International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Puska G, Szendi V, Dobolyi A. Lateral septum as a possible regulatory center of maternal behaviors. Neurosci Biobehav Rev 2024; 161:105683. [PMID: 38649125 DOI: 10.1016/j.neubiorev.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.
Collapse
Affiliation(s)
- Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
10
|
Mizuno H, Ikegaya Y. Late-spiking retrosplenial cortical neurons are not synchronized with neocortical slow waves in anesthetized mice. Neurosci Res 2024; 203:51-56. [PMID: 38224839 DOI: 10.1016/j.neures.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Neocortical slow waves are critical for memory consolidation. The retrosplenial cortex is thought to facilitate the slow wave propagation to regions beyond the neocortex. However, it remains unclear which population is responsible for the slow wave propagation. To address this issue, we performed in vivo whole-cell recordings to identify neurons that were synchronous and asynchronous with slow waves. By quantifying their intrinsic membrane properties, we observed that the former exhibited regular spiking, whereas the latter exhibited late spiking. Thus, these two cell types transmit information in different directions between the neocortex and subcortical regions.
Collapse
Affiliation(s)
- Hiroyuki Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Arndt KC, Gilbert ET, Klaver LMF, Kim J, Buhler CM, Basso JC, McKenzie S, English DF. Granular retrosplenial cortex layer 2/3 generates high-frequency oscillations dynamically coupled with hippocampal rhythms across brain states. Cell Rep 2024; 43:113910. [PMID: 38461414 DOI: 10.1016/j.celrep.2024.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
The granular retrosplenial cortex (gRSC) exhibits high-frequency oscillations (HFOs; ∼150 Hz), which can be driven by a hippocampus-subiculum pathway. How the cellular-synaptic and laminar organization of gRSC facilitates HFOs is unknown. Here, we probe gRSC HFO generation and coupling with hippocampal rhythms using focal optogenetics and silicon-probe recordings in behaving mice. ChR2-mediated excitation of CaMKII-expressing cells in L2/3 or L5 induces HFOs, but spontaneous HFOs are found only in L2/3, where HFO power is highest. HFOs couple to CA1 sharp wave-ripples (SPW-Rs) during rest and the descending phase of theta. gRSC HFO current sources and sinks are the same for events during both SPW-Rs and theta oscillations. Independent component analysis shows that high gamma (50-100 Hz) in CA1 stratum lacunosum moleculare is comodulated with HFO power. HFOs may thus facilitate interregional communication of a multisynaptic loop between the gRSC, hippocampus, and medial entorhinal cortex during distinct brain and behavioral states.
Collapse
Affiliation(s)
- Kaiser C Arndt
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Earl T Gilbert
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Jongwoon Kim
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Chelsea M Buhler
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Julia C Basso
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA; Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA 24060, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
12
|
Pedrosa R, Nazari M, Kergoat L, Bernard C, Mohajerani M, Stella F, Battaglia F. Hippocampal ripples coincide with "up-state" and spindles in retrosplenial cortex. Cereb Cortex 2024; 34:bhae083. [PMID: 38494417 DOI: 10.1093/cercor/bhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Loig Kergoat
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Christophe Bernard
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Francesco Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
13
|
Feliciano-Ramos PA, Galazo M, Penagos H, Wilson M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learn Mem 2023; 30:221-236. [PMID: 37758288 PMCID: PMC10547389 DOI: 10.1101/lm.053834.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Episodic memories are thought to be stabilized through the coordination of cortico-hippocampal activity during sleep. However, the timing and mechanism of this coordination remain unknown. To investigate this, we studied the relationship between hippocampal reactivation and slow-wave sleep up and down states of the retrosplenial cortex (RTC) and prefrontal cortex (PFC). We found that hippocampal reactivations are strongly correlated with specific cortical states. Reactivation occurred during sustained cortical Up states or during the transition from up to down state. Interestingly, the most prevalent interaction with memory reactivation in the hippocampus occurred during sustained up states of the PFC and RTC, while hippocampal reactivation and cortical up-to-down state transition in the RTC showed the strongest coordination. Reactivation usually occurred within 150-200 msec of a cortical Up state onset, indicating that a buildup of excitation during cortical Up state activity influences the probability of memory reactivation in CA1. Conversely, CA1 reactivation occurred 30-50 msec before the onset of a cortical down state, suggesting that memory reactivation affects down state initiation in the RTC and PFC, but the effect in the RTC was more robust. Our findings provide evidence that supports and highlights the complexity of bidirectional communication between cortical regions and the hippocampus during sleep.
Collapse
Affiliation(s)
- Pedro A Feliciano-Ramos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria Galazo
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Arndt KC, Gilbert ET, Klaver LMF, Kim J, Buhler CM, Basso JC, McKenzie S, English DF. Granular retrosplenial cortex layer 2/3 generates high-frequency oscillations coupled with hippocampal theta and gamma in online states or sharp-wave ripples in offline states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.547981. [PMID: 37502984 PMCID: PMC10369913 DOI: 10.1101/2023.07.10.547981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Neuronal oscillations support information transfer by temporally aligning the activity of anatomically distributed 'writer' and 'reader' cell assemblies. High-frequency oscillations (HFOs) such as hippocampal CA1 sharp-wave ripples (SWRs; 100-250 Hz) are sufficiently fast to initiate synaptic plasticity between assemblies and are required for memory consolidation. HFOs are observed in parietal and midline cortices including granular retrosplenial cortex (gRSC). In 'offline' brain states (e.g. quiet wakefulness) gRSC HFOs co-occur with CA1 SWRs, while in 'online' states (e.g. ambulation) HFOs persist with the emergence of theta oscillations. The mechanisms of gRSC HFO oscillations, specifically whether the gRSC can intrinsically generate HFOs, and which layers support HFOs across states, remain unclear. We addressed these issues in behaving mice using optogenetic excitation in individual layers of the gRSC and high density silicon-probe recordings across gRSC layers and hippocampus CA1. Optogenetically induced HFOs (iHFOs) could be elicited by depolarizing excitatory neurons with 100 ms half-sine wave pulses in layer 2/3 (L2/3) or layer 5 (L5) though L5 iHFOs were of lower power than in L2/3. Critically, spontaneous HFOs were only observed in L2/3 and never in L5. Intra-laminar monosynaptic connectivity between excitatory and inhibitory neurons was similar across layers, suggesting other factors restrict HFOs to L2/3. To compare HFOs in online versus offline states we analyzed, separately, HFOs that did or did not co-occur with CA1 SWRs. Using current-source density analysis we found uniform synaptic inputs to L2/3 during all gRSC HFOs, suggesting layer-specific inputs may dictate the localization of HFOs to L2/3. HFOs occurring without SWRs were aligned with the descending phase of both gRSC and CA1 theta oscillations and were coherent with CA1 high frequency gamma oscillations (50-80 Hz). These results demonstrate that gRSC can internally generate HFOs without rhythmic inputs and that HFOs occur exclusively in L2/3, coupled to distinct hippocampal oscillations in online versus offline states.
Collapse
|
15
|
Harvey RE, Robinson HL, Liu C, Oliva A, Fernandez-Ruiz A. Hippocampo-cortical circuits for selective memory encoding, routing, and replay. Neuron 2023; 111:2076-2090.e9. [PMID: 37196658 PMCID: PMC11146684 DOI: 10.1016/j.neuron.2023.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Traditionally considered a homogeneous cell type, hippocampal pyramidal cells have been recently shown to be highly diverse. However, how this cellular diversity relates to the different hippocampal network computations that support memory-guided behavior is not yet known. We show that the anatomical identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics, the emergence of memory replay, and cortical projection patterns in rats. Segregated pyramidal cell subpopulations encoded trajectory and choice-specific information or tracked changes in reward configuration respectively, and their activity was selectively read out by different cortical targets. Furthermore, distinct hippocampo-cortical assemblies coordinated the reactivation of complementary memory representations. These findings reveal the existence of specialized hippocampo-cortical subcircuits and provide a cellular mechanism that supports the computational flexibility and memory capacities of these structures.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Can Liu
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology & Behavior, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
16
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
17
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
18
|
Hall AF, Wang DV. The two tales of hippocampal sharp-wave ripple content: The rigid and the plastic. Prog Neurobiol 2023; 221:102396. [PMID: 36563928 PMCID: PMC9899323 DOI: 10.1016/j.pneurobio.2022.102396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Sharp-wave ripples, prominently in the CA1 region of the hippocampus, are short oscillatory events accompanied by bursts of neural firing. Ripples and associated hippocampal place cell sequences communicate with cortical ensembles during slow-wave sleep, which has been shown to be critical for systems consolidation of episodic memories. This consolidation is not limited to a newly formed memory trace; instead, ripples appear to reactivate and consolidate memories spanning various experiences. Despite this broad spanning influence, ripples remain capable of producing precise memories. The underlying mechanisms that enable ripples to consolidate memories broadly and with specificity across experiences remain unknown. In this review, we discuss data that uncovers circuit-level processes that generate ripples and influence their characteristics during consolidation. Based on current knowledge, we propose that memory emerges from the integration of two parallel consolidation pathways in CA1: the rigid and plastic pathways. The rigid pathway generates ripples stochastically, providing a backbone upon which dynamic plastic pathway inputs carrying novel information are integrated.
Collapse
Affiliation(s)
- Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
19
|
Tomagra G, Franchino C, Cesano F, Chiarion G, de lure A, Carbone E, Calabresi P, Mesin L, Picconi B, Marcantoni A, Carabelli V. Alpha-synuclein oligomers alter the spontaneous firing discharge of cultured midbrain neurons. Front Cell Neurosci 2023; 17:1078550. [PMID: 36744002 PMCID: PMC9896582 DOI: 10.3389/fncel.2023.1078550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
The aim of this work was to monitor the effects of extracellular α-synuclein on the firing activity of midbrain neurons dissociated from substantia nigra TH-GFP mice embryos and cultured on microelectrode arrays (MEA). We monitored the spontaneous firing discharge of the network for 21 days after plating and the role of glutamatergic and GABAergic inputs in regulating burst generation and network synchronism. Addition of GABA A , AMPA and NMDA antagonists did not suppress the spontaneous activity but allowed to identify three types of neurons that exhibited different modalities of firing and response to applied L-DOPA: high-rate (HR) neurons, low-rate pacemaking (LR-p), and low-rate non-pacemaking (LR-np) neurons. Most HR neurons were insensitive to L-DOPA, while the majority of LR-p neurons responded with a decrease of the firing discharge; less defined was the response of LR-np neurons. The effect of exogenous α-synuclein (α-syn) on the firing discharge of midbrain neurons was then studied by varying the exposure time (0-48 h) and the α-syn concentration (0.3-70 μM), while the formation of α-syn oligomers was monitored by means of AFM. Independently of the applied concentration, acute exposure to α-syn monomers did not exert any effect on the spontaneous firing rate of HR, LR-p, and LR-np neurons. On the contrary, after 48 h exposure, the firing activity was drastically altered at late developmental stages (14 days in vitro, DIV, neurons): α-syn oligomers progressively reduced the spontaneous firing discharge (IC50 = 1.03 μM), impaired burst generation and network synchronism, proportionally to the increased oligomer/monomer ratio. Different effects were found on early-stage developed neurons (9 DIV), whose firing discharge remained unaltered, regardless of the applied α-syn concentration and the exposure time. Our findings unravel, for the first time, the variable effects of exogenous α-syn at different stages of midbrain network development and provide new evidence for the early detection of neuronal function impairment associated to aggregated forms of α-syn.
Collapse
Affiliation(s)
- Giulia Tomagra
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| | | | - Federico Cesano
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
- Department of Chemistry and INSTM-UdR Torino, Turin, Italy
| | - Giovanni Chiarion
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Turin, Italy
| | - Antonio de lure
- Laboratory Experimental Neurophysiology, IRCCS San Raffaele Rome, Rome, Italy
| | - Emilio Carbone
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| | - Paolo Calabresi
- Neurological Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Neurology, Department of Neuroscience, Faculty of Medicine, Università Cattolica del “Sacro Cuore,”Rome, Italy
| | - Luca Mesin
- Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Turin, Italy
| | - Barbara Picconi
- Laboratory Experimental Neurophysiology, IRCCS San Raffaele Rome, Rome, Italy
- Dipartimento di Scienze Umane e Promozione della Qualitá della Vita, Telematic University San Raffaele Roma, Rome, Italy
| | - Andrea Marcantoni
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| | - Valentina Carabelli
- Drug Science Department, University of Torino, Turin, Italy
- Nanostructured Interfaces and Surfaces Inter-Departmental Research Centre, Turin, Italy
| |
Collapse
|
20
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 PMCID: PMC11709228 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Karimi Abadchi J, Rezaei Z, Knöpfel T, McNaughton BL, Mohajerani MH. Inhibition is a prevalent mode of activity in the neocortex around awake hippocampal ripples in mice. eLife 2023; 12:79513. [PMID: 36645126 PMCID: PMC9876570 DOI: 10.7554/elife.79513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Coordinated peri-ripple activity in the hippocampal-neocortical network is essential for mnemonic information processing in the brain. Hippocampal ripples likely serve different functions in sleep and awake states. Thus, the corresponding neocortical activity patterns may differ in important ways. We addressed this possibility by conducting voltage and glutamate wide-field imaging of the neocortex with concurrent hippocampal electrophysiology in awake mice. Contrary to our previously published sleep results, deactivation and activation were dominant in post-ripple neocortical voltage and glutamate activity, respectively, especially in the agranular retrosplenial cortex (aRSC). Additionally, the spiking activity of aRSC neurons, estimated by two-photon calcium imaging, revealed the existence of two subpopulations of excitatory neurons with opposite peri-ripple modulation patterns: one increases and the other decreases firing rate. These differences in peri-ripple spatiotemporal patterns of neocortical activity in sleep versus awake states might underlie the reported differences in the function of sleep versus awake ripples.
Collapse
Affiliation(s)
- Javad Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
| | - Zahra Rezaei
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College LondonLondonUnited Kingdom
- Department of Physics, Hong Kong Baptist UniversityKowloon TongHong Kong
| | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of LethbridgeLethbridgeCanada
| |
Collapse
|
22
|
Mizuseki K, Miyawaki H. Fast network oscillations during non-REM sleep support memory consolidation. Neurosci Res 2022; 189:3-12. [PMID: 36581177 DOI: 10.1016/j.neures.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The neocortex is disconnected from the outside world during sleep, which has been hypothesized to be relevant for synaptic reorganization involved in memory consolidation. Fast network oscillations, such as hippocampal sharp-wave ripples, cortical ripples, and amygdalar high-frequency oscillations, are prominent during non-REM sleep. Although these oscillations are thought to be generated by local circuit mechanisms, their occurrence rates and amplitudes are modulated by thalamocortical spindles and neocortical slow oscillations during non-REM sleep, suggesting that fast network oscillations and slower oscillations cooperatively work to facilitate memory consolidation. This review discusses the recent progress in understanding the generation, coordination, and functional roles of fast network oscillations. Further, it outlines how fast network oscillations in distinct brain regions synergistically support memory consolidation and retrieval by hosting cross-regional coactivation of memory-related neuronal ensembles.
Collapse
Affiliation(s)
- Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Miyawaki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
23
|
Pedrosa R, Nazari M, Mohajerani MH, Knöpfel T, Stella F, Battaglia FP. Hippocampal gamma and sharp wave/ripples mediate bidirectional interactions with cortical networks during sleep. Proc Natl Acad Sci U S A 2022; 119:e2204959119. [PMID: 36279469 PMCID: PMC9636925 DOI: 10.1073/pnas.2204959119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Hippocampus-neocortex interactions during sleep are critical for memory processes: Hippocampally initiated replay contributes to memory consolidation in the neocortex and hippocampal sharp wave/ripples modulate cortical activity. Yet, the spatial and temporal patterns of this interaction are unknown. With voltage imaging, electrocorticography, and laminarly resolved hippocampal potentials, we characterized cortico-hippocampal signaling during anesthesia and nonrapid eye movement sleep. We observed neocortical activation transients, with statistics suggesting a quasi-critical regime, may be helpful for communication across remote brain areas. From activity transients, we identified, in a data-driven fashion, three functional networks. A network overlapping with the default mode network and centered on retrosplenial cortex was the most associated with hippocampal activity. Hippocampal slow gamma rhythms were strongly associated to neocortical transients, even more than ripples. In fact, neocortical activity predicted hippocampal slow gamma and followed ripples, suggesting that consolidation processes rely on bidirectional signaling between hippocampus and neocortex.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Majid H. Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB T1K 6 3M4, Canada
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| | - Francesco P. Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
24
|
Hussin AT, Abbaspoor S, Hoffman KL. Retrosplenial and Hippocampal Synchrony during Retrieval of Old Memories in Macaques. J Neurosci 2022; 42:7947-7956. [PMID: 36261267 PMCID: PMC9617609 DOI: 10.1523/jneurosci.0001-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Memory for events from the distant past relies on multiple brain regions, but little is known about the underlying neural dynamics that give rise to such abilities. We recorded neural activity in the hippocampus and retrosplenial cortex of two female rhesus macaques as they visually selected targets in year-old and newly acquired object-scene associations. Whereas hippocampal activity was unchanging with memory age, the retrosplenial cortex responded with greater magnitude alpha oscillations (10-15 Hz) and greater phase locking to memory-guided eye movements during retrieval of old events. A similar old-memory enhancement was observed in the anterior cingulate cortex but in a beta2/gamma band (28-35 Hz). In contrast, remote retrieval was associated with decreased gamma-band synchrony between the hippocampus and each neocortical area. The increasing retrosplenial alpha oscillation and decreasing hippocampocortical synchrony with memory age may signify a shift in frank memory allocation or, alternatively, changes in selection among distributed memory representations in the primate brain.SIGNIFICANCE STATEMENT Memory depends on multiple brain regions, whose involvement is thought to change with time. Here, we recorded neuronal population activity from the hippocampus and retrosplenial cortex as nonhuman primates searched for objects embedded in scenes. These memoranda were either newly presented or a year old. Remembering old material drove stronger oscillations in the retrosplenial cortex and led to a greater locking of neural activity to search movements. Remembering new material revealed stronger oscillatory synchrony between the hippocampus and retrosplenial cortex. These results suggest that with age, memories may come to rely more exclusively on neocortical oscillations for retrieval and search guidance and less on long-range coupling with the hippocampus.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
| | | | - Kari L Hoffman
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
- Departments of Psychology
- Biomedical Engineering, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
25
|
Orexin 2 receptor (OX2R) protein distribution measured by autoradiography using radiolabeled OX2R-selective antagonist EMPA in rodent brain and peripheral tissues. Sci Rep 2022; 12:8473. [PMID: 35589803 PMCID: PMC9120030 DOI: 10.1038/s41598-022-12601-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
Orexin, a neuropeptide, performs various physiological functions, including the regulation of emotion, feeding, metabolism, respiration, and sleep/wakefulness, by activating the orexin 1 receptor and orexin 2 receptor (OX2R). Owing to the pivotal role of OX2R in wakefulness and other biological functions, OX2R agonists are being developed. A detailed understanding of OX2R protein distribution is essential for determining the mechanisms of action of OX2R agonists; however, this has been hindered by the lack of selective antibodies. In this study, we first confirmed the OX2R-selective binding of [3H]-EMPA in in vitro autoradiography studies, using brain slices from OX2R knockout mice and their wild-type littermates. Subsequently, OX2R protein distribution in rats was comprehensively assessed in 51 brain regions and 10 peripheral tissues using in vitro autoradiography with [3H]-EMPA. The widespread distribution of OX2R protein, including that in previously unrecognized regions of the retrosplenial cortex, was identified. In contrast, OX2R protein expression was negligible/very low in peripheral tissues, suggesting that orexin exerts OX2R-dependent physiological functions primarily through activation of the central nervous system. These findings will be useful for understanding the wide range of biological functions of OX2R and the application of OX2R agonists in various disorders.
Collapse
|
26
|
Marks WD, Yokose J, Kitamura T, Ogawa SK. Neuronal Ensembles Organize Activity to Generate Contextual Memory. Front Behav Neurosci 2022; 16:805132. [PMID: 35368306 PMCID: PMC8965349 DOI: 10.3389/fnbeh.2022.805132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Contextual learning is a critical component of episodic memory and important for living in any environment. Context can be described as the attributes of a location that are not the location itself. This includes a variety of non-spatial information that can be derived from sensory systems (sounds, smells, lighting, etc.) and internal state. In this review, we first address the behavioral underpinnings of contextual memory and the development of context memory theory, with a particular focus on the contextual fear conditioning paradigm as a means of assessing contextual learning and the underlying processes contributing to it. We then present the various neural centers that play roles in contextual learning. We continue with a discussion of the current knowledge of the neural circuitry and physiological processes that underlie contextual representations in the Entorhinal cortex-Hippocampal (EC-HPC) circuit, as the most well studied contributor to contextual memory, focusing on the role of ensemble activity as a representation of context with a description of remapping, and pattern separation and completion in the processing of contextual information. We then discuss other critical regions involved in contextual memory formation and retrieval. We finally consider the engram assembly as an indicator of stored contextual memories and discuss its potential contribution to contextual memory.
Collapse
Affiliation(s)
- William D. Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sachie K. Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
27
|
Stacho M, Manahan-Vaughan D. Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition. Trends Neurosci 2022; 45:284-296. [DOI: 10.1016/j.tins.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
|
28
|
Smith DM, Yang YY, Subramanian DL, Miller AMP, Bulkin DA, Law LM. The limbic memory circuit and the neural basis of contextual memory. Neurobiol Learn Mem 2022; 187:107557. [PMID: 34808337 PMCID: PMC8755583 DOI: 10.1016/j.nlm.2021.107557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
The hippocampus, retrosplenial cortex and anterior thalamus are key components of a neural circuit known to be involved in a variety of memory functions, including spatial, contextual and episodic memory. In this review, we focus on the role of this circuit in contextual memory processes. The background environment, or context, is a powerful cue for memory retrieval, and neural representations of the context provide a mechanism for efficiently retrieving relevant memories while avoiding interference from memories that belong to other contexts. Data from experimental lesions and neural manipulation techniques indicate that each of these regions is critical for contextual memory. Neurophysiological evidence from the hippocampus and retrosplenial cortex suggest that contextual information is represented within this circuit by population-level neural firing patterns that reliably differentiate each context a subject encounters. These findings indicate that encoding contextual information to support context-dependent memory retrieval is a key function of this circuit.
Collapse
Affiliation(s)
- David M Smith
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Yan Yu Yang
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | | | - Adam M P Miller
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - David A Bulkin
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - L Matthew Law
- Department of Psychology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Yang H, Jeong Y. Correlation between Alteration of Sharp-wave Ripple Coupled Cortical Oscillation and Long-term Memory Deficit in Alzheimer Disease Model Mice. Exp Neurobiol 2021; 30:430-440. [PMID: 34983883 PMCID: PMC8752320 DOI: 10.5607/en21046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia, characterized by prominent episodic memory dysfunction. Recent studies have suggested that there is a sequential mechanism in the memory deficit, with long-term ones preceding short-term ones. However, there is lack of explanation for these symptoms. Interaction between the hippocampus and retrosplenial cortex (RSC) during slow-wave sleep (SWS) is a crucial step for successful long-term memory formation. In particular, sharp-wave ripple (SWR) is a principal hippocampus oscillation that coordinates with RSC activity. To determine the relationship between memory dysfunction and SWR-related oscillation changes in AD, we implanted local field potential electrodes in the hippocampus and RSC of AD model mice (APP/PS1). We found that the SWR-coupled ripple wave increased in the RSC, while the amplitude of the SWR was preserved. In addition, the corresponding delta power in hippocampus and RSC was elevated, together with altered delta synchrony in AD mice. All these findings showed a significant correlation with long-term memory deficits measured in contextual fear conditions. Our study suggests that altered SWR-coupled oscillations are a possible underlying mechanism of episodic memory dysfunction in AD mice.
Collapse
Affiliation(s)
- Hyunwoo Yang
- Department of Bio and Brain Engineering, KI for Health Science and Technology, KAIST, Daejeon 34141, Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, KI for Health Science and Technology, KAIST, Daejeon 34141, Korea
| |
Collapse
|
30
|
Balcerek E, Włodkowska U, Czajkowski R. Retrosplenial cortex in spatial memory: focus on immediate early genes mapping. Mol Brain 2021; 14:172. [PMID: 34863215 PMCID: PMC8642902 DOI: 10.1186/s13041-021-00880-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
The ability to form, retrieve and update autobiographical memories is one of the most fascinating features of human behavior. Spatial memory, the ability to remember the layout of the external environment and to navigate within its boundaries, is closely related to the autobiographical memory domain. It is served by an overlapping brain circuit, centered around the hippocampus (HPC) where the cognitive map index is stored. Apart from the hippocampus, several cortical structures participate in this process. Their relative contribution is a subject of intense research in both humans and animal models. One of the most widely studied regions is the retrosplenial cortex (RSC), an area in the parietal lobe densely interconnected with the hippocampal formation. Several methodological approaches have been established over decades in order to investigate the cortical aspects of memory. One of the most successful techniques is based on the analysis of brain expression patterns of the immediate early genes (IEGs). The common feature of this diverse group of genes is fast upregulation of their mRNA translation upon physiologically relevant stimulus. In the central nervous system they are rapidly triggered by neuronal activity and plasticity during learning. There is a widely accepted consensus that their expression level corresponds to the engagement of individual neurons in the formation of memory trace. Imaging of the IEGs might therefore provide a picture of an emerging memory engram. In this review we present the overview of IEG mapping studies of retrosplenial cortex in rodent models. We begin with classical techniques, immunohistochemical detection of protein and fluorescent in situ hybridization of mRNA. We then proceed to advanced methods where fluorescent genetically encoded IEG reporters are chronically followed in vivo during memory formation. We end with a combination of genetic IEG labelling and optogenetic approach, where the activity of the entire engram is manipulated. We finally present a hypothesis that attempts to unify our current state of knowledge about the function of RSC.
Collapse
Affiliation(s)
- Edyta Balcerek
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Urszula Włodkowska
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
31
|
Lomi E, Mathiasen ML, Cheng HY, Zhang N, Aggleton JP, Mitchell AS, Jeffery KJ. Evidence for two distinct thalamocortical circuits in retrosplenial cortex. Neurobiol Learn Mem 2021; 185:107525. [PMID: 34555510 DOI: 10.1016/j.nlm.2021.107525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Retrosplenial cortex (RSC) lies at the interface between sensory and cognitive networks in the brain and mediates between these, although it is not yet known how. It has two distinct subregions, granular (gRSC) and dysgranular (dRSC). The present study investigated how these subregions differ with respect to their electrophysiology and thalamic connectivity, as a step towards understanding their functions. The gRSC is more closely connected to the hippocampal formation, in which theta-band local field potential oscillations are prominent. We, therefore, compared theta-rhythmic single-unit activity between the two RSC subregions and found, mostly in gRSC, a subpopulation of non-directional cells with spiking activity strongly entrained by theta oscillations, suggesting a stronger coupling of gRSC to the hippocampal system. We then used retrograde tracers to test for differential inputs to RSC from the anteroventral thalamus (AV). We found that gRSC and dRSC differ in their afferents from two AV subfields: dorsomedial (AVDM) and ventrolateral (AVVL). Specifically: (1) as a whole AV projects more strongly to gRSC; (2) AVVL targets both gRSC and dRSC, while AVDM provides a selective projection to gRSC, (3) the gRSC projection is layer-specific: AVDM targets specifically gRSC superficial layers. These same AV projections are topographically organized with ventral AV neurons innervating rostral RSC and dorsal AV neurons innervating caudal RSC. These combined results suggest the existence of two distinct but interacting RSC subcircuits: one connecting AVDM to gRSC that may comprise part of the cognitive hippocampal system, and the other connecting AVVL to both RSC regions that may link hippocampal and perceptual regions. We suggest that these subcircuits are distinct to allow for differential weighting during integration of converging sensory and cognitive computations: an integration that may take place in thalamus, RSC, or both.
Collapse
Affiliation(s)
- Eleonora Lomi
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| | | | - Han Y Cheng
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Ningyu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Kate J Jeffery
- Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
32
|
Niu L, Zhang F, Xu X, Yang Y, Li S, Liu H, Le W. Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer's disease neuropathology. Brain Pathol 2021; 32:e13028. [PMID: 34668266 PMCID: PMC9048513 DOI: 10.1111/bpa.13028] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian disruption is prevalent in Alzheimer's disease (AD) and may contribute to cognitive impairment, psychological symptoms, and neurodegeneration. This study aimed to evaluate the effects of environmental and genetic factors on the molecular clock and to establish a link between circadian rhythm disturbance and AD. We investigated the pathological effects of chronic sleep deprivation (CSD) in the APPswe/PS1ΔE9 transgenic mice and their wild‐type (WT) littermates for 2 months and evaluated the expression levels of clock genes in the circadian rhythm‐related nuclei. Our results showed that CSD impaired learning and memory, and further exaggerated disease progression in the AD mice. Furthermore, CSD caused abnormal expression of Bmal1, Clock, and Cry1 in the circadian rhythm‐related nuclei of experimental mice, and these changes are more significant in AD mice. Abnormal expression of clock genes in AD mice suggested that the expression of clock genes is affected by APP/PS1 mutations. In addition, abnormal tau phosphorylation was found in the retrosplenial cortex, which was co‐located with the alteration of BMAL1 protein level. Moreover, the level of tyrosine hydroxylase in the locus coeruleus of AD and WT mice was significantly increased after CSD. There may be a potential link between the molecular clock, Aβ pathology, tauopathy, and the noradrenergic system. The results of this study provided new insights into the potential link between the disruption of circadian rhythm and the development of AD.
Collapse
Affiliation(s)
- Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiaojiao Xu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuting Yang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hui Liu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of Neurology and Institute of Neurology, Sichuan Academy of Medical Science-Sichuan Provincial Hospital, Chengdu, China
| |
Collapse
|
33
|
Zhen ZH, Guo MR, Li HM, Guo OY, Zhen JL, Fu J, Tan GJ. Normal and Abnormal Sharp Wave Ripples in the Hippocampal-Entorhinal Cortex System: Implications for Memory Consolidation, Alzheimer's Disease, and Temporal Lobe Epilepsy. Front Aging Neurosci 2021; 13:683483. [PMID: 34262446 PMCID: PMC8273653 DOI: 10.3389/fnagi.2021.683483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of hippocampal sharp wave ripples (SWRs) is an electrophysiological biomarker for episodic memory encoding and behavioral planning. Disturbed SWRs are considered a sign of neural network dysfunction that may provide insights into the structural connectivity changes associated with cognitive impairment in early-stage Alzheimer's disease (AD) and temporal lobe epilepsy (TLE). SWRs originating from hippocampus have been extensively studied during spatial navigation in rodents, and more recent studies have investigated SWRs in the hippocampal-entorhinal cortex (HPC-EC) system during a variety of other memory-guided behaviors. Understanding how SWR disruption impairs memory function, especially episodic memory, could aid in the development of more efficacious therapeutics for AD and TLE. In this review, we first provide an overview of the reciprocal association between AD and TLE, and then focus on the functions of HPC-EC system SWRs in episodic memory consolidation. It is posited that these waveforms reflect rapid network interactions among excitatory projection neurons and local interneurons and that these waves may contribute to synaptic plasticity underlying memory consolidation. Further, SWRs appear altered or ectopic in AD and TLE. These waveforms may thus provide clues to understanding disease pathogenesis and may even serve as biomarkers for early-stage disease progression and treatment response.
Collapse
Affiliation(s)
- Zhi-Hang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mo-Ran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - He-Ming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ou-Yang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Jun-Li Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
34
|
Hippocampus-retrosplenial cortex interaction is increased during phasic REM and contributes to memory consolidation. Sci Rep 2021; 11:13078. [PMID: 34158548 PMCID: PMC8219679 DOI: 10.1038/s41598-021-91659-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
Hippocampal (HPC) theta oscillation during post-training rapid eye movement (REM) sleep supports spatial learning. Theta also modulates neuronal and oscillatory activity in the retrosplenial cortex (RSC) during REM sleep. To investigate the relevance of theta-driven interaction between these two regions to memory consolidation, we computed the Granger causality within theta range on electrophysiological data recorded in freely behaving rats during REM sleep, both before and after contextual fear conditioning. We found a training-induced modulation of causality between HPC and RSC that was correlated with memory retrieval 24 h later. Retrieval was proportional to the change in the relative influence RSC exerted upon HPC theta oscillation. Importantly, causality peaked during theta acceleration, in synchrony with phasic REM sleep. Altogether, these results support a role for phasic REM sleep in hippocampo-cortical memory consolidation and suggest that causality modulation between RSC and HPC during REM sleep plays a functional role in that phenomenon.
Collapse
|
35
|
Gao M, Noguchi A, Ikegaya Y. The subiculum sensitizes retrosplenial cortex layer 2/3 pyramidal neurons. J Physiol 2021; 599:3151-3167. [PMID: 33878801 DOI: 10.1113/jp281152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/13/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neurons in the retrosplenial cortex (RSC), a cerebral region that connects synaptically with various brain regions, are known to increase neuronal activity in accordance with hippocampal sharp wave-ripples. Pyramidal cells in granular RSC (gRSC) layer 2/3, but not layer 5, exhibit slowly ramping depolarization and considerably delayed spikes in response to a step-pulse current injection. The latencies of delayed spikes in RSC layer 2/3 pyramidal neurons were shortened by a preceding current injection. This effect was mimicked by activation of axonal afferents from the subiculum, but not of neocortical afferents. The subiculum is likely to facilitate information processing and flow in the RSC. ABSTRACT The retrosplenial cortex (RSC), a cerebral region involved in diverse cognitive functions, is an anatomical hub that forms monosynaptic connections with various brain areas. Here, we report a unique form of short-term intrinsic plasticity in mouse granular RSC layer 2/3 pyramidal cells. These cells exhibited delayed spikes in response to somatic current injection, but the spike latencies were shortened by a preceding brief depolarization (priming). This priming-induced sensitization is distinct from desensitization, which is commonly observed in other cortical neurons. The facilitatory priming effect lasted for more than 3 s, providing a time window for increased sensitivity to RSC inputs. Based on in vitro and in vivo patch-clamp recordings following optogenetic stimulation of axonal fibres, we found that preactivation of subicular afferents replicated the facilitatory priming effect. The results suggest that subicular inputs to RSC layer 2/3 neurons may modulate subsequent information integration in the RSC layer 2/3 circuits.
Collapse
Affiliation(s)
- Mengxuan Gao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Institute of AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Sato Y, Mizuno H, Matsumoto N, Ikegaya Y. Subthreshold membrane potential dynamics of posterior parietal cortical neurons coupled with hippocampal ripples. Physiol Int 2021. [PMID: 33769956 DOI: 10.1556/2060.2021.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
During behavioral states of immobility, sleep, and anesthesia, the hippocampus generates high-frequency oscillations called ripples. Ripples occur simultaneously with synchronous neuronal activity in the neocortex, known as slow waves, and contribute to memory consolidation. During these ripples, various neocortical regions exhibit modulations in spike rates and local field activity irrespective of whether they receive direct synaptic inputs from the hippocampus. However, little is known about the subthreshold dynamics of the membrane potentials of neocortical neurons during ripples. We patch-clamped layer 2/3 pyramidal cells in the posterior parietal cortex (PPC), a neocortical region that is involved in allocentric spatial representation of behavioral exploration and sequential series of relevant action potentials during ripples. We simultaneously monitored the membrane potentials of post hoc-identified PPC neurons and the local field potentials of the hippocampus in anesthetized mice. More than 50% of the recorded PPC neurons exhibited significant depolarizations and/or hyperpolarizations during ripples. Histological inspections of the recorded neurons revealed that the ripple-modulated PPC neurons were distributed in the PPC in a spatially non-biased fashion. These results suggest that hippocampal ripples are widely but selectively associated with the subthreshold dynamics of the membrane potentials of PPC neurons even though there is no monosynaptic connectivity between the hippocampus and the PPC.
Collapse
Affiliation(s)
- Y Sato
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - H Mizuno
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - N Matsumoto
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Y Ikegaya
- 1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- 2Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- 3Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Representation of Fear of Heights by Basolateral Amygdala Neurons. J Neurosci 2021; 41:1080-1091. [PMID: 33436527 DOI: 10.1523/jneurosci.0483-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
Fear of heights is evolutionarily important for survival, yet it is unclear how and which brain regions process such height threats. Given the importance of the basolateral amygdala (BLA) in mediating both learned and innate fear, we investigated how BLA neurons may respond to high-place exposure in freely behaving male mice. We found that a discrete set of BLA neurons exhibited robust firing increases when the mouse was either exploring or placed on a high place, accompanied by increased heart rate and freezing. Importantly, these high-place fear neurons were only activated under height threats, but not looming, acoustic startle, predatory odor, or mild anxiogenic conditions. Furthermore, after a fear-conditioning procedure, these high-place fear neurons developed conditioned responses to the context, but not the cue, indicating a convergence in processing of dangerous/risky contextual information. Our results provide insights into the neuronal representation of the fear of heights and may have implications for the treatment of excessive fear disorders.SIGNIFICANCE STATEMENT Fear can be innate or learned, as innate fear does not require any associative learning or experiences. Previous research mainly focused on studying the neural mechanism of learned fear, often using an associative conditioning procedure such as pairing a tone with a footshock. Only recently scientists started to investigate the neural circuits of innate fear, including the fear of predator odors and looming visual threats; however, how the brain processes the innate fear of heights is unclear. Here we provide direct evidence that the basolateral amygdala (BLA) is involved in representing the fear of heights. A subpopulation of BLA neurons exhibits a selective response to height and contextual threats, but not to other fear-related sensory or anxiogenic stimuli.
Collapse
|
38
|
Genzel D, Yartsev MM. The fully automated bat (FAB) flight room: A human-free environment for studying navigation in flying bats and its initial application to the retrosplenial cortex. J Neurosci Methods 2021; 348:108970. [PMID: 33065152 PMCID: PMC8857751 DOI: 10.1016/j.jneumeth.2020.108970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Bats can offer important insight into the neural computations underlying complex forms of navigation. Up to now, this had been done with the confound of the human experimenter being present in the same environment the bat was navigating in. NEW METHOD We, therefore, developed a novel behavioral setup, the fully automated bat (FAB) flight room, to obtain a detailed and quantitative understanding of bat navigation flight behavior while studying its relevant neural circuits, but importantly without human intervention. As a demonstration of the FAB flight room utility we trained bats on a four-target, visually-guided, foraging task and recorded neural activity from the retrosplenial cortex (RSC). RESULTS We find that bats can be efficiently trained and engaged in complex, multi-target, visuospatial behavior in the FAB flight room. Wireless neural recordings from the bat RSC during the task confirm the multiplexed characteristics of single RSC neurons encoding spatial positional information, target selection, reward obtainment and the intensity of visual cues used to guide navigation. COMPARISON WITH EXISTING METHODS In contrast to the methods introduced in previous studies, we now can investigate spatial navigation in bats without potential experimental biases that can be easily introduced by active physical involvement and presence of experimenters in the room. CONCLUSIONS Combined, we describe a novel experimental approach for studying spatial navigation in freely flying bats and provide support for the involvement of bat RSC in aerial visuospatial foraging behavior.
Collapse
Affiliation(s)
- Daria Genzel
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, 94720, United States; Department of Bioengineering, UC Berkeley, Berkeley, 94720, United States
| | - Michael M Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, 94720, United States; Department of Bioengineering, UC Berkeley, Berkeley, 94720, United States.
| |
Collapse
|
39
|
Opalka AN, Wang DV. Hippocampal efferents to retrosplenial cortex and lateral septum are required for memory acquisition. ACTA ACUST UNITED AC 2020; 27:310-318. [PMID: 32669386 PMCID: PMC7365017 DOI: 10.1101/lm.051797.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Learning and memory involves a large neural network of many brain regions, including the notable hippocampus along with the retrosplenial cortex (RSC) and lateral septum (LS). Previous studies have established that the dorsal hippocampus (dHPC) plays a critical role during the acquisition and retrieval/expression of episodic memories. However, the role of downstream circuitry from the dHPC, including the dHPC-to-RSC and dHPC-to-LS pathways, has come under scrutiny only recently. Here, we used an optogenetic approach with contextual fear conditioning in mice to determine whether the above two pathways are involved in acquisition and expression of contextual fear memory. We found that a selective inhibition of the dHPC neuronal terminals in either the RSC or LS during acquisition impaired subsequent memory performance, suggesting that both the dHPC-to-RSC and dHPC-to-LS pathways play a critical role in memory acquisition. We also selectively inhibited the two dHPC efferent pathways during memory retrieval and found a differential effect on memory performance. These results indicate the intricacies of memory processing and that hippocampal efferents to cortical and subcortical regions may be differentially involved in aspects of physiological and cognitive memory processes.
Collapse
Affiliation(s)
- Ashley N Opalka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Dong V Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
40
|
Nitzan N, McKenzie S, Beed P, English DF, Oldani S, Tukker JJ, Buzsáki G, Schmitz D. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway. Nat Commun 2020; 11:1947. [PMID: 32327634 PMCID: PMC7181800 DOI: 10.1038/s41467-020-15787-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs.
Collapse
Affiliation(s)
- Noam Nitzan
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Sam McKenzie
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Daniel Fine English
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
- School of Neuroscience, College of Science, Virginia Tech, VA, 24061, USA
| | - Silvia Oldani
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10016, USA.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany.
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- Cluster of Excellence NeuroCure, Berlin, Germany.
- Einstein Center for Neurosciences, Berlin, Germany.
| |
Collapse
|
41
|
Karimi Abadchi J, Nazari-Ahangarkolaee M, Gattas S, Bermudez-Contreras E, Luczak A, McNaughton BL, Mohajerani MH. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples. eLife 2020; 9:51972. [PMID: 32167467 PMCID: PMC7096182 DOI: 10.7554/elife.51972] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
A prevalent model is that sharp-wave ripples (SWR) arise ‘spontaneously’ in CA3 and propagate recent memory traces outward to the neocortex to facilitate memory consolidation there. Using voltage and extracellular glutamate transient recording over widespread regions of mice dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR, we find that the largest SWR-related modulation occurs in retrosplenial cortex; however, contrary to the unidirectional hypothesis, neocortical activation exhibited a continuum of activation timings relative to SWRs, varying from leading to lagging. Thus, contrary to the model in which SWRs arise ‘spontaneously’ in the hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’. This timing continuum is consistent with a dynamics in which older, more consolidated memories may in fact initiate the hippocampal-neocortical dialog, whereas reactivation of newer memories may be initiated predominantly in the hippocampus.
Collapse
Affiliation(s)
- J Karimi Abadchi
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | | | - Sandra Gattas
- Department of Electrical Engineering and Computer Science, University of California, Irvine, United States.,Medical Scientist Training Program, University of California, Irvine, United States
| | | | - Artur Luczak
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, United States
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|