1
|
Pun R, Thapa A, Takafuji SR, Suzuki RM, Kay GF, Howard TD, Kim MH, North BJ. BubR1 Controls Heart Development by Promoting Expression of Cardiogenesis Regulators. J Am Heart Assoc 2025; 14:e038286. [PMID: 40055864 DOI: 10.1161/jaha.124.038286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Congenital heart defects are structural anomalies present at birth that can affect the function of the heart. Aneuploidy is a significant risk factor for congenital heart defects. Mosaic variegated aneuploidy syndrome, caused by mutations in Bub1b (encoding BubR1, a mitotic checkpoint protein), leads to congenital heart defects such as septal defects. However, the molecular rationale for how Bub1b mutations promote congenital heart defects associated with mosaic variegated aneuploidy syndrome remains unresolved. METHODS To study morphological, structural, and cellular consequences of BubR1 deletion in the heart, we crossed mice carrying conditional alleles of Bub1b with Nkx2.5-cre mice. Single-cell RNA sequencing was carried out to determine differentially expressed genes and biological processes in various cell types present in the developing heart. Trajectory analysis was carried out to determine the differentiation trajectory of BubR1 knockout embryonic hearts. Finally, CellChat analysis provided details on the major signaling interactions that were either absent or hyperactive in the BubR1 knockout heart. RESULTS Here, we show that cardiac-specific BubR1 deletion causes embryonic lethality due to developmental stalling after cardiac looping with defects in cardiac maturation including chamber wall thickness, septation, and trabeculation. Single-cell transcriptomic profiling further revealed that the differentiation trajectory of cardiomyocytes is severely impacted with suppression of critical cardiogenesis genes. Hyperactivation of Wnt signaling in BubR1 knockout hearts indicated a disturbed homeostasis in cellular pathways essential for proper tissue morphogenesis of the heart. CONCLUSIONS Taken together, these findings reveal that BubR1 is a crucial regulator of cardiac development in vivo, which ensures the proper timing of heart morphogenesis.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Aradhana Thapa
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Sylar R Takafuji
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Rexton M Suzuki
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Gabrielle F Kay
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Toni D Howard
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| | - Michael H Kim
- CHI Heart Institute and Department of Medicine Creighton University School of Medicine Omaha NE USA
| | - Brian J North
- Biomedical Sciences Department Creighton University School of Medicine Omaha NE USA
| |
Collapse
|
2
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
3
|
Meng Z, Yang Y, Li S, Huang L, Yao Z, Chen Y, Wang J, Shen Y, Liang P, Zhang H, Wang W, Wang F. GSE1 promotes the proliferation and migration of lung adenocarcinoma cells by downregulating KLF6 expression. Cell Biol Int 2024; 48:1490-1506. [PMID: 38886911 DOI: 10.1002/cbin.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lung cancer is one of the most prevalent human cancers with a high lethality rate worldwide. In this study, we demonstrated that GSE1 (genetic suppressor element 1) expression is aberrantly upregulated in lung adenocarcinoma and that GSE1 depletion inhibits the proliferation and migration of both A549 and H1299 cells. Immunoprecipitation assays demonstrated that GSE1 interacts with histone deacetylase 1 (HDAC1) and other BRAF-HDAC complex (BHC) components in cells. The transcriptome of GSE1-knockdown A549 cells indicated that 207 genes were upregulated and 159 were downregulated based on a p-value < .05 and fold change ≥ 1.5. Bioinformatics analysis suggested that 140 differentially expressed genes harbor binding sites for HDAC1, including the tumor suppressor gene KLF6 (Kruppel-like factor 6). Indeed, quantitative reverse-transcription polymerase chain reaction and western blot analysis revealed that GSE1 could inhibit the transcription of KLF6 in lung cancer cells. In conclusion, GSE1 cooperates with HDAC1 to promote the proliferation and metastasis of non-small cell lung cancer cells through the downregulation of KLF6 expression.
Collapse
Affiliation(s)
- Ziyu Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yingqian Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Shupei Li
- College of Life Science, Anhui Medical University, Hefei, China
| | - Liguo Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Zhoujuan Yao
- College of Life Science, Anhui Medical University, Hefei, China
| | - Yixuan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Junkun Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yiru Shen
- College of Life Science, Anhui Medical University, Hefei, China
| | - Pingping Liang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Hui Zhang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Wenbin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Fengsong Wang
- College of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
5
|
Yang J, Tang R, Chen S, Chen Y, Yuan K, Huang R, Wang L. Exposure to high-sugar diet induces transgenerational changes in sweet sensitivity and feeding behavior via H3K27me3 reprogramming. eLife 2023; 12:e85365. [PMID: 37698486 PMCID: PMC10558205 DOI: 10.7554/elife.85365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Human health is facing a host of new threats linked to unbalanced diets, including high-sugar diet (HSD), which contributes to the development of both metabolic and behavioral disorders. Studies have shown that diet-induced metabolic dysfunctions can be transmitted to multiple generations of offspring and exert long-lasting health burden. Meanwhile, whether and how diet-induced behavioral abnormalities can be transmitted to the offspring remains largely unclear. Here, we showed that ancestral HSD exposure suppressed sweet sensitivity and feeding behavior in the offspring in Drosophila. These behavioral deficits were transmitted through the maternal germline and companied by the enhancement of H3K27me3 modifications. PCL-PRC2 complex, a major driver of H3K27 trimethylation, was upregulated by ancestral HSD exposure, and disrupting its activity eliminated the transgenerational inheritance of sweet sensitivity and feeding behavior deficits. Elevated H3K27me3 inhibited the expression of a transcriptional factor Cad and suppressed sweet sensitivity of the sweet-sensing gustatory neurons, reshaping the sweet perception and feeding behavior of the offspring. Taken together, we uncovered a novel molecular mechanism underlying behavioral abnormalities spanning multiple generations of offspring upon ancestral HSD exposure, which would contribute to the further understanding of long-term health risk of unbalanced diet.
Collapse
Affiliation(s)
- Jie Yang
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Shiye Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Yinan Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- The Biobank of Xiangya Hospital, Xiangya Hospital, Central South UniversityChangshaChina
| | - Rui Huang
- Center for Neurointelligence, School of Medicine, Chongqing UniversityChongqingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
6
|
Shinoda N, Horikoshi M, Taira Y, Muramoto M, Hirayama S, Murata S, Miura M. Caspase cleaves Drosophila BubR1 to modulate spindle assembly checkpoint function and lifespan of the organism. FEBS J 2023; 290:4200-4223. [PMID: 37151120 DOI: 10.1111/febs.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Caspases cleave over 1500 substrates in the human proteome in both lethal and non-lethal scenarios. However, reports of the physiological consequences of substrate cleavage are limited. Additionally, the manner in which caspase cleaves only a subset of substrates in the non-lethal scenario remains to be elucidated. BubR1, a spindle assembly checkpoint component, is a caspase substrate in humans, the physiological function of which remains unclear. Here, we found that caspases, especially Drice, cleave Drosophila BubR1 between the N-terminal KEN box motif and C-terminal kinase domain. By using proximity labelling, we found that Drice, but not Dcp-1, is in proximity to BubR1, suggesting that protein proximity facilitates substrate preference. The cleaved fragments displayed altered subcellular localization and protein-protein interactions. Flies that harboured cleavage-resistant BubR1 showed longer duration of BubR1 localization to the kinetochore upon colchicine treatment. Furthermore, these flies showed extended lifespan. Thus, we propose that the caspase-mediated cleavage of BubR1 limits spindle assembly checkpoint and organismal lifespan. Our results highlight the importance of the individual analysis of substrates in vivo to determine the biological significance of caspase-dependent non-lethal cellular processes.
Collapse
Affiliation(s)
- Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Misuzu Horikoshi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Yusuke Taira
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masaya Muramoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shoshiro Hirayama
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
7
|
Abstract
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA;
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
8
|
The insulin receptor endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:79-107. [PMID: 36631202 DOI: 10.1016/bs.pmbts.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin signaling controls multiple aspects of animal physiology. At the cell surface, insulin binds and activates the insulin receptor (IR), a receptor tyrosine kinase. Insulin promotes a large conformational change of IR and stabilizes the active conformation. The insulin-activated IR triggers signaling cascades, thus controlling metabolism, growth, and proliferation. The activated IR undergoes internalization by clathrin- or caveolae-mediated endocytosis. The IR endocytosis plays important roles in insulin clearance from blood, and distribution and termination of the insulin signaling. Despite decades of extensive studies, the mechanism and regulation of IR endocytosis and its contribution to pathophysiology remain incompletely understood. Here we discuss recent findings that provide insights into the molecular mechanisms and regulatory pathways that mediate the IR endocytosis.
Collapse
|
9
|
Gama Braga L, Garand C, Elowe S. Considerations for studying phosphorylation of the mitotic checkpoint pseudokinase BUBR1. Methods Enzymol 2022; 667:507-534. [PMID: 35525552 DOI: 10.1016/bs.mie.2022.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Budding uninhibited by benzimidazole 1-related protein 1 (BUBR1) is a mitotic checkpoint (better known as the spindle assembly checkpoint) protein that forms part of an inhibitory complex required to delay mitosis when errors occur in the attachment between chromosomes and the mitotic spindle. If these errors remain uncorrected, it could result in unequal distribution of genetic material to each of the nascent daughter cells, leading to potentially disastrous consequences at both the cellular and organismal level. In some higher eukaryotes including vertebrates, BUBR1 has a C-terminal kinase fold that is largely thought to be inactive, whereas in many species this domain has been lost through evolution and the truncated protein is known as mitotic arrest deficient 3 (MAD3). Here we present advice and practical considerations for the design of experiments, their analysis and interpretation to study the functions of the vertebrate BUBR1 during mitosis with emphasis on analysis implicating the pseudokinase domain.
Collapse
Affiliation(s)
- Luciano Gama Braga
- Biologie Cellulaire et Moléculaire, Faculté de Médicine, Université Laval, Québec, QC, Canada; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Reproduction, Santé de la Mère et de l'Enfant, Québec, QC, Canada; PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada; Département de Pédiatire, Faculté de Médicine, Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Reproduction, Santé de la Mère et de l'Enfant, Québec, QC, Canada; PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada
| | - Sabine Elowe
- Biologie Cellulaire et Moléculaire, Faculté de Médicine, Université Laval, Québec, QC, Canada; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de Reproduction, Santé de la Mère et de l'Enfant, Québec, QC, Canada; PROTEO-Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, Québec, QC, Canada; Département de Pédiatire, Faculté de Médicine, Université Laval et le Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
10
|
Li J, Wu J, Hall C, Bai XC, Choi E. Molecular basis for the role of disulfide-linked αCTs in the activation of insulin-like growth factor 1 receptor and insulin receptor. eLife 2022; 11:81286. [PMID: 36413010 PMCID: PMC9731570 DOI: 10.7554/elife.81286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) control metabolic homeostasis and cell growth and proliferation. The IR and IGF1R form similar disulfide bonds linked homodimers in the apo-state; however, their ligand binding properties and the structures in the active state differ substantially. It has been proposed that the disulfide-linked C-terminal segment of α-chain (αCTs) of the IR and IGF1R control the cooperativity of ligand binding and regulate the receptor activation. Nevertheless, the molecular basis for the roles of disulfide-linked αCTs in IR and IGF1R activation are still unclear. Here, we report the cryo-EM structures of full-length mouse IGF1R/IGF1 and IR/insulin complexes with modified αCTs that have increased flexibility. Unlike the Γ-shaped asymmetric IGF1R dimer with a single IGF1 bound, the IGF1R with the enhanced flexibility of αCTs can form a T-shaped symmetric dimer with two IGF1s bound. Meanwhile, the IR with non-covalently linked αCTs predominantly adopts an asymmetric conformation with four insulins bound, which is distinct from the T-shaped symmetric IR. Using cell-based experiments, we further showed that both IGF1R and IR with the modified αCTs cannot activate the downstream signaling potently. Collectively, our studies demonstrate that the certain structural rigidity of disulfide-linked αCTs is critical for optimal IR and IGF1R signaling activation.
Collapse
Affiliation(s)
- Jie Li
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jiayi Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Xiao-chen Bai
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States,Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| |
Collapse
|
11
|
Yu H, Li Y, Li L, Huang J, Wang X, Tang R, Jiang Z, Lv L, Chen F, Yu C, Yuan K. Functional reciprocity of proteins involved in mitosis and endocytosis. FEBS J 2020; 288:5850-5866. [PMID: 33300206 DOI: 10.1111/febs.15664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Mitosis and endocytosis are two fundamental cellular processes essential for maintaining a eukaryotic life. Mitosis partitions duplicated chromatin enveloped in the nuclear membrane into two new cells, whereas endocytosis takes in extracellular substances through membrane invagination. These two processes are spatiotemporally separated and seemingly unrelated. However, recent studies have uncovered that endocytic proteins have moonlighting functions in mitosis, and mitotic complexes manifest additional roles in endocytosis. In this review, we summarize important proteins or protein complexes that participate in both processes, compare their mechanism of action, and discuss the rationale behind this multifunctionality. We also speculate on the possible origin of the functional reciprocity from an evolutionary perspective.
Collapse
Affiliation(s)
- Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Li Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | | | - Xujuan Wang
- The High School Attached to Hunan Normal University, Changsha, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhenghui Jiang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhong Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,The Biobank of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|