1
|
Liu X, Dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signalling regulates alpha cell actin depolymerisation and glucagon secretion. Diabetologia 2025:10.1007/s00125-025-06411-9. [PMID: 40140059 DOI: 10.1007/s00125-025-06411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
AIMS/HYPOTHESIS Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet alpha cells, although the underlying mechanisms regulating glucagon secretion and alpha cell dysfunction remain unclear. While insulin secretion from pancreatic beta cells has long been known to be controlled partly by intracellular phospholipid signalling, very little is known about the role of phospholipids in glucagon secretion. Using patch-clamp electrophysiology and single-cell RNA sequencing, we previously found that expression of PIP4P2 (encoding TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate [PIP2] to phosphatidylinositol-5-phosphate [PI5P]) correlates with alpha cell function. We hypothesise that TMEM55A is involved in glucagon secretion and aim to validate the role of TMEM55A and its potential signalling molecules in alpha cell function and glucagon secretion. METHODS Correlation analysis was generated from the data in www.humanislets.com . Human islets were isolated at the Alberta Diabetes Institute IsletCore. Electrical recordings were performed on dispersed human or mouse islets with scrambled siRNA or si-PIP4P2 (si-Pip4p2 for mouse) transfection. Glucagon secretion was measured using an islet perfusion system with intact mouse islets. TMEM55A activity was measured using an in vitro on-beads phosphatase assay and live-cell imaging. GTPase activity was measured using an active GTPase pull-down assay. Confocal microscopy was used to quantify F-actin intensity using primary alpha cells and alphaTC1-9 cell lines after chemical treatment. RESULTS TMEM55A regulated alpha cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse alpha cells reduced exocytosis at low glucose levels and this was rescued by the direct reintroduction of PI5P. PI5P, instead of PIP2 increased the glucagon secretion using intact mouse islets. This did not occur through an effect on Ca2+ channel activity but through a remodelling of cortical F-actin dependent on TMEM55A lipid phosphatase activity, which occurred in response to oxidative stress. TMEM55A- and PI5P-induced F-actin remodelling depends on the inactivation of GTPase and RhoA, instead of Ras-related C3 botulinum toxin substrate 1 or CDC42. CONCLUSIONS/INTERPRETATION We reveal a novel pathway by which TMEM55A regulates alpha cell exocytosis by controlling intracellular PI5P and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
von Heimburg P, Baber R, Willenberg A, Wölfle P, Kratzsch J, Kiess W, Vogel M. Effect of sex, pubertal stage, body mass index, oral contraceptive use, and C-reactive protein on vitamin D binding protein reference values. Front Endocrinol (Lausanne) 2025; 16:1470513. [PMID: 40041287 PMCID: PMC11876044 DOI: 10.3389/fendo.2025.1470513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Objective Vitamin D binding protein (DBP) regulates the transport and availability of vitamin D. We aimed to establish age- and sex-specific reference ranges for serum concentrations of DBP in healthy infants, children, and adolescents. In addition, we investigated DBP's associations with age, sex, puberty, body mass index (BMI), and oral contraceptive use. Design and methods 2,503 serum samples from children and adolescents aged 3 months to 17 years from the LIFE Child cohort were analyzed to study DBP levels in this population (49.3% female subjects, 50.7% male subjects). Age- and sex-dependent reference percentiles were established using generalized additive models. We used linear mixed effects models to assess DBP's associations with age, sex, pubertal status, the BMI standard deviation score (SDS), and oral contraceptives. To investigate associations between DBP and vitamin D metabolites, we applied univariate regression analysis. We used hierarchical regression models and linear mixed effects models to assess DBP's associations with bone parameters, hormones, and inflammatory markers. Results Mean DBP values differed between males (347 mg/l) and females (366 mg/l) (p < 0.001). Age had no significant association with DBP levels. In both males and females, DBP levels remained relatively stable from infancy through late adolescence. Children and adolescents with obesity had lower mean DBP levels compared with normal-weight subjects (ß = -14.28, p < 0.001). The BMI-SDS was inversely associated with DBP levels in males (ß = -5.7, p < 0.001). Female subjects using oral contraceptives had higher levels of DBP (ß = 141.38, p < 0.001). DBP was positively associated with the vitamin D metabolites: 25(OH)D3 (females: ß = 0.8, p < 0.001; males: ß = 1.2, p < 0.001) and 1,25(OH)2-D3 (females: ß = 0.3, p < 0.001; males: ß = 0.4, p < 0.001). An inverse association between osteocalcin and DBP (females: ß = -0.1, p < 0.022; males: ß = -0.1, p = 0.027) was found. CRP levels were also positively associated with DBP levels (females: ß = 2.8, p = 0.001; males: ß = 5.1, p < 0.001). Conclusion We established age- and sex-specific reference ranges for the serum concentration of DBP. We suggest that BMI, pubertal stages, oral contraceptive use, and inflammation markers need to be considered when interpreting DBP as a stabilizer and regulator of vitamin D metabolism and vitamin D status in children and adolescents. Clinical trial registration ClinicalTrial.gov, identifier NCT02550236.
Collapse
Affiliation(s)
- Philipp von Heimburg
- LIFE Child - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
| | - Ronny Baber
- LIFE Child - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), Leipzig University, Leipzig, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig, Germany
| | - Anja Willenberg
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), Leipzig University, Leipzig, Germany
| | - Philip Wölfle
- LIFE Child - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research (CPL), Leipzig University, Leipzig, Germany
| | - Jürgen Kratzsch
- LIFE Child - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), Leipzig University, Leipzig, Germany
| | - Wieland Kiess
- LIFE Child - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig, Germany
- Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research (CPL), Leipzig University, Leipzig, Germany
| | - Mandy Vogel
- LIFE Child - Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Leipzig, Germany
- Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research (CPL), Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Liu X, dos Santos T, Spigelman AF, Duckett S, Smith N, Suzuki K, MacDonald PE. TMEM55A-mediated PI5P signaling regulates α-cell actin depolymerization and glucagon secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628242. [PMID: 39763967 PMCID: PMC11702586 DOI: 10.1101/2024.12.16.628242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion. TMEM55A knockdown in both human and mouse α-cells reduces exocytosis at low glucose, and this is rescued by the direct reintroduction of PI5P. This does not occur through an effect on Ca2+ channel activity, but through a re-modelling of cortical F-actin dependent upon TMEM55A lipid phosphatase activity which occurs in response to oxidative stress. In summary, we reveal a novel pathway by which TMEM55A regulates α-cell exocytosis by manipulating intracellular PI5P level and the F-actin network.
Collapse
Affiliation(s)
- Xiong Liu
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Theodore dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Aliya F. Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Shawn Duckett
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1, Canada
| |
Collapse
|
4
|
Mueller JW, Thomas P, Dalgaard LT, da Silva Xavier G. Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes. Essays Biochem 2024; 68:509-522. [PMID: 39290144 PMCID: PMC11625869 DOI: 10.1042/ebc20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans. Thus, modulating the physicochemical propensities of the different sulfate acceptors, resulting in enhanced solubility, expedited circulatory transit, or enhanced macromolecular interaction. This review lists evidence for the involvement of sulfation pathways in the maintenance of functional pancreatic beta-cell mass and the implications for diabetes, grouped into various classes of sulfated biomolecule. Complex heparan sulfates might play a role in the development and maintenance of beta-cells. The sulfolipids sulfatide and sulfo-cholesterol might contribute to beta-cell health. In beta-cells, there are only very few proteins with confirmed sulfation on some tyrosine residues, with the IRS4 molecule being one of them. Sulfated steroid hormones, such as estradiol-sulfate and vitamin-D-sulfate, may facilitate downstream steroid signaling in beta-cells, following de-sulfation. Indoxyl sulfate is a metabolite from the intestine, that causes kidney damage, contributing to diabetic kidney disease. Finally, from a technological perspective, there is heparan sulfate, heparin, and chondroitin sulfate, that all might be involved in next-generation beta-cell transplantation. Sulfation pathways may play a role in pancreatic beta-cells through multiple mechanisms. A more coherent understanding of sulfation pathways in diabetes will facilitate discussion and guide future research.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | - Patricia Thomas
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | | | | |
Collapse
|
5
|
Carroll J, Chen J, Mittal R, Lemos JRN, Mittal M, Juneja S, Assayed A, Hirani K. Decoding the Significance of Alpha Cell Function in the Pathophysiology of Type 1 Diabetes. Cells 2024; 13:1914. [PMID: 39594662 PMCID: PMC11593172 DOI: 10.3390/cells13221914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha cells in the pancreas, traditionally known for their role in secreting glucagon to regulate blood glucose levels, are gaining recognition for their involvement in the pathophysiology of type 1 diabetes (T1D). In T1D, autoimmune destruction of beta cells results in insulin deficiency, which in turn may dysregulate alpha cell function, leading to elevated glucagon levels and impaired glucose homeostasis. This dysfunction is characterized by inappropriate glucagon secretion, augmenting the risk of life-threatening hypoglycemia. Moreover, insulin deficiency and autoimmunity alter alpha cell physiological responses, further exacerbating T1D pathophysiology. Recent studies suggest that alpha cells undergo transdifferentiation and interact with beta cells through mechanisms involving gamma-aminobutyric acid (GABA) signaling. Despite these advances, the exact pathways and interactions remain poorly understood and are often debated. Understanding the precise role of alpha cells in T1D is crucial, as it opens up avenues for developing new therapeutic strategies for T1D. Potential strategies include targeting alpha cells to normalize glucagon secretion, utilizing glucagon receptor antagonists, enhancing GABA signaling, and employing glucagon-like peptide-1 (GLP-1) receptor agonists. These approaches aim to improve glycemic control and reduce the risk of hypoglycemic events in individuals with T1D. This review provides an overview of alpha cell function in T1D, highlighting the emerging focus on alpha cell dysfunction in the context of historically well-developed beta cell research.
Collapse
Affiliation(s)
| | | | - Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| | | | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| |
Collapse
|
6
|
Gharib SA, Vemireddy R, Castillo JJ, Fountaine BS, Bammler TK, MacDonald JW, Hull-Meichle RL, Zraika S. Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs. Sci Rep 2024; 14:25689. [PMID: 39463434 PMCID: PMC11514218 DOI: 10.1038/s41598-024-76722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet α cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on β cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed α- and/or β-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of α-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of α-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed α and β cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring β-cell GLP-1R protein expression may improve β-cell function in CFRD.
Collapse
Affiliation(s)
- Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Computational Medicine Core at Center for Lung Biology, University of Washington, Seattle, Washington, USA
| | - Rachna Vemireddy
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Brendy S Fountaine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rebecca L Hull-Meichle
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Alberta Diabetes Institute, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA.
| |
Collapse
|
7
|
Delrue C, Speeckaert R, Delanghe JR, Prytuła A, Speeckaert MM. Investigating Vitamin D-Binding Protein's Role in Childhood Health and Development. Int J Mol Sci 2024; 25:6272. [PMID: 38892458 PMCID: PMC11172735 DOI: 10.3390/ijms25116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Vitamin D-binding protein (DBP), also known as Gc-globulin, is a protein that affects several physiological processes, including the transport and regulation of vitamin D metabolites. Genetic polymorphisms in the DBP gene have a significant impact on vitamin D levels and may have implications for disease risk. DBP polymorphisms are linked to differential immune responses, which could influence the onset of juvenile diseases. This narrative review examines the various roles of DBP, with a focus on bone health, immunological regulation, and lipid metabolism in children. Chronic disorders affected by DBP polymorphisms include bone abnormalities, autoimmune diseases, cardiovascular issues, childhood asthma, allergies, cystic fibrosis, acute liver failure, celiac disease, inflammatory bowel disease, and chronic kidney disease. Future research should focus on identifying the processes that underpin the many roles that DBP plays and developing customized therapeutics to improve health outcomes in the juvenile population.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
| | | | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Agnieszka Prytuła
- Department of Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
8
|
Cuozzo F, Viloria K, Shilleh AH, Nasteska D, Frazer-Morris C, Tong J, Jiao Z, Boufersaoui A, Marzullo B, Rosoff DB, Smith HR, Bonner C, Kerr-Conte J, Pattou F, Nano R, Piemonti L, Johnson PRV, Spiers R, Roberts J, Lavery GG, Clark A, Ceresa CDL, Ray DW, Hodson L, Davies AP, Rutter GA, Oshima M, Scharfmann R, Merrins MJ, Akerman I, Tennant DA, Ludwig C, Hodson DJ. LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells. Cell Rep 2024; 43:114047. [PMID: 38607916 PMCID: PMC11164428 DOI: 10.1016/j.celrep.2024.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release.
Collapse
Affiliation(s)
- Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ali H Shilleh
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charlotte Frazer-Morris
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jason Tong
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Zicong Jiao
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Geneplus-Beijing, Changping District, Beijing 102206, China
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel B Rosoff
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hannah R Smith
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Caroline Bonner
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Francois Pattou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca Spiers
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research (SHiMR), Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Carlo D L Ceresa
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy P Davies
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; CHUM Research Centre and Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Raphaël Scharfmann
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - Christian Ludwig
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Li C, Fu J, Ye Y, Li J, He Y, Fang T. The impact of vitamin D on the etiopathogenesis and the progression of type 1 and type 2 diabetes in children and adults. Front Endocrinol (Lausanne) 2024; 15:1360525. [PMID: 38650715 PMCID: PMC11033370 DOI: 10.3389/fendo.2024.1360525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Diabetes is a common chronic metabolic disease with complex causes and pathogenesis. As an immunomodulator, vitamin D has recently become a research hotspot in the occurrence and development of diabetes and its complications. Many studies have shown that vitamin D can reduce the occurrence of diabetes and delay the progression of diabetes complications, and vitamin D can reduce oxidative stress, inhibit iron apoptosis, promote Ca2+ influx, promote insulin secretion, and reduce insulin resistance. Therefore, the prevention and correction of vitamin D deficiency is very necessary for diabetic patients, but further research is needed to confirm what serum levels of vitamin D3 are maintained in the body. This article provides a brief review of the relationship between vitamin D and diabetes, including its acute and chronic complications.
Collapse
Affiliation(s)
- Candong Li
- Department of Endocrine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiaowen Fu
- Department of Endocrine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yipeng Ye
- Department of Endocrine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Junsen Li
- Department of Endocrine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yangli He
- Department of Health Care Centre, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tuanyu Fang
- Department of Endocrine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
10
|
Brown G, Marchwicka A, Marcinkowska E. Vitamin D and immune system. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:1-41. [PMID: 38777411 DOI: 10.1016/bs.afnr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The active metabolite of vitamin D 1,25(OH)2D is well known for its role in regulating calcium-phosphate homeostasis of the human body. However, the immunomodulating activity of 1,25(OH)2D has been known for many years. There are numerous reports correlating low vitamin D levels in blood serum with the onset of autoimmune diseases and with the severe course of acute infections. In this chapter, we address the role of 1,25(OH)2D in these diseases, and we discuss the possible mechanisms of action of 1,25(OH)2D in immune cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aleksandra Marchwicka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Marcinkowska
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
11
|
Li Q, Zhang W, Han B, Wang YY, Wan H, Zhang M, Wang NJ, Lu YL. 25-Hydroxyvitamin D Is Associated with Islet Homeostasis in Type-2 Diabetic Patients with Abdominal Obesity. Curr Med Sci 2023; 43:919-926. [PMID: 37697161 DOI: 10.1007/s11596-023-2780-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 07/06/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Islet α cells input is essential for insulin secretion from β cells. The present study aims to investigate the association between 25-hydroxyvitamin D [25(OH)D] and islet function homeostasis in type-2 diabetes (T2D) patients. METHODS A total of 4670 T2D patients from seven communities in Shanghai, China were enrolled. The anthropometric indices, biochemical parameters, serum 25(OH)D, and islet function [including C-peptide (C-p) and glucagon] were measured. RESULTS The fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), glucagon, and C-p levels exhibited a significantly decreasing trend in T2D patients as the 25(OH)D levels increased. Next, the population was divided into two groups: abdominal obesity and non-abdominal obesity groups. After adjustment, the 25(OH)D level was found to be associated with HbA1c, glucagon, and homeostasis model assessment of β (HOMA-β) in the non-abdominal obesity group. There was a significant relationship between 25(OH)D and HbA1c, glucagon, HOMA-IR, baseline insulin or C-p in the abdominal obesity group. In the abdominal obesity group, the ordinary least squares (OLS) regression and quantile regression revealed that 25(OH) D was obviously associated with glucagon and fasting C-p levels. In the abdominal obesity group, the moderate analysis revealed a significant interaction effect of 25(OH)D and glucagon on C-p (P=0.0124). Furthermore, the conditional indirect effect of 25(OH)D on the glucagon/C-p ratio was significantly lower at 1 standard deviation (SD) below the mean (P=0.0002), and lower at the mean of the course of diabetes (P=0.0007). CONCLUSION 25(OH)D was found to be negatively correlated to glucagon and C-p in T2D patients with abdominal obesity. The 25(OH)D influenced C-p in part by influencing glucagon. The effect of 25(OH)D on the glucagon/C-p ratio in T2D patients with abdominal obesity, in terms of islet homeostasis, is influenced by the course of diabetes.
Collapse
Affiliation(s)
- Qing Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yu-Ying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Min Zhang
- Institute and Department of Endocrinology and Metabolism, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China.
| | - Ning-Jian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Ying-Li Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
12
|
Hrovatin K, Bastidas-Ponce A, Bakhti M, Zappia L, Büttner M, Salinno C, Sterr M, Böttcher A, Migliorini A, Lickert H, Theis FJ. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat Metab 2023; 5:1615-1637. [PMID: 37697055 PMCID: PMC10513934 DOI: 10.1038/s42255-023-00876-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that β-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD β-cells. We also report pathways that are shared between β-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of β-cell responses to different stressors, providing a roadmap for the understanding of β-cell plasticity, compensation and demise.
Collapse
Affiliation(s)
- Karin Hrovatin
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- McEwen Stem Cell Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Faculty, Technical University of Munich, Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
13
|
Pettway YD, Saunders DC, Brissova M. The human α cell in health and disease. J Endocrinol 2023; 258:e220298. [PMID: 37114672 PMCID: PMC10428003 DOI: 10.1530/joe-22-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023]
Abstract
In commemoration of 100 years since the discovery of glucagon, we review current knowledge about the human α cell. Alpha cells make up 30-40% of human islet endocrine cells and play a major role in regulating whole-body glucose homeostasis, largely through the direct actions of their main secretory product - glucagon - on peripheral organs. Additionally, glucagon and other secretory products of α cells, namely acetylcholine, glutamate, and glucagon-like peptide-1, have been shown to play an indirect role in the modulation of glucose homeostasis through autocrine and paracrine interactions within the islet. Studies of glucagon's role as a counterregulatory hormone have revealed additional important functions of the α cell, including the regulation of multiple aspects of energy metabolism outside that of glucose. At the molecular level, human α cells are defined by the expression of conserved islet-enriched transcription factors and various enriched signature genes, many of which have currently unknown cellular functions. Despite these common threads, notable heterogeneity exists amongst human α cell gene expression and function. Even greater differences are noted at the inter-species level, underscoring the importance of further study of α cell physiology in the human context. Finally, studies on α cell morphology and function in type 1 and type 2 diabetes, as well as other forms of metabolic stress, reveal a key contribution of α cell dysfunction to dysregulated glucose homeostasis in disease pathogenesis, making targeting the α cell an important focus for improving treatment.
Collapse
Affiliation(s)
- Yasminye D. Pettway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| |
Collapse
|
14
|
Viloria K, Nasteska D, Ast J, Hasib A, Cuozzo F, Heising S, Briant LJB, Hewison M, Hodson DJ. GC-Globulin/Vitamin D-Binding Protein Is Required for Pancreatic α-Cell Adaptation to Metabolic Stress. Diabetes 2023; 72:275-289. [PMID: 36445949 DOI: 10.2337/db22-0326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
GC-globulin (GC), or vitamin D-binding protein, is a multifunctional protein involved in the transport of circulating vitamin 25(OH)D and fatty acids, as well as actin scavenging. In the pancreatic islets, the gene encoding GC, GC/Gc, is highly localized to glucagon-secreting α-cells. Despite this, the role of GC in α-cell function is poorly understood. We previously showed that GC is essential for α-cell morphology, electrical activity, and glucagon secretion. We now show that loss of GC exacerbates α-cell failure during metabolic stress. High-fat diet-fed GC-/- mice have basal hyperglucagonemia, which is associated with decreased α-cell size, impaired glucagon secretion and Ca2+ fluxes, and changes in glucose-dependent F-actin remodelling. Impairments in glucagon secretion can be rescued using exogenous GC to replenish α-cell GC levels, increase glucagon granule area, and restore the F-actin cytoskeleton. Lastly, GC levels decrease in α-cells of donors with type 2 diabetes, which is associated with changes in α-cell mass, morphology, and glucagon expression. Together, these data demonstrate an important role for GC in α-cell adaptation to metabolic stress.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Annie Hasib
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Silke Heising
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| |
Collapse
|
15
|
Hansen MS, Søe K, Christensen LL, Fernandez-Guerra P, Hansen NW, Wyatt RA, Martin C, Hardy RS, Andersen TL, Olesen JB, Hartmann B, Rosenkilde MM, Kassem M, Rauch A, Gorvin CM, Frost M. GIP reduces osteoclast activity and improves osteoblast survival in primary human bone cells. Eur J Endocrinol 2023; 188:6987865. [PMID: 36747334 DOI: 10.1093/ejendo/lvac004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) are emerging as treatments for type-2 diabetes and obesity. GIP acutely decreases serum markers of bone resorption and transiently increases bone formation markers in short-term clinical investigations. However, it is unknown whether GIP acts directly on bone cells to mediate these effects. Using a GIPR-specific antagonist, we aimed to assess whether GIP acts directly on primary human osteoclasts and osteoblasts. METHODS Osteoclasts were differentiated from human CD14+ monocytes and osteoblasts from human bone. GIPR expression was determined using RNA-seq in primary human osteoclasts and in situ hybridization in human femoral bone. Osteoclastic resorptive activity was assessed using microscopy. GIPR signaling pathways in osteoclasts and osteoblasts were assessed using LANCE cAMP and AlphaLISA phosphorylation assays, intracellular calcium imaging and confocal microscopy. The bioenergetic profile of osteoclasts was evaluated using Seahorse XF-96. RESULTS GIPR is robustly expressed in mature human osteoclasts. GIP inhibits osteoclastogenesis, delays bone resorption, and increases osteoclast apoptosis by acting upon multiple signaling pathways (Src, cAMP, Akt, p38, Akt, NFκB) to impair nuclear translocation of nuclear factor of activated T cells-1 (NFATc1) and nuclear factor-κB (NFκB). Osteoblasts also expressed GIPR, and GIP improved osteoblast survival. Decreased bone resorption and improved osteoblast survival were also observed after GIP treatment of osteoclast-osteoblast co-cultures. Antagonizing GIPR with GIP(3-30)NH2 abolished the effects of GIP on osteoclasts and osteoblasts. CONCLUSIONS GIP inhibits bone resorption and improves survival of human osteoblasts, indicating that drugs targeting GIPR may impair bone resorption, whilst preserving bone formation.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Kent Søe
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Line L Christensen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Paula Fernandez-Guerra
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Nina W Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Rachael A Wyatt
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Claire Martin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rowan S Hardy
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Thomas L Andersen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Jacob B Olesen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense C DK-5000, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Odense C DK-5000, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, United Kingdom
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham B15 2TT, United Kingdom
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, Odense C DK-5000, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C DK-5000, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Odense C DK-5000, Denmark
| |
Collapse
|
16
|
Yu J, Sharma P, Girgis CM, Gunton JE. Vitamin D and Beta Cells in Type 1 Diabetes: A Systematic Review. Int J Mol Sci 2022; 23:ijms232214434. [PMID: 36430915 PMCID: PMC9696701 DOI: 10.3390/ijms232214434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The prevalence of type 1 diabetes (T1D) is rising steadily. A potential contributor to the rise is vitamin D. In this systematic review, we examined the literature around vitamin D and T1D. We identified 22 papers examining the role of vitamin D in cultured β-cell lines, islets, or perfused pancreas, and 28 papers examining vitamin D in humans or human islets. The literature reports strong associations between T1D and low circulating vitamin D. There is also high-level (systematic reviews, meta-analyses) evidence that adequate vitamin D status in early life reduces T1D risk. Several animal studies, particularly in NOD mice, show harm from D-deficiency and benefit in most studies from vitamin D treatment/supplementation. Short-term streptozotocin studies show a β-cell survival effect with supplementation. Human studies report associations between VDR polymorphisms and T1D risk and β-cell function, as assessed by C-peptide. In view of those outcomes, the variable results in human trials are generally disappointing. Most studies using 1,25D, the active form of vitamin D were ineffective. Similarly, studies using other forms of vitamin D were predominantly ineffective. However, it is interesting to note that all but one of the studies testing 25D reported benefit. Together, this suggests that maintenance of optimal circulating 25D levels may reduce the risk of T1D and that it may have potential for benefits in delaying the development of absolute or near-absolute C-peptide deficiency. Given the near-complete loss of β-cells by the time of clinical diagnosis, vitamin D is much less likely to be useful after disease-onset. However, given the very low toxicity of 25D, and the known benefits of preservation of C-peptide positivity for long-term complications risk, we recommend considering daily cholecalciferol supplementation in people with T1D and people at high risk of T1D, especially if they have vitamin D insufficiency.
Collapse
Affiliation(s)
- Josephine Yu
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
| | - Preeti Sharma
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, NSW 2050, Australia
| | - Christian M. Girgis
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, NSW 2050, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, NSW 2050, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
- Correspondence: ; Tel.: +61-2-8890-8089
| |
Collapse
|
17
|
Zhu A, Kuznia S, Niedermaier T, Holleczek B, Schöttker B, Brenner H. Consistent Inverse Associations of Total, “Bioavailable”, Free, and “Non-Bioavailable” Vitamin D with Incidence of Diabetes among Older Adults with Lower Baseline HbA1c (≤6%) Levels. Nutrients 2022; 14:nu14163282. [PMID: 36014788 PMCID: PMC9413175 DOI: 10.3390/nu14163282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Serum 25-hydroxyvitamin (25(OH)D) levels are inversely associated with risk of diabetes. The “free hormone hypothesis” suggests potential effects to be mainly related to concentrations of “bioavailable” and free rather than total 25(OH)D. We assessed associations of serum concentrations of vitamin D-binding protein (VDBP), as well as total “bioavailable”, complementary “non-bioavailable”, and free 25(OH)D, with the risk of developing diabetes among non-diabetic older adults in a large population-based cohort study in Germany. Methods: We included 4841 non-diabetic older adults aged 50–75 years at the baseline exam from the ESTHER cohort conducted in Saarland, Germany, in 2001–2002. Concentrations of “bioavailable” and free 25(OH)D were derived from serum concentrations of VDBP, total 25(OH)D, and albumin. Incidence of diabetes was ascertained during up to 14 years of follow-up. Associations were quantified by multivariable Cox proportional hazards regression models with comprehensive confounder adjustment. Results: During a median follow-up of 10.6 years, 837 non-diabetic participants developed diabetes. We observed similar inverse associations with developing diabetes for VDBP (hazard ratio (HR) for lowest versus highest quintile: 1.37, 95% confidence interval (CI): 1.09, 1.72), total 25(OH)D (HR: 1.31, 95% CI: 1.03, 1.66), and “non-bioavailable” 25(OH)D (HR: 1.30, 95% CI: 1.02, 1.65). Associations were smaller and statistically insignificant for “bioavailable” and free 25(OH)D. However, associations of total “non-bioavailable”, “bioavailable”, and free 25(OH)D with incidence of diabetes were much stronger among, and essentially restricted to, participants with lower baseline HbA1c (≤6%) levels. Conclusions: This large prospective cohort study of older Caucasian adults, in agreement with results from randomized trials and Mendelian randomization studies, supports a protective effect of vitamin D against development of diabetes. The “free hormone theory” may not be relevant in this context. However, our results underline the importance of adequate vitamin D status among those who have not yet shown any sign of impaired glucose tolerance.
Collapse
Affiliation(s)
- Anna Zhu
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sabine Kuznia
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Tobias Niedermaier
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221421300
| |
Collapse
|
18
|
Hansen MS, Rasmussen M, Grauslund J, Subhi Y, Cehofski LJ. Proteomic analysis of vitreous humour of eyes with diabetic macular oedema: a systematic review. Acta Ophthalmol 2022; 100:e1043-e1051. [PMID: 35507578 DOI: 10.1111/aos.15168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023]
Abstract
The pathophysiology of diabetic macular oedema (DME) remains poorly understood. Proteomic analysis of the vitreous using mass spectrometry (MS) can potentially identify proteins of pathophysiological importance. In this systematic review, we summarize the available evidence on protein changes in DME detected by MS. We systematically searched 13 literature databases on 19 September 2021. Eligible studies were defined as those using samples from human eyes with DME analysed with MS. Two authors assessed the studies for eligibility, extracted data and evaluated risk of bias independently. Six eligible studies were identified. All were designed in a cross-sectional fashion comparing results to either a non-diabetic control group or a control group without DME. A total of 62 eyes from 60 patients contributed as study group and 48 eyes from 48 patients served as control group. Proteomic analyses revealed significant differences in the vitreous protein levels in patients with DME when compared with controls. Three studies or more identified increased contents of apolipoprotein A-I, apolipoprotein A-II, apolipoprotein A-IV, apolipoprotein C-III, gelsolin, pigment epithelium-derived factor, serum albumin, transthyretin, vitamin D-binding protein in DME. Two studies found increased levels of complement factors B and C3. Protein changes reproduced across the studies suggested that DME was associated with retinal lipid accumulation, angiogenesis, retinal protective mechanisms, inflammation and complement activation. Proteome studies support the multifactorial pathogenesis of DME as proteins with highly different biological functions are regulated in DME. An important number of proteins differ, provide pathophysiological insight and suggest the direction for future research.
Collapse
Affiliation(s)
- Mathilde Schlippe Hansen
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maja Rasmussen
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Yousif Subhi
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
| | - Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Dai XQ, Camunas-Soler J, Briant LJB, Dos Santos T, Spigelman AF, Walker EM, Arrojo E Drigo R, Bautista A, Jones RC, Avrahami D, Lyon J, Nie A, Smith N, Zhang Y, Johnson J, Manning Fox JE, Michelakis ED, Light PE, Kaestner KH, Kim SK, Rorsman P, Stein RW, Quake SR, MacDonald PE. Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metab 2022; 34:256-268.e5. [PMID: 35108513 PMCID: PMC8852281 DOI: 10.1016/j.cmet.2021.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
In diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches. Rising glucose suppresses α cell exocytosis by reducing P/Q-type Ca2+ channel activity, and this is disrupted in type 2 diabetes (T2D). Upon high-fat feeding of mice, α cells shift toward a "β cell-like" electrophysiological profile in concert with indications of impaired identity. In human α cells we identified links between cell membrane properties and cell surface signaling receptors, mitochondrial respiratory chain complex assembly, and cell maturation. Cell-type classification using machine learning of electrophysiology data demonstrated a heterogenous loss of "electrophysiologic identity" in α cells from donors with type 2 diabetes. Indeed, a subset of α cells with impaired exocytosis is defined by an enrichment in progenitor and lineage markers and upregulation of an immature transcriptomic phenotype, suggesting important links between α cell maturation state and dysfunction.
Collapse
Affiliation(s)
- Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Joan Camunas-Soler
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford OX3 7LE, UK
| | - Theodore Dos Santos
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Emily M Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rafael Arrojo E Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Austin Bautista
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Robert C Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Dana Avrahami
- Endocrinology and Metabolism Department, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - James Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Aifang Nie
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Janyne Johnson
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | | | - Peter E Light
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Churchill Hospital, Oxford OX3 7LE, UK
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G2R3, Canada.
| |
Collapse
|
20
|
Miranda C, Begum M, Vergari E, Briant LJB. Gap junction coupling and islet delta-cell function in health and disease. Peptides 2022; 147:170704. [PMID: 34826505 DOI: 10.1016/j.peptides.2021.170704] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
The pancreatic islets contain beta-cells and alpha-cells, which are responsible for secreting two principal gluco-regulatory hormones; insulin and glucagon, respectively. However, they also contain delta-cells, a relatively sparse cell type that secretes somatostatin (SST). These cells have a complex morphology allowing them to establish an extensive communication network throughout the islet, despite their scarcity. Delta-cells are electrically excitable cells, and SST secretion is released in a glucose- and KATP-dependent manner. SST hyperpolarises the alpha-cell membrane and suppresses exocytosis. In this way, islet SST potently inhibits glucagon release. Recent studies investigating the activity of delta-cells have revealed they are electrically coupled to beta-cells via gap junctions, suggesting the delta-cell is more than just a paracrine inhibitor. In this Review, we summarize delta-cell morphology, function, and the role of SST signalling for regulating islet hormonal output. A distinguishing feature of this Review is that we attempt to use the discovery of this gap junction pathway, together with what is already known about delta-cells, to reframe the role of these cells in both health and disease. In particular, we argue that the discovery of gap junction communication between delta-cells and beta-cells provides new insights into the contribution of delta-cells to the islet hormonal defects observed in both type 1 and type 2 diabetes. This reappraisal of the delta-cell is important as it may offer novel insights into how the physiology of this cell can be utilised to restore islet function in diabetes.
Collapse
Affiliation(s)
- Caroline Miranda
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden
| | - Manisha Begum
- Institute of Neuroscience and Physiology, Metabolic Research Unit, University of Göteborg, 405 30, Göteborg, Sweden; University of Skӧvde, Department of Infection Biology, Högskolevägen 1, 541 28, Skövde, Sweden
| | - Elisa Vergari
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, OX4 7LE, Oxford, UK; Department of Computer Science, University of Oxford, OX1 3QD, Oxford, UK.
| |
Collapse
|
21
|
Pinheiro MM, Pinheiro FMM, Diniz SN, Fabbri A, Infante M. Combination of vitamin D and dipeptidyl peptidase-4 inhibitors (VIDPP-4i) as an immunomodulation therapy for autoimmune diabetes. Int Immunopharmacol 2021; 95:107518. [PMID: 33756226 DOI: 10.1016/j.intimp.2021.107518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) represent the most common types of autoimmune diabetes and are characterized by different age of onset, degrees of immune-mediated destruction of pancreatic beta cells and rates of disease progression towards insulin dependence. Several immunotherapies aimed to counteract autoimmune responses against beta cells and preserve beta-cell function are currently being investigated, particularly in T1D. Preliminary findings suggest a potential role of combination therapy with vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors (VIDPP-4i) in preserving beta-cell function in autoimmune diabetes. This manuscript aims to provide a comprehensive overview of the immunomodulatory properties of vitamin D and DPP-4 inhibitors, as well as the rationale for investigation of their combined use as an immunomodulation therapy for autoimmune diabetes.
Collapse
Affiliation(s)
- Marcelo Maia Pinheiro
- UNIVAG, University Center, Dom Orlando Chaves Ave, 2655 - Cristo Rei, Várzea Grande, 78118-000 Mato Grosso, Brazil; Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil.
| | - Felipe Moura Maia Pinheiro
- Hospital de Base, Faculdade de Medicina de São José do Rio Preto FAMERP - SP, 5546, Brigadeiro Faria Lima Ave, Vila São Pedro, São José do Rio Preto, 15015-500 São Paulo, Brazil
| | - Susana Nogueira Diniz
- Universidade Anhanguera de São Paulo - SP, 3305, Raimundo Pereira de Magalhães Ave., Pirituba, São Paulo, 05145-200 São Paulo, Brazil
| | - Andrea Fabbri
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy
| | - Marco Infante
- Diabetes Research Institute Federation (DRIF), Division of Endocrinology and Diabetes, CTO Andrea Alesini Hospital, ASL Roma 2, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, 00145 Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Via San Nemesio 21, 00145 Rome, Italy.
| |
Collapse
|
22
|
Viloria K, Hewison M, Hodson DJ. Vitamin D binding protein/GC-globulin: a novel regulator of alpha cell function and glucagon secretion. J Physiol 2021; 600:1119-1133. [PMID: 33719063 DOI: 10.1113/jp280890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
The contribution of glucagon to type 1 and type 2 diabetes has long been known, but the underlying defects in alpha cell function are not well-described. During both disease states, alpha cells respond inappropriately to stimuli, leading to dysregulated glucagon secretion, impaired glucose tolerance and hypoglycaemia. The mechanisms involved in this dysfunction are complex, but possibly include changes in alpha cell glucose-sensing, alpha cell de-differentiation, paracrine feedback, as well as alpha cell mass. However, the molecular underpinnings of alpha cell failure are still poorly understood. Recent transcriptomic analyses have identified vitamin D binding protein (DBP), encoded by GC/Gc, as an alpha cell signature gene. DBP is highly localized to the liver and alpha cells and is virtually absent from other tissues and cell types under non-pathological conditions. While the vitamin D transportation role of DBP is well characterized in the liver and circulation, its function in alpha cells remains more enigmatic. Recent work reveals that loss of DBP leads to smaller and hyperplastic alpha cells, which secrete less glucagon in response to low glucose concentration, despite vitamin D sufficiency. Alpha cells lacking DBP display impaired Ca2+ fluxes and Na+ conductance, as well as changes in glucagon granule distribution. Underlying these defects is an increase in the ratio of cytoskeletal F-actin to G-actin, highlighting a novel intracellular actin scavenging role for DBP in islets.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, B15 2TT, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| |
Collapse
|