1
|
Kuonqui KG, Campbell AC, Pollack BL, Shin J, Sarker A, Brown S, Park HJ, Mehrara BJ, Kataru RP. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front Cell Dev Biol 2025; 13:1527971. [PMID: 40046235 PMCID: PMC11880633 DOI: 10.3389/fcell.2025.1527971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is the principal transmembrane receptor responsible for sensing and coordinating cellular responses to environmental lymphangiogenic stimuli in lymphatic endothelial cells (LECs). VEGFC and D (VEGFC/D) function as the cognate ligands to VEGFR3 by stimulating autophosphorylation of intracellular VEGFR3 tyrosine kinase domains that activate signal cascades involved in lymphatic growth and survival. VEGFR3 primarily promotes downstream signaling through the phosphoinositide 3-kinase (PI3K) and Ras signaling cascades that promote functions including cell proliferation and migration. The importance of VEGFR3 cascades in lymphatic physiology is underscored by identification of dysfunctional VEGFR3 signaling across several lymphatic-related diseases. Recently, our group has shown that intracellular modification of VEGFR3 signaling is a potent means of inducing lymphangiogenesis independent of VEGFC. This is important because long-term treatment with recombinant VEGFC may have deleterious consequences due to off-target effects. A more complete understanding of VEGFR3 signaling pathways may lead to novel drug development strategies. The purpose of this review is to 1) characterize molecular mediators of VEGFC/VEGFR3 downstream signaling activation and their functional roles in LEC physiology and 2) explore molecular regulation of overall VEGFR3 expression and activity within LECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
2
|
Fukui H, Chow RWY, Yap CH, Vermot J. Rhythmic forces shaping the zebrafish cardiac system. Trends Cell Biol 2025; 35:166-176. [PMID: 39665884 DOI: 10.1016/j.tcb.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
The structural development of the heart depends heavily on mechanical forces, and rhythmic contractions generate essential physical stimuli during morphogenesis. Cardiac cells play a critical role in coordinating this process by sensing and responding to these mechanical forces. In vivo, cells experience rhythmic spatial and temporal variations in deformation-related stresses throughout heart development. What impact do these mechanical forces have on heart morphogenesis? Recent work in zebrafish (Danio rerio) offers important insights into this question. This review focuses on endocardial (EdCs) and myocardial cells (cardiomyocytes, CMs), key cell types in the heart, and provides a comprehensive overview of forces and tissue mechanics in zebrafish and their direct influence on cardiac cell identity.
Collapse
Affiliation(s)
- Hajime Fukui
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan; Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Renee Wei-Yan Chow
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, UK
| | - Julien Vermot
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
3
|
Verlee M, D'haenens E, De Cock L, Muiño Mosquera L, De Groote K, Vandekerckhove K, Panzer J, Roets E, Menten B, Symoens S, Coucke P, Van Damme T, Vergult S, Callewaert B. RNA-sequencing unveils FLT4 splice site variants in variable congenital heart disease. Eur J Hum Genet 2025:10.1038/s41431-025-01788-y. [PMID: 39870876 DOI: 10.1038/s41431-025-01788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
The etiology of congenital heart disease (CHD) is complex, comprising both genetic and environmental factors. Despite documented familial occurrences, the genetic etiology remains largely elusive. Trio exome sequencing identified a heterozygous FLT4 splice site variant in two families with respectively tetralogy of Fallot (TOF), and variable CHD comprising both the TOF spectrum and aortic coarctation. In the first family, Sanger sequencing on cDNA confirmed aberrant splicing for the c.985+1G > A variant. In the second family, transcriptome sequencing uncovered altered splicing for the c.1657+6T > C variant, despite normal targeted Sanger sequencing. In conclusion, our study establishes FLT4 splice site variants as a molecular cause of both left and right-sided isolated CHD, with incomplete penetrance. RNA-sequencing emerges as a valuable technique in unraveling the missing inheritability of CHD.
Collapse
Affiliation(s)
- Maxim Verlee
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laura Muiño Mosquera
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Katya De Groote
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | | | - Joseph Panzer
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Ellen Roets
- Department of Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tim Van Damme
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Chávez MN, Arora P, Meer M, Marques IJ, Ernst A, Morales Castro RA, Mercader N. Spns1-dependent endocardial lysosomal function drives valve morphogenesis through Notch1-signaling. iScience 2024; 27:111406. [PMID: 39720516 PMCID: PMC11667069 DOI: 10.1016/j.isci.2024.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/15/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Autophagy-lysosomal degradation is a conserved homeostatic process considered to be crucial for cardiac morphogenesis. However, both its cell specificity and functional role during heart development remain unclear. Here, we introduced zebrafish models to visualize autophagic vesicles in vivo and track their temporal and cellular localization in the larval heart. We observed a significant accumulation of autolysosomal and lysosomal vesicles in the atrioventricular and bulboventricular regions and their respective valves. We addressed the role of lysosomal degradation based on the Spinster homolog 1 (spns1) mutant (not really started, nrs). n rs larvae displayed morphological and functional cardiac defects, including abnormal endocardial organization, impaired valve formation and retrograde blood flow. Single-nuclear transcriptome analyses revealed endocardial-specific differences in lysosome-related genes and alterations of notch1-signalling. Endocardial-specific overexpression of spns1 and notch1 rescued features of valve formation and function. Altogether, our results reveal a cell-autonomous role of lysosomal processing during cardiac valve formation affecting notch1-signalling.
Collapse
Affiliation(s)
- Myra N. Chávez
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Marco Meer
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Rodrigo A. Morales Castro
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Pham VC, Rödel CJ, Valentino M, Malinverno M, Paolini A, Münch J, Pasquier C, Onyeogaziri FC, Lazovic B, Girard R, Koskimäki J, Hußmann M, Keith B, Jachimowicz D, Kohl F, Hagelkruys A, Penninger JM, Schulte-Merker S, Awad IA, Hicks R, Magnusson PU, Faurobert E, Pagani M, Abdelilah-Seyfried S. Epigenetic regulation by polycomb repressive complex 1 promotes cerebral cavernous malformations. EMBO Mol Med 2024; 16:2827-2855. [PMID: 39402138 PMCID: PMC11555420 DOI: 10.1038/s44321-024-00152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown. Here we show that Chromobox Protein Homolog 7 (CBX7), component of the Polycomb Repressive Complex 1, contributes to pathophysiological KLF2 signaling during zebrafish cardiovascular development. CBX7/cbx7a mRNA is strongly upregulated in lesions of CCM patients, and in human, mouse, and zebrafish CCM-deficient endothelial cells. The silencing or pharmacological inhibition of CBX7/Cbx7a suppresses pathological CCM phenotypes in ccm2 zebrafish, CCM2-deficient HUVECs, and in a pre-clinical murine CCM3 disease model. Whole-transcriptome datasets from zebrafish cardiovascular tissues and human endothelial cells reveal a role of CBX7/Cbx7a in the activation of KLF2 target genes including TEK, ANGPT1, WNT9, and endoMT-associated genes. Our findings uncover an intricate interplay in the regulation of Klf2-dependent biomechanical signaling by CBX7 in CCM. This work also provides insights for therapeutic strategies in the pathogenesis of CCM.
Collapse
Affiliation(s)
- Van-Cuong Pham
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | | | - Matteo Malinverno
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Juliane Münch
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Candice Pasquier
- University Grenoble Alpes UGA, CNRS 5309 INSERM 1209, Grenoble, France
| | - Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Bojana Lazovic
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Romuald Girard
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Melina Hußmann
- Institute for Cardiovascular Organogenesis and Regeneration, Medical Faculty, WU Münster, D-48149, Münster, Germany
| | - Benjamin Keith
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Daniel Jachimowicz
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
- Helmholtz-Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Medical Faculty, WU Münster, D-48149, Münster, Germany
| | - Issam A Awad
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Ryan Hicks
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, WC2R 2LS, London, United Kingdom
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Eva Faurobert
- University Grenoble Alpes UGA, CNRS 5309 INSERM 1209, Grenoble, France
| | - Massimiliano Pagani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, 20139, Italy.
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133, Milan, Italy.
| | | |
Collapse
|
6
|
Monaghan RM, Naylor RW, Flatman D, Kasher PR, Williams SG, Keavney BD. FLT4 causes developmental disorders of the cardiovascular and lymphovascular systems via pleiotropic molecular mechanisms. Cardiovasc Res 2024; 120:1164-1176. [PMID: 38713105 PMCID: PMC11368125 DOI: 10.1093/cvr/cvae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
AIMS Rare, deleterious genetic variants in FLT4 are associated with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease. The distinct genetic variants in FLT4 are also an established cause of Milroy disease, the most prevalent form of primary hereditary lymphoedema. The phenotypic features of these two conditions are non-overlapping, implying pleiotropic cellular mechanisms during development. METHODS AND RESULTS In this study, we show that FLT4 variants identified in patients with TOF, when expressed in primary human endothelial cells, cause aggregation of FLT4 protein in the perinuclear endoplasmic reticulum, activating proteostatic and metabolic signalling, whereas lymphoedema-associated FLT4 variants and wild-type (WT) FLT4 do not. FLT4 TOF variants display characteristic gene expression profiles in key developmental signalling pathways, revealing a role for FLT4 in cardiogenesis distinct from its role in lymphatic development. Inhibition of proteostatic signalling abrogates these effects, identifying potential avenues for therapeutic intervention. Depletion of flt4 in zebrafish caused cardiac phenotypes of reduced heart size and altered heart looping. These phenotypes were rescued with coinjection of WT human FLT4 mRNA, but incompletely or not at all by mRNA harbouring FLT4 TOF variants. CONCLUSION Taken together, we identify a pathogenic mechanism for FLT4 variants predisposing to TOF that is distinct from the known dominant negative mechanism of Milroy-causative variants. FLT4 variants give rise to conditions of the two circulatory subdivisions of the vascular system via distinct developmental pleiotropic molecular mechanisms.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Richard W Naylor
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PN, UK
| | - Daisy Flatman
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Simon G Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, 5th Floor, AV Hill Building, Oxford Road, Manchester, M13 9NT, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Oxford Road, M13 9WL, UK
| |
Collapse
|
7
|
Bornhorst D, Hejjaji AV, Steuter L, Woodhead NM, Maier P, Gentile A, Alhajkadour A, Santis Larrain O, Weber M, Kikhi K, Guenther S, Huisken J, Tamplin OJ, Stainier DYR, Gunawan F. The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish. Nat Commun 2024; 15:7589. [PMID: 39217144 PMCID: PMC11366026 DOI: 10.1038/s41467-024-51920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Amulya V Hejjaji
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Lena Steuter
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Nicole M Woodhead
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul Maier
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Alhajkadour
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Octavia Santis Larrain
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Michael Weber
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Khrievono Kikhi
- Flow Cytometry and Cell Sorting Core Facility, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Jan Huisken
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
| | - Felix Gunawan
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany.
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
8
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. eLife 2024; 13:RP94094. [PMID: 38985140 PMCID: PMC11236418 DOI: 10.7554/elife.94094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, St. Louis, United States
| | - Amber N Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, St. Louis, United States
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, United States
- Vascular Biology & Therapeutics Program, Yale School of Medicine, New Haven, United States
| |
Collapse
|
9
|
Yang D, Jian Z, Tang C, Chen Z, Zhou Z, Zheng L, Peng X. Zebrafish Congenital Heart Disease Models: Opportunities and Challenges. Int J Mol Sci 2024; 25:5943. [PMID: 38892128 PMCID: PMC11172925 DOI: 10.3390/ijms25115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Congenital heart defects (CHDs) are common human birth defects. Genetic mutations potentially cause the exhibition of various pathological phenotypes associated with CHDs, occurring alone or as part of certain syndromes. Zebrafish, a model organism with a strong molecular conservation similar to humans, is commonly used in studies on cardiovascular diseases owing to its advantageous features, such as a similarity to human electrophysiology, transparent embryos and larvae for observation, and suitability for forward and reverse genetics technology, to create various economical and easily controlled zebrafish CHD models. In this review, we outline the pros and cons of zebrafish CHD models created by genetic mutations associated with single defects and syndromes and the underlying pathogenic mechanism of CHDs discovered in these models. The challenges of zebrafish CHD models generated through gene editing are also discussed, since the cardiac phenotypes resulting from a single-candidate pathological gene mutation in zebrafish might not mirror the corresponding human phenotypes. The comprehensive review of these zebrafish CHD models will facilitate the understanding of the pathogenic mechanisms of CHDs and offer new opportunities for their treatments and intervention strategies.
Collapse
|
10
|
da Silva AR, Gunawan F, Boezio GLM, Faure E, Théron A, Avierinos JF, Lim S, Jha SG, Ramadass R, Guenther S, Looso M, Zaffran S, Juan T, Stainier DYR. egr3 is a mechanosensitive transcription factor gene required for cardiac valve morphogenesis. SCIENCE ADVANCES 2024; 10:eadl0633. [PMID: 38748804 PMCID: PMC11095463 DOI: 10.1126/sciadv.adl0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.
Collapse
Affiliation(s)
- Agatha Ribeiro da Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Giulia L. M. Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Emilie Faure
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Alexis Théron
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - SoEun Lim
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Shivam Govind Jha
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Radhan Ramadass
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Stefan Guenther
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stéphane Zaffran
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| |
Collapse
|
11
|
Cheng S, Xia IF, Wanner R, Abello J, Stratman AN, Nicoli S. Hemodynamics regulate spatiotemporal artery muscularization in the developing circle of Willis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569622. [PMID: 38077062 PMCID: PMC10705471 DOI: 10.1101/2023.12.01.569622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries, playing a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular diseases and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating differentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on the zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that the arterial expression of CoW endothelial cells (ECs) occurs after their migration from the cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors upon recruitment to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity wall shear stress. Furthermore, pulsatile blood flow is required for differentiation of human brain pdgfrb+ mural cells into VSMCs as well as VSMC differentiation on zebrafish CoW arteries. Consistently, the flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight the role of blood flow activation of endothelial klf2a as a mechanism regulating the initial VSMC differentiation on vertebrate brain arteries.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Ivan Fan Xia
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Renate Wanner
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| | - Javier Abello
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Amber N. Stratman
- Department of Cell Biology & Physiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, 333 Cedar St, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 300 George St, New Haven, CT 06511, USA
- Vascular Biology & Therapeutics Program, Yale School of Medicine, 10 Amistad St, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Juan T, Bellec M, Cardoso B, Athéa H, Fukuda N, Albu M, Günther S, Looso M, Stainier DYR. Control of cardiac contractions using Cre-lox and degron strategies in zebrafish. Proc Natl Acad Sci U S A 2024; 121:e2309842121. [PMID: 38194447 PMCID: PMC10801847 DOI: 10.1073/pnas.2309842121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
Cardiac contractions and hemodynamic forces are essential for organ development and homeostasis. Control over cardiac contractions can be achieved pharmacologically or optogenetically. However, these approaches lack specificity or require direct access to the heart. Here, we compare two genetic approaches to control cardiac contractions by modulating the levels of the essential sarcomeric protein Tnnt2a in zebrafish. We first recombine a newly generated tnnt2a floxed allele using multiple lines expressing Cre under the control of cardiomyocyte-specific promoters, and show that it does not recapitulate the tnnt2a/silent heart mutant phenotype in embryos. We show that this lack of early cardiac contraction defects is due, at least in part, to the long half-life of tnnt2a mRNA, which masks the gene deletion effects until the early larval stages. We then generate an endogenous Tnnt2a-eGFP fusion line that we use together with the zGRAD system to efficiently degrade Tnnt2a in all cardiomyocytes. Using single-cell transcriptomics, we find that Tnnt2a depletion leads to cardiac phenotypes similar to those observed in tnnt2a mutants, with a loss of blood and pericardial flow-dependent cell types. Furthermore, we achieve conditional degradation of Tnnt2a-eGFP by splitting the zGRAD protein into two fragments that, when combined with the cpFRB2-FKBP system, can be reassembled upon rapamycin treatment. Thus, this Tnnt2a degradation line enables non-invasive control of cardiac contractions with high spatial and temporal specificity and will help further understand how they shape organ development and homeostasis.
Collapse
Affiliation(s)
- Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
| | - Maëlle Bellec
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Bárbara Cardoso
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Héloïse Athéa
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Marga Albu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
| | - Stefan Günther
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz- Kreislaufforschung), Bad Nauheim61231, Germany
- Cardio-Pulmonary Institute, Bad Nauheim61231, Germany
| |
Collapse
|
13
|
Paolini A, Sharipova D, Lange T, Abdelilah-Seyfried S. Wnt9 directs zebrafish heart tube assembly via a combination of canonical and non-canonical pathway signaling. Development 2023; 150:dev201707. [PMID: 37680191 PMCID: PMC10560569 DOI: 10.1242/dev.201707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
During zebrafish heart formation, cardiac progenitor cells converge at the embryonic midline where they form the cardiac cone. Subsequently, this structure transforms into a heart tube. Little is known about the molecular mechanisms that control these morphogenetic processes. Here, we use light-sheet microscopy and combine genetic, molecular biological and pharmacological tools to show that the paralogous genes wnt9a/b are required for the assembly of the nascent heart tube. In wnt9a/b double mutants, cardiomyocyte progenitor cells are delayed in their convergence towards the embryonic midline, the formation of the heart cone is impaired and the transformation into an elongated heart tube fails. The same cardiac phenotype occurs when both canonical and non-canonical Wnt signaling pathways are simultaneously blocked by pharmacological inhibition. This demonstrates that Wnt9a/b and canonical and non-canonical Wnt signaling regulate the migration of cardiomyocyte progenitor cells and control the formation of the cardiac tube. This can be partly attributed to their regulation of the timing of cardiac progenitor cell differentiation. Our study demonstrates how these morphogens activate a combination of downstream pathways to direct cardiac morphogenesis.
Collapse
Affiliation(s)
- Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Tim Lange
- Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | | |
Collapse
|
14
|
Gehlen J, Stundl A, Debiec R, Fontana F, Krane M, Sharipova D, Nelson CP, Al-Kassou B, Giel AS, Sinning JM, Bruenger CMH, Zelck CF, Koebbe LL, Braund PS, Webb TR, Hetherington S, Ensminger S, Fujita B, Mohamed SA, Shrestha M, Krueger H, Siepe M, Kari FA, Nordbeck P, Buravezky L, Kelm M, Veulemans V, Adam M, Baldus S, Laugwitz KL, Haas Y, Karck M, Mehlhorn U, Conzelmann LO, Breitenbach I, Lebherz C, Urbanski P, Kim WK, Kandels J, Ellinghaus D, Nowak-Goettl U, Hoffmann P, Wirth F, Doppler S, Lahm H, Dreßen M, von Scheidt M, Knoll K, Kessler T, Hengstenberg C, Schunkert H, Nickenig G, Nöthen MM, Bolger AP, Abdelilah-Seyfried S, Samani NJ, Erdmann J, Trenkwalder T, Schumacher J. Elucidation of the genetic causes of bicuspid aortic valve disease. Cardiovasc Res 2023; 119:857-866. [PMID: 35727948 PMCID: PMC10153415 DOI: 10.1093/cvr/cvac099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The present study aims to characterize the genetic risk architecture of bicuspid aortic valve (BAV) disease, the most common congenital heart defect. METHODS AND RESULTS We carried out a genome-wide association study (GWAS) including 2236 BAV patients and 11 604 controls. This led to the identification of a new risk locus for BAV on chromosome 3q29. The single nucleotide polymorphism rs2550262 was genome-wide significant BAV associated (P = 3.49 × 10-08) and was replicated in an independent case-control sample. The risk locus encodes a deleterious missense variant in MUC4 (p.Ala4821Ser), a gene that is involved in epithelial-to-mesenchymal transformation. Mechanistical studies in zebrafish revealed that loss of Muc4 led to a delay in cardiac valvular development suggesting that loss of MUC4 may also play a role in aortic valve malformation. The GWAS also confirmed previously reported BAV risk loci at PALMD (P = 3.97 × 10-16), GATA4 (P = 1.61 × 10-09), and TEX41 (P = 7.68 × 10-04). In addition, the genetic BAV architecture was examined beyond the single-marker level revealing that a substantial fraction of BAV heritability is polygenic and ∼20% of the observed heritability can be explained by our GWAS data. Furthermore, we used the largest human single-cell atlas for foetal gene expression and show that the transcriptome profile in endothelial cells is a major source contributing to BAV pathology. CONCLUSION Our study provides a deeper understanding of the genetic risk architecture of BAV formation on the single marker and polygenic level.
Collapse
Affiliation(s)
- Jan Gehlen
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Anja Stundl
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Federica Fontana
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Markus Krane
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Dinara Sharipova
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Baravan Al-Kassou
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Ann-Sophie Giel
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Jan-Malte Sinning
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | | | - Carolin F Zelck
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Laura L Koebbe
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Thomas R Webb
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Buntaro Fujita
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Malakh Shrestha
- Department of Adult and Pediatric Cardiothoracic Surgery, Vascular Surgery, Heart and Lung Transplantation, Hannover Medical School, Hannover, Germany
| | - Heike Krueger
- Department of Adult and Pediatric Cardiothoracic Surgery, Vascular Surgery, Heart and Lung Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Siepe
- Heart Center Freiburg/Bad Krozingen, University Freiburg/Bad Krozingen, Freiburg, Germany
| | - Fabian Alexander Kari
- Heart Center Freiburg/Bad Krozingen, University Freiburg/Bad Krozingen, Freiburg, Germany
| | - Peter Nordbeck
- Medizinische Klinik und Poliklinik I, University Hospital Würzburg, Würzburg, Germany
| | - Larissa Buravezky
- Medizinische Klinik und Poliklinik I, University Hospital Würzburg, Würzburg, Germany
| | - Malte Kelm
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Verena Veulemans
- Department of Cardiology, Pneumology and Angiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Matti Adam
- Department of Medicine III, Heart Center Cologne, University Hospital Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Medicine III, Heart Center Cologne, University Hospital Cologne, Cologne, Germany
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Yannick Haas
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Karck
- Department of Cardiothoracic Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Mehlhorn
- Department of Cardiothoracic Surgery, Helios Klinik Karlsruhe, Karlsruhe, Germany
| | | | - Ingo Breitenbach
- Department of Cardiothoracic Surgery and Vascular Surgery, Clinic of Braunschweig, Braunschweig, Germany
| | - Corinna Lebherz
- Department of Medicine I, Cardiology/Angiology/Intensive Care, University Hospital Aachen, Aachen, Germany
| | - Paul Urbanski
- Department of Cardiovascular Surgery, Cardiovascular Clinic, Rhön-Klinikum Campus Bad Neustadt, Neustadt, Germany
| | - Won-Keun Kim
- Department of Cardiology, Heart Center, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Joscha Kandels
- Department of Cardiology, University Hospital Leipzig, Leipzig, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrike Nowak-Goettl
- Department of Clinical Chemistry, Thrombosis and Hemostasis Unit, University Hospital of Kiel and Lübeck, Kiel, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Felix Wirth
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Doppler
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Harald Lahm
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martina Dreßen
- Division of Experimental Surgery, Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Moritz von Scheidt
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Katharina Knoll
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Thorsten Kessler
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Heribert Schunkert
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Georg Nickenig
- Department of Medicine II, Heart Center Bonn, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Aidan P Bolger
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jeanette Erdmann
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University Heart Centre Lübeck, University of Lübeck, Lübeck, Germany
| | - Teresa Trenkwalder
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Cardiology, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
- Institute of Human Genetics, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
15
|
Chui MMC, Mak CCY, Yu MHC, Wong SYY, Lun KS, Yung TC, Kwong AKY, Chow PC, Chung BHY. Evaluating High-Confidence Genes in Conotruncal Cardiac Defects by Gene Burden Analyses. J Am Heart Assoc 2023; 12:e028226. [PMID: 36789878 PMCID: PMC10111484 DOI: 10.1161/jaha.122.028226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background In nonsyndromic conotruncal cardiac defects, the use of next-generation sequencing for clinical diagnosis is increasingly adopted, but gene-disease associations in research are only partially translated to diagnostic panels, suggesting a need for evidence-based consensus. Methods and Results In an exome data set of 245 patients with conotruncal cardiac defects, we performed burden analysis on a high-confidence congenital heart disease gene list (n=132) with rare (<0.01%) and ultrarare (absent in the Genome Aggregation Database) protein-altering variants. Overall, we confirmed an excess of rare variants compared with ethnicity-matched controls and identified 2 known genes (GATA6, NOTCH1) and 4 candidate genes supported by the literature (ANKRD11, DOCK6, NPHP4, and STRA6). Ultrarare variant analysis was performed in combination with 3 other published studies (n=1451) and identified 3 genes (FLT4, NOTCH1, TBX1) to be significant, whereas a subgroup analysis involving 391 Chinese subjects identified only GATA6 as significant. Conclusions We suggest that these significant genes in our rare and ultrarare burden analyses warrant prioritization for clinical testing implied for rare inherited and de novo variants. Additionally, associations on ClinVar for these genes were predominantly variants of uncertain significance. Therefore, a more stringent assessment of gene-disease associations in a larger and ethnically diverse cohort is required to be prudent for future curation of conotruncal cardiac defect genes.
Collapse
Affiliation(s)
- Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Mullin H C Yu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Sandra Y Y Wong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Kin-Shing Lun
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Tak-Cheung Yung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Anna K Y Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Pak-Cheong Chow
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine Queen Mary Hospital Hong Kong SAR China
| |
Collapse
|
16
|
Juan T, Ribeiro da Silva A, Cardoso B, Lim S, Charteau V, Stainier DYR. Multiple pkd and piezo gene family members are required for atrioventricular valve formation. Nat Commun 2023; 14:214. [PMID: 36639367 PMCID: PMC9839778 DOI: 10.1038/s41467-023-35843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Cardiac valves ensure unidirectional blood flow through the heart, and altering their function can result in heart failure. Flow sensing via wall shear stress and wall stretching through the action of mechanosensors can modulate cardiac valve formation. However, the identity and precise role of the key mechanosensors and their effectors remain mostly unknown. Here, we genetically dissect the role of Pkd1a and other mechanosensors in atrioventricular (AV) valve formation in zebrafish and identify a role for several pkd and piezo gene family members in this process. We show that Pkd1a, together with Pkd2, Pkd1l1, and Piezo2a, promotes AV valve elongation and cardiac morphogenesis. Mechanistically, Pkd1a, Pkd2, and Pkd1l1 all repress the expression of klf2a and klf2b, transcription factor genes implicated in AV valve development. Furthermore, we find that the calcium-dependent protein kinase Camk2g is required downstream of Pkd function to repress klf2a expression. Altogether, these data identify, and dissect the role of, several mechanosensors required for AV valve formation, thereby broadening our understanding of cardiac valvulogenesis.
Collapse
Affiliation(s)
- Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany. .,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany. .,Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Agatha Ribeiro da Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Bárbara Cardoso
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - SoEun Lim
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Violette Charteau
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.,Institute for Molecules and Materials (IMM), Department of Biomolecular Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany. .,German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany. .,Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
17
|
Li YF, Rodrigues J, Campinho MA. Ioxynil and diethylstilbestrol increase the risks of cardiovascular and thyroid dysfunction in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156386. [PMID: 35662599 DOI: 10.1016/j.scitotenv.2022.156386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disruption results from exposure to chemicals that alter the function of the endocrine system in animals. Chronic 60 days of exposure to a low dose (0.1 μM) of ioxynil (IOX) or diethylstilbestrol (DES) via food was used to determine the effects of these chemicals on the physiology of the heart and thyroid follicles in juvenile zebrafish. Immunofluorescence analysis and subsequent 3D morphometric analysis of the zebrafish heart revealed that chronic exposure to IOX induced ventricle deformation and significant volume increase (p < 0.001). DES exposure caused a change in ventricle morphology, but volume was unaffected. Alongside, it was found that DES exposure upregulated endothelial related genes (angptl1b, mhc1lia, mybpc2a, ptgir, notch1b and vwf) involved in vascular homeostasis. Both IOX and DES exposure caused a change in thyroid follicle morphology. Notably, in IOX exposed juveniles, thyroid follicle hypertrophy was observed; and in DES-exposed fish, an enlarged thyroid field was present. In summary, chronic exposure of juvenile zebrafish to IOX and DES affected the heart and the thyroid. Given that both chemicals are able to change the morphology of the thyroid it indicates that they behave as endocrine disruptive chemicals (EDCs). Heart function dynamically changes thyroid morphology, and function and hence it is likely that the observed cardiac effects of IOX and DES are the source of altered thyroid status in these fish.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Joana Rodrigues
- Faculty of Science and Technology, University of the Algarve, Faro, Portugal
| | - Marco A Campinho
- Centre of Marine Sciences, University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences, University of the Algarve, Faro, Portugal; Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve, Faro, Portugal.
| |
Collapse
|
18
|
Mechanical forces on trophoblast motility and its potential role in spiral artery remodeling during pregnancy. Placenta 2022; 123:46-53. [DOI: 10.1016/j.placenta.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 11/22/2022]
|
19
|
Cardiac forces regulate zebrafish heart valve delamination by modulating Nfat signaling. PLoS Biol 2022; 20:e3001505. [PMID: 35030171 PMCID: PMC8794269 DOI: 10.1371/journal.pbio.3001505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/27/2022] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial–mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal–endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation. Why do developing zebrafish atrioventricular heart valves become hyperplastic under certain hemodynamic conditions? This study suggests that part of the answer lies in how the mechanosensitive Nfat pathway regulates the valve mesenchymal-to-endothelial transition.
Collapse
|
20
|
Gunawan F, Priya R, Stainier DYR. Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Curr Opin Cell Biol 2021; 73:26-34. [PMID: 34147705 DOI: 10.1016/j.ceb.2021.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The transformation of the heart from a simple tube to a complex organ requires the orchestration of several morphogenetic processes. Two structures critical for cardiac function, the cardiac valves and the trabecular network, are formed through extensive tissue morphogenesis-endocardial cell migration, deadhesion and differentiation into fibroblast-like cells during valve formation, and cardiomyocyte delamination and apico-basal depolarization during trabeculation. Here, we review current knowledge of how these specialized structures acquire their shape by focusing on the underlying cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in cardiac cell culture and organoids.
Collapse
Affiliation(s)
- Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| | - Rashmi Priya
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
21
|
Paolini A, Fontana F, Pham VC, Rödel CJ, Abdelilah-Seyfried S. Mechanosensitive Notch-Dll4 and Klf2-Wnt9 signaling pathways intersect in guiding valvulogenesis in zebrafish. Cell Rep 2021; 37:109782. [PMID: 34610316 PMCID: PMC8511505 DOI: 10.1016/j.celrep.2021.109782] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
In the zebrafish embryo, the onset of blood flow generates fluid shear stress on endocardial cells, which are specialized endothelial cells that line the interior of the heart. High levels of fluid shear stress activate both Notch and Klf2 signaling, which play crucial roles in atrioventricular valvulogenesis. However, it remains unclear why only individual endocardial cells ingress into the cardiac jelly and initiate valvulogenesis. Here, we show that lateral inhibition between endocardial cells, mediated by Notch, singles out Delta-like-4-positive endocardial cells. These cells ingress into the cardiac jelly, where they form an abluminal cell population. Delta-like-4-positive cells ingress in response to Wnt9a, which is produced in parallel through an Erk5-Klf2-Wnt9a signaling cascade also activated by blood flow. Hence, mechanical stimulation activates parallel mechanosensitive signaling pathways that produce binary effects by driving endocardial cells toward either luminal or abluminal fates. Ultimately, these cell fate decisions sculpt cardiac valve leaflets.
Collapse
Affiliation(s)
- Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Federica Fontana
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Van-Cuong Pham
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
22
|
Bornhorst D, Abdelilah-Seyfried S. Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development. Front Cell Dev Biol 2021; 9:731101. [PMID: 34422841 PMCID: PMC8375320 DOI: 10.3389/fcell.2021.731101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Stem Cell Program, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
23
|
Monaghan RM, Page DJ, Ostergaard P, Keavney BD. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc Res 2021; 117:1877-1890. [PMID: 33067626 PMCID: PMC8262640 DOI: 10.1093/cvr/cvaa291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2019] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are part of the evolutionarily conserved VEGF signalling pathways that regulate the development and maintenance of the body's cardiovascular and lymphovascular systems. VEGFR3, encoded by the FLT4 gene, has an indispensable and well-characterized function in development and establishment of the lymphatic system. Autosomal dominant VEGFR3 mutations, that prevent the receptor functioning as a homodimer, cause one of the major forms of hereditary primary lymphoedema; Milroy disease. Recently, we and others have shown that FLT4 variants, distinct to those observed in Milroy disease cases, predispose individuals to Tetralogy of Fallot, the most common cyanotic congenital heart disease, demonstrating a novel function for VEGFR3 in early cardiac development. Here, we examine the familiar and emerging roles of VEGFR3 in the development of both lymphovascular and cardiovascular systems, respectively, compare how distinct genetic variants in FLT4 lead to two disparate human conditions, and highlight the research still required to fully understand this multifaceted receptor.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Donna J Page
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
24
|
Rödel CJ, Abdelilah-Seyfried S. A zebrafish toolbox for biomechanical signaling in cardiovascular development and disease. Curr Opin Hematol 2021; 28:198-207. [PMID: 33714969 DOI: 10.1097/moh.0000000000000648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The zebrafish embryo has emerged as a powerful model organism to investigate the mechanisms by which biophysical forces regulate vascular and cardiac cell biology during development and disease. A versatile arsenal of methods and tools is available to manipulate and analyze biomechanical signaling. This review aims to provide an overview of the experimental strategies and tools that have been utilized to study biomechanical signaling in cardiovascular developmental processes and different vascular disease models in the zebrafish embryo. Within the scope of this review, we focus on work published during the last two years. RECENT FINDINGS Genetic and pharmacological tools for the manipulation of cardiac function allow alterations of hemodynamic flow patterns in the zebrafish embryo and various types of transgenic lines are available to report endothelial cell responses to biophysical forces. These tools have not only revealed the impact of biophysical forces on cardiovascular development but also helped to establish more accurate models for cardiovascular diseases including cerebral cavernous malformations, hereditary hemorrhagic telangiectasias, arteriovenous malformations, and lymphangiopathies. SUMMARY The zebrafish embryo is a valuable vertebrate model in which in-vivo manipulations of biophysical forces due to cardiac contractility and blood flow can be performed. These analyses give important insights into biomechanical signaling pathways that control endothelial and endocardial cell behaviors. The technical advances using this vertebrate model will advance our understanding of the impact of biophysical forces in cardiovascular pathologies.
Collapse
Affiliation(s)
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Li H, Chang C, Li X, Zhang R. The roles and activation of endocardial Notch signaling in heart regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:3. [PMID: 33521843 PMCID: PMC7847831 DOI: 10.1186/s13619-020-00060-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
As a highly conserved signaling pathway in metazoans, the Notch pathway plays important roles in embryonic development and tissue regeneration. Recently, cardiac injury and regeneration have become an increasingly popular topic for biomedical research, and Notch signaling has been shown to exert crucial functions during heart regeneration as well. In this review, we briefly summarize the molecular functions of the endocardial Notch pathway in several cardiac injury and stress models. Although there is an increase in appreciating the importance of endocardial Notch signaling in heart regeneration, the mechanism of its activation is not fully understood. This review highlights recent findings on the activation of the endocardial Notch pathway by hemodynamic blood flow change in larval zebrafish ventricle after partial ablation, a process involving primary cilia, mechanosensitive ion channel Trpv4 and mechanosensitive transcription factor Klf2.
Collapse
Affiliation(s)
- Huicong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng Chang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xueyu Li
- School of Life Sciences, Fudan University, Shanghai, China.
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|