1
|
Olazagoitia-Garmendia A, Rojas-Márquez H, Trobisch T, Moreno-Castro C, Rodriguez Etxebarria A, Mentxaka J, Tripathi A, Yang B, Martin Ruiz I, Anguita J, Meana JJ, Ding Y, Dutta R, Schirmer L, Igoillo-Esteve M, Santin I, Castellanos-Rubio A. An inflammation-associated lncRNA induces neuronal damage via mitochondrial dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102533. [PMID: 40291376 PMCID: PMC12023888 DOI: 10.1016/j.omtn.2025.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Immune disease-associated non-coding SNPs, which often locate in tissue-specific regulatory elements, are emerging as key factors in gene regulation. Among these elements, long non-coding RNAs (lncRNAs) participate in many cellular processes, and their characteristics make these molecules appealing therapeutic targets. In this study, we have studied lncRNA LOC339803 in the context of neuronal cells, which is located in autoimmunity-associated region 2p15 and recently described to have a proinflammatory role in intestinal disorders. Using human brain samples and a wide variety of in vitro techniques, we have showed a differential function of this lncRNA in neuronal cells. We have further demonstrated the role of LOC339803 in maintaining hexokinase 2 (HK2) levels and thus mitochondrial integrity, partially explaining the implication of the lncRNA in multiple sclerosis (MS) pathogenesis. Our results show the importance of cell-type-specific studies in the case of regulatory lncRNAs. We present LOC339803 as a candidate for further studies as a mitochondrial dysfunction marker or possible therapeutic target in neurodegeneration.
Collapse
Affiliation(s)
- Ane Olazagoitia-Garmendia
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
| | - Henar Rojas-Márquez
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Tim Trobisch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Cristina Moreno-Castro
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | | | - Jon Mentxaka
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
| | - Ajai Tripathi
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44106, US
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Juan Anguita
- CIC bioGUNE-BRTA, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J Javier Meana
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ranjan Dutta
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44106, US
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Izortze Santin
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- CIBERDEM, 28029 Madrid, Spain
| | - Ainara Castellanos-Rubio
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- CIBERDEM, 28029 Madrid, Spain
| |
Collapse
|
2
|
Leitão AL, Enguita FJ. The Unpaved Road of Non-Coding RNA Structure-Function Relationships: Current Knowledge, Available Methodologies, and Future Trends. Noncoding RNA 2025; 11:20. [PMID: 40126344 PMCID: PMC11932211 DOI: 10.3390/ncrna11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
The genomes from complex eukaryotes are enriched in non-coding genes whose transcription products (non-coding RNAs) are involved in the regulation of genomic output at different levels. Non-coding RNA action is predominantly driven by sequence and structural motifs that interact with specific functional partners. Despite the exponential growth in primary RNA sequence data facilitated by next-generation sequencing studies, the availability of tridimensional RNA data is comparatively more limited. The subjacent reasons for this relative lack of information regarding RNA structure are related to the specific chemical nature of RNA molecules and the limitations of the currently available methods for structural characterization of biomolecules. In this review, we describe and analyze the different structural motifs involved in non-coding RNA function and the wet-lab and computational methods used to characterize their structure-function relationships, highlighting the current need for detailed structural studies to explore the molecular determinants of non-coding RNA function.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Química, Faculdade de Ciências e Tecologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Francisco J. Enguita
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
3
|
Xu L, Zhao XH, Zhang YY, Zhang MY, Zhang LY, Ye KH, Teng L, Han MM, Yue YM, Yang J, Ogle R, Netherton J, Tang D, Lan S, Baker M, Ye Y, Liu T, Wang YF, Zhang XD, Fan T, Jin L. SNORD80-guided 2'-O-methylation stabilizes the lncRNA GAS5 to regulate cellular stress responses. Proc Natl Acad Sci U S A 2025; 122:e2418996122. [PMID: 39946530 PMCID: PMC11848286 DOI: 10.1073/pnas.2418996122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
The introns of the gene encoding the long noncoding RNA (lncRNA) GAS5 host up to 10 C/D box small nucleolar RNAs (snoRNAs). However, whether there is a regulatory and functional relationship between these snoRNAs and GAS5 is unknown. Here, we show that the expression of SNORD80, but not the other snoRNAs, parallels GAS5 expression and is regulated alongside GAS5 in response to cellular stress. The 2'-O-methylation at the A496 site, located within a segment of GAS5 complementing the conserved RNA-binding region on SNORD80, promotes GAS5 stability and consequent upregulation. This methylation requires SNORD80, as it is diminished by knockdown of SNORD80 and increased by SNORD80 overexpression, similar to the effects of manipulating the expression of fibrillarin, the methyltransferase of the box C/D small nucleolar ribonucleoprotein particle (snoRNP). The upregulation of SNORD80 in response to cellular stress is due to an enhancement in its stability, which is associated with an increase in its interaction with fibrillarin. Collectively, these results identify a role for SNORD80 in guiding 2'-O-methylation to stabilize GAS5. This uncovers a feedforward regulatory loop at the GAS5 gene locus in response to cellular stress and sheds light on posttranscriptional mechanisms governing lncRNA expression.
Collapse
Affiliation(s)
- Liang Xu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Meng Yao Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Long Yue Zhang
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Kai Hong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Liu Teng
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Man Man Han
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Yi Meng Yue
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen361015, China
| | - Rachel Ogle
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Jacob Netherton
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Deng Tang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Siqi Lan
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Mark Baker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui230032, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
- Children’s Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW2750, Australia
| | - Yu Fang Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan610041, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW2308, Australia
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Henan450001, China
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key laboratory of Non-coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial People’s Hospital, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Henan450053, China
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW2308, Australia
| |
Collapse
|
4
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Oh M, Kadam RN, Charania ZS, Somarowthu S. LncRNA SChLAP1 promotes cancer cell proliferation and invasion via its distinct structural domains and conserved regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635288. [PMID: 39975023 PMCID: PMC11838354 DOI: 10.1101/2025.01.28.635288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long non-coding RNAs (lncRNAs) play key roles in a range of biological processes and disease progression. Despite their functional significance and therapeutic potential, lncRNAs' mechanisms of action remain understudied. One such lncRNA is the Second Chromosome Locus Associated with Prostate-1 (SChLAP1). SChLAP1 is overexpressed in malignant prostate cancer and is associated with unfavorable patient outcomes, such as metastasis and increased mortality. In this study, we demonstrated that SChLAP1 possesses distinct structural domains and conserved regions that may contribute to its function. We determined the secondary structure of SChLAP1 using chemical probing methods combined with mutational profiling (DMS-MaP and SHAPE-MaP). Our in vitro secondary structural model revealed that SChLAP1 consists of two distinct secondary-structural modules located at its 5' and 3' ends, both featuring regions with a high degree of structural organization. Our in vivo chemical probing identified potential protein-binding hotspots within the two modules. Overexpression of the modules led to a notable increase in cancer cell proliferation and invasion, proving their functional significance on the oncogenicity of SChLAP1. In conclusion, we discovered functionally important, independent modules with well-defined structures of SChLAP1. These results will serve as a guide to explore the detailed molecular mechanisms by which SChLAP1 promotes aggressive prostate cancer, ultimately contributing to the development of SChLAP1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Mihyun Oh
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Roshni Nagesh Kadam
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Zahra Sadruddin Charania
- Graduate Program in Molecular and Cell Biology and Genetics, Graduate School of Biomedical Sciences and Professional Studies, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Yan W, Fu X, Li H, Wang K, Song C, Hou C, Lei C, Wang H, Yang X. The long non-coding RNA lncRNA-DRNR enhances infectious bronchitis virus replication by targeting chicken JMJD6 and modulating interferon-stimulated genes expression via the JAK-STAT signalling pathway. Vet Res 2024; 55:141. [PMID: 39501382 PMCID: PMC11539454 DOI: 10.1186/s13567-024-01396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious bronchitis virus (IBV) is the causative agent of infectious bronchitis (IB), a severe disease that primarily affects young chickens and poses a significant challenge to the global poultry industry. Understanding the complex interaction between the virus and its host is vital for developing innovative antiviral strategies. Long non-coding RNA (lncRNA) plays a crucial role in regulating host antiviral immune responses. Our previous studies have shown that IBV infection disrupts the stability of lncRNA in host cells, indicating a potential regulatory role for lncRNA in IBV pathogenesis. It is still not clear how lncRNA precisely modulates IBV replication. In this study, we observed down-regulation ofMSTRG.26120.58 (named lncRNA-DRNR) expression in various chicken cell lines upon IBV infection. We demonstrated that silencing lncRNA-DRNR using siRNA enhances intracellular replication of IBV. Through exploring genes encoding proteins upstream and downstream of lncRNA-DRNR within a 100 kb range, we identified chJMJD6 (chicken JMJD6) as a potential target gene negatively regulated by lncRNA-DRNR expression levels. Furthermore, chJMJD6 inhibits STAT1 methylation, thereby affecting the induction of interferon-stimulated genes (ISGs) through the activation of the IFN-β-mediated JAK-STAT signalling pathway, ultimately promoting the intracellular replication of IBV. In summary, our findings reveal the critical role played by lncRNA-DRNR during IBV infection, providing novel insights into mechanisms underlying coronavirus-induced disruption in lncRNA stability.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xue Fu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Cailiang Song
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Chengyao Hou
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Cangwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
7
|
Curci D, Stankovic B, Kotur N, Pugnetti L, Gasic V, Romano M, Zukic B, Decorti G, Stocco G, Lucafò M, Pavlovic S. The long non-coding RNA GAS5 contributes to the suppression of inflammatory responses by inhibiting NF-κB activity. Front Pharmacol 2024; 15:1448136. [PMID: 39444615 PMCID: PMC11496153 DOI: 10.3389/fphar.2024.1448136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Nuclear factor kappa B (NF-κB) is a key regulator of immune and inflammatory responses. Glucocorticoid drugs (GC) act through the glucocorticoid receptor (GR) as immunosuppressant also in pediatric patients inhibiting NF-κB activity. The long non-coding RNA GAS5 interacts with the GR, influencing GC activity. No data on the role of GAS5 on GR-dependent inhibition of NF-κB activity have been published. METHODS This study investigated the impact of GAS5 on NF-κB activity in HeLa cells overexpressing GAS5, both under basal conditions and during GC treatment. The study used EMSA, RNA-immunoprecipitation (RIP), Western blotting, and bioinformatic analyses to assess NF-κB DNA binding, GAS5-p65 interaction, and NF-κB signaling pathway modulation. RESULTS GAS5 overexpression increased NF-κB DNA binding activity in untreated cells. RNA-IP confirmed a direct interaction between GAS5 and the NF-κB subunit p65, suggesting a potential regulatory mechanism. GAS5 overexpression led to downregulation of NF-κB target genes, TNF-α, and NR3C1. GC treatment reduced NF-κB DNA binding activity in GAS5-overexpressing cells, indicating a potential synergistic effect. Furthermore, GAS5 overexpression increased IκB levels and reduced p-p65/pan-p65 levels during GC treatment. DISCUSSION GAS5 appears to modulate NF-κB activity in a complex manner, influencing both basal and GC-induced signaling. The interaction between GAS5, GCs, and NF-κB is multi-faceted, and further research is needed to fully elucidate the underlying mechanisms. These findings suggest that GAS5 could be a potential target for personalized therapy, particularly in pediatric patients with inflammatory conditions.
Collapse
Affiliation(s)
- Debora Curci
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Biljana Stankovic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nikola Kotur
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Letizia Pugnetti
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Vladimir Gasic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Branka Zukic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Giuliana Decorti
- Department of Medicine Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medicine Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sonja Pavlovic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Zhang X, Hu S, Xiang X, Li Z, Chen Z, Xia C, He Q, Jin J, Chen H. Bulk and single-cell transcriptome profiling identify potential cellular targets of the long noncoding RNA Gas5 in renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167206. [PMID: 38718848 DOI: 10.1016/j.bbadis.2024.167206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
The long noncoding RNA growth arrest-specific 5 (lncRNA Gas5) is implicated in various kidney diseases. In this study, we investigated the lncRNA Gas5 expression profile and its critical role as a potential biomarker in the progression of chronic kidney disease. Subsequently, we assessed the effect of lncRNA Gas5 deletion on renal fibrosis induced by unilateral ureteral obstruction (UUO). The results indicated that loss of lncRNA Gas5 exacerbates UUO-induced renal injury and extracellular matrix deposition. Notably, the deletion of lncRNA Gas5 had a similar effect on control mice. The fibrogenic phenotype observed in mice lacking lncRNA Gas5 correlates with peroxisome proliferator-activated receptor (PPAR) signaling pathway activation and aberrant cytokine and chemokine reprogramming. Single-cell RNA sequencing analysis revealed key transcriptomic features of fibroblasts after Gas5 deletion, revealing heterogeneous cellular states suggestive of a propensity for renal fibrosis. Our findings indicate that lncRNA Gas5 regulates the differentiation and activation of immune cells and the transcription of key genes in the PPAR signaling pathway. These data offer novel insights into the involvement of lncRNA Gas5 in renal fibrosis, potentially paving the way for innovative diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shouci Hu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaojun Xiang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhiyu Li
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhejun Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Cong Xia
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
9
|
Scholda J, Nguyen TTA, Kopp F. Long noncoding RNAs as versatile molecular regulators of cellular stress response and homeostasis. Hum Genet 2024; 143:813-829. [PMID: 37782337 PMCID: PMC11294412 DOI: 10.1007/s00439-023-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Normal cell and body functions need to be maintained and protected against endogenous and exogenous stress conditions. Different cellular stress response pathways have evolved that are utilized by mammalian cells to recognize, process and overcome numerous stress stimuli in order to maintain homeostasis and to prevent pathophysiological processes. Although these stress response pathways appear to be quite different on a molecular level, they all have in common that they integrate various stress inputs, translate them into an appropriate stress response and eventually resolve the stress by either restoring homeostasis or inducing cell death. It has become increasingly appreciated that non-protein-coding RNA species, such as long noncoding RNAs (lncRNAs), can play critical roles in the mammalian stress response. However, the precise molecular functions and underlying modes of action for many of the stress-related lncRNAs remain poorly understood. In this review, we aim to provide a framework for the categorization of mammalian lncRNAs in stress response and homeostasis based on their experimentally validated modes of action. We describe the molecular functions and physiological roles of selected lncRNAs and develop a concept of how lncRNAs can contribute as versatile players in mammalian stress response and homeostasis. These concepts may be used as a starting point for the identification of novel lncRNAs and lncRNA functions not only in the context of stress, but also in normal physiology and disease.
Collapse
Affiliation(s)
- Julia Scholda
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Thi Thuy Anh Nguyen
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Florian Kopp
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Clinical Pharmacy Group, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Gupta S, Panda PK, Luo W, Hashimoto RF, Ahuja R. Network analysis reveals that the tumor suppressor lncRNA GAS5 acts as a double-edged sword in response to DNA damage in gastric cancer. Sci Rep 2022; 12:18312. [PMID: 36316351 PMCID: PMC9622883 DOI: 10.1038/s41598-022-21492-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
The lncRNA GAS5 acts as a tumor suppressor and is downregulated in gastric cancer (GC). In contrast, E2F1, an important transcription factor and tumor promoter, directly inhibits miR-34c expression in GC cell lines. Furthermore, in the corresponding GC cell lines, lncRNA GAS5 directly targets E2F1. However, lncRNA GAS5 and miR-34c remain to be studied in conjunction with GC. Here, we present a dynamic Boolean network to classify gene regulation between these two non-coding RNAs (ncRNAs) in GC. This is the first study to show that lncRNA GAS5 can positively regulate miR-34c in GC through a previously unknown molecular pathway coupling lncRNA/miRNA. We compared our network to several in-vivo/in-vitro experiments and obtained an excellent agreement. We revealed that lncRNA GAS5 regulates miR-34c by targeting E2F1. Additionally, we found that lncRNA GAS5, independently of p53, inhibits GC proliferation through the ATM/p38 MAPK signaling pathway. Accordingly, our results support that E2F1 is an engaging target of drug development in tumor growth and aggressive proliferation of GC, and favorable results can be achieved through tumor suppressor lncRNA GAS5/miR-34c axis in GC. Thus, our findings unlock a new avenue for GC treatment in response to DNA damage by these ncRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- grid.11899.380000 0004 1937 0722Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP 05508-090 Brasil
| | - Pritam Kumar Panda
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Wei Luo
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Ronaldo F. Hashimoto
- grid.11899.380000 0004 1937 0722Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP 05508-090 Brasil
| | - Rajeev Ahuja
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden ,grid.462391.b0000 0004 1769 8011Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| |
Collapse
|
11
|
Yao M, Luo Y, Li H, Liao S, Yu J. LncRNA Tug1 Contributes Post-stroke NLRP3 Inflammasome-Dependent Pyroptosis via miR-145a-5p/Tlr4 Axis. Mol Neurobiol 2022; 59:6701-6712. [PMID: 35989413 DOI: 10.1007/s12035-022-03000-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Pyroptosis, a type of programmed cell death illuminated by inflammasomes and active caspases, is implicated in post-stroke inflammation. Our previous study showed that lncRNA taurine upregulated gene 1 (Tug1) sponging miR-145a-5p modulated microglial activation after oxygen-glucose deprivation (OGD). However, the role and mechanism of Tug1 on post-stroke pyroptosis is not fully clear. Photo-thrombosis stroke mice and OGD-treated BV-2 microglia were established respectively. Tug1 knockdown or overexpression was achieved by intraventricular infusion of AAV-shTug1 in vivo, or transfection of siTug1 and pcDNA3.1-Tug1 in vitro. Neurological function and infarction volume were evaluated. Meanwhile, pyroptosis-associated proteins (IL-1β, IL-18, NLRP3, ASC, cleaved-caspase-1, and GSDMD-N), TLR4, and p-p65/p65 as well as Tug1 and miR-145a-5p were detected 24 h after photo-thrombosis or 4 h after OGD by qRT-PCR, western blot, and ELISA. The correlation between Tug1/miR-145a-5p/Tlr4 axis and pyroptosis was explored by dual-luciferase reporter assay and functional gain-and-loss experiments. Photo-thrombosis or OGD caused neural injury and upregulated pyroptosis-associated proteins, Tug1, TLR4, and p-p65 as well as downregulated miR-145a-5p, which was prevented by Tug1 knockdown in vivo and in vitro. Tlr4 gene, putatively binding with miR-145a-5p by bioinformatics analysis, was found to be a direct target of miR-145a-5p with negative interactions. Furthermore, miR-145a-5p inhibitor abolished the inhibitive effects of siTug1 on TLR4 and p-p65 as well as pyroptosis-associated proteins, whereas miR-145a-5p mimics abrogated the enhanced effects of pcDNA3.1-Tug1 on that, suggesting an involvement of Tug1/miR-145a-5p/Tlr4 axis on pyroptosis. Tug1 contributes NLRP3 inflammasome-dependent pyroptosis through miR-145a-5p/Tlr4 axis post-stroke, providing a promising therapeutic strategy against inflammatory injury.
Collapse
Affiliation(s)
- Meiling Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Ying Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Hongjie Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Songjie Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Jian Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Xiang Z, Liqing Y, Qingqing Y, Qiang H, Hongbo C. Retard or exacerbate: Role of long non-coding RNA growth arrest-specific 5 in the fibrosis. Cytokine Growth Factor Rev 2022; 67:89-104. [DOI: 10.1016/j.cytogfr.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
|
13
|
Marcia M. The multiple molecular dimensions of long noncoding RNAs that regulate gene expression and tumorigenesis. Curr Opin Oncol 2022; 34:141-147. [PMID: 35025816 DOI: 10.1097/cco.0000000000000813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW LncRNAs are emerging as key regulators of gene expression and they ensure homeostasis during cell differentiation and development, replication, and adaptation to the environment. Because of their key central role in regulating the biology of living cells, it is crucial to characterize how lncRNAs function at the genetic, transcriptomic, and mechanistic level. RECENT FINDINGS The low endogenous abundance and high molecular complexity of lncRNAs pose unique challenges for their characterization but new methodological advances in biochemistry, biophysics and cell biology have recently made it possible to characterize an increasing number of these transcripts, including oncogenic and tumor suppressor lncRNAs. These recent studies specifically address important issues that had remained controversial, such as the selectivity of lncRNA mechanisms of action, the functional importance of lncRNA sequences, secondary and tertiary structures, and the specificity of lncRNA interactions with proteins. SUMMARY These recent achievements, coupled to population-wide medical and genomic approaches that connect lncRNAs with human diseases and to recent advances in RNA-targeted drug development, open unprecedented new perspectives for exploiting lncRNAs as pharmacological targets or biomarkers to monitor and cure cancer, in addition to metabolic, developmental and cardiovascular diseases.
Collapse
Affiliation(s)
- Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| |
Collapse
|
14
|
Przanowska RK, Weidmann CA, Saha S, Cichewicz MA, Jensen KN, Przanowski P, Irving PS, Janes KA, Guertin MJ, Weeks KM, Dutta A. Distinct MUNC lncRNA structural domains regulate transcription of different promyogenic factors. Cell Rep 2022; 38:110361. [PMID: 35172143 PMCID: PMC8937029 DOI: 10.1016/j.celrep.2022.110361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/03/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Many lncRNAs have been discovered using transcriptomic data; however, it is unclear what fraction of lncRNAs is functional and what structural properties affect their phenotype. MUNC lncRNA (also known as DRReRNA) acts as an enhancer RNA for the Myod1 gene in cis and stimulates the expression of other promyogenic genes in trans by recruiting the cohesin complex. Here, experimental probing of the RNA structure revealed that MUNC contains multiple structural domains not detected by prediction algorithms in the absence of experimental information. We show that these specific and structurally distinct domains are required for induction of promyogenic genes, for binding genomic sites and gene expression regulation, and for binding the cohesin complex. Myod1 induction and cohesin interaction comprise only a subset of MUNC phenotype. Our study reveals unexpectedly complex, structure-driven functions for the MUNC lncRNA and emphasizes the importance of experimentally determined structures for understanding structure-function relationships in lncRNAs.
Collapse
Affiliation(s)
- Roza K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22908, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biological Chemistry and Center for RNA Biomedicine, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Shekhar Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Magdalena A Cichewicz
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kate N Jensen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22908, USA
| | - Patrick S Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin A Janes
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA 22908, USA
| | - Michael J Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT 06030, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Genetics, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
15
|
Tonge DP, Darling D, Farzaneh F, Williams GT. Whole-genome-scale identification of novel non-protein-coding RNAs controlling cell proliferation and survival through a functional forward genetics strategy. Sci Rep 2022; 12:182. [PMID: 34997014 PMCID: PMC8741825 DOI: 10.1038/s41598-021-03983-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Identification of cell fate-controlling lncRNAs is essential to our understanding of molecular cell biology. Here we present a human genome-scale forward-genetics approach for the identification of lncRNAs based on gene function. This approach can identify genes that play a causal role, and immediately distinguish them from those that are differentially expressed but do not affect cell function. Our genome-scale library plus next-generation-sequencing and bioinformatic approach, radically upscales the breadth and rate of functional ncRNA discovery. Human gDNA was digested to produce a lentiviral expression library containing inserts in both sense and anti-sense orientation. The library was used to transduce human Jurkat T-leukaemic cells. Cell populations were selected using continuous culture ± anti-FAS IgM, and sequencing used to identify sequences controlling cell proliferation. This strategy resulted in the identification of thousands of new sequences based solely on their function including many ncRNAs previously identified as being able to modulate cell survival or to act as key cancer regulators such as AC084816.1*, AC097103.2, AC087473.1, CASC15*, DLEU1*, ENTPD1-AS1*, HULC*, MIRLET7BHG*, PCAT-1, SChLAP1, and TP53TG1. Independent validation confirmed 4 out of 5 sequences that were identified by this strategy, conferred a striking resistance to anti-FAS IgM-induced apoptosis.
Collapse
Affiliation(s)
- D P Tonge
- Faculty of Natural Sciences, School of Life Sciences, Keele University, Keele, ST5 5BG, UK.
| | - D Darling
- Molecular Medicine Group, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Kings College London, London, UK
| | - F Farzaneh
- Molecular Medicine Group, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, Kings College London, London, UK
| | - G T Williams
- Faculty of Natural Sciences, School of Life Sciences, Keele University, Keele, ST5 5BG, UK
| |
Collapse
|
16
|
Xagorari M, Marmarinos A, Kossiva L, Baka M, Doganis D, Servitzoglou M, Tsolia M, Scorilas A, Avgeris M, Gourgiotis D. Overexpression of the GR Riborepressor LncRNA GAS5 Results in Poor Treatment Response and Early Relapse in Childhood B-ALL. Cancers (Basel) 2021; 13:6064. [PMID: 34885174 PMCID: PMC8656629 DOI: 10.3390/cancers13236064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoids (GCs) remain the cornerstone of childhood acute lymphoblastic leukemia (chALL) therapy, exerting their cytotoxic effects through binding and activating of the glucocorticoid receptor (GR). GAS5 lncRNA acts as a potent riborepressor of GR transcriptional activity, and thus targeting GAS5 in GC-treated chALL could provide further insights into GC resistance and support personalized treatment decisions. Herein, to study the clinical utility of GAS5 in chALL prognosis and chemotherapy response, GAS5 expression was quantified by RT-qPCR in bone marrow samples of chB-ALL patients at diagnosis (n = 164) and at end-of-induction (n = 109), treated with ALL-BFM protocol. Patients' relapse and death were used as clinical end-points for survival analysis. Bootstrap analysis was performed for internal validation, and decision curve analysis assessed the clinical net benefit for chALL prognosis. Our findings demonstrated the elevated GAS5 levels in blasts of chALL patients compared to controls and the significantly higher risk for short-term relapse and poor treatment outcome of patients overexpressing GAS5, independently of their clinicopathological data. The unfavorable prognostic value of GAS5 overexpression was strongly validated in the high-risk/stem-cell transplantation subgroup. Finally, multivariate models incorporating GAS5 levels resulted in superior risk stratification and clinical benefit for chALL prognostication, supporting personalized prognosis and precision medicine decisions in chALL.
Collapse
Affiliation(s)
- Marieta Xagorari
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
| | - Antonios Marmarinos
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
| | - Lydia Kossiva
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (L.K.); (M.T.)
| | - Margarita Baka
- Department of Pediatric Oncology, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.B.); (D.D.); (M.S.)
| | - Dimitrios Doganis
- Department of Pediatric Oncology, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.B.); (D.D.); (M.S.)
| | - Marina Servitzoglou
- Department of Pediatric Oncology, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.B.); (D.D.); (M.S.)
| | - Maria Tsolia
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (L.K.); (M.T.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece; (M.X.); (A.M.)
| |
Collapse
|
17
|
Morgan R, da Silveira WA, Kelly RC, Overton I, Allott EH, Hardiman G. Long non-coding RNAs and their potential impact on diagnosis, prognosis, and therapy in prostate cancer: racial, ethnic, and geographical considerations. Expert Rev Mol Diagn 2021; 21:1257-1271. [PMID: 34666586 DOI: 10.1080/14737159.2021.1996227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Advances in high-throughput sequencing have greatly advanced our understanding of long non-coding RNAs (lncRNAs) in a relatively short period of time. This has expanded our knowledge of cancer, particularly how lncRNAs drive many important cancer phenotypes via their regulation of gene expression. AREAS COVERED Men of African descent are disproportionately affected by PC in terms of incidence, morbidity, and mortality. LncRNAs could serve as biomarkers to differentiate low-risk from high-risk diseases. Additionally, they may represent therapeutic targets for advanced and castrate-resistant cancer. We review current research surrounding lncRNAs and their association with PC. We discuss how lncRNAs can provide new insights and diagnostic biomarkers for African American men. Finally, we review advances in computational approaches that predict the regulatory effects of lncRNAs in cancer. EXPERT OPINION PC diagnostic biomarkers that offer high specificity and sensitivity are urgently needed. PC specific lncRNAs are compelling as diagnostic biomarkers owing to their high tissue and tumor specificity and presence in bodily fluids. Recent studies indicate that PCA3 clinical utility might be restricted to men of European descent. Further work is required to develop lncRNA biomarkers tailored for men of African descent.
Collapse
Affiliation(s)
- Rebecca Morgan
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Willian Abraham da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK
| | - Ryan Christopher Kelly
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ian Overton
- Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emma H Allott
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Faculty of Medicine, Health and Life Sciences, Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.,Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen's University Belfast, Belfast, UK.,Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, UK.,Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina
| |
Collapse
|
18
|
Structural insights into glucocorticoid receptor function. Biochem Soc Trans 2021; 49:2333-2343. [PMID: 34709368 DOI: 10.1042/bst20210419] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
The glucocorticoid receptor (GR) is a steroid hormone-activated transcription factor that binds to various glucocorticoid response elements to up- or down- regulate the transcription of thousands of genes involved in metabolism, development, stress and inflammatory responses. GR consists of two domains enabling interaction with glucocorticoids, DNA response elements and coregulators, as well as a large intrinsically disordered region that mediates condensate formation. A growing body of structural studies during the past decade have shed new light on GR interactions, providing a new understanding of the mechanisms driving context-specific GR activity. Here, we summarize the established and emerging mechanisms of action of GR, primarily from a structural perspective. This minireview also discusses how the current state of knowledge of GR function may guide future glucocorticoid design with an improved therapeutic index for different inflammatory disorders.
Collapse
|
19
|
GAS5 rs2067079 and miR-137 rs1625579 functional SNPs and risk of chronic hepatitis B virus infection among Egyptian patients. Sci Rep 2021; 11:20014. [PMID: 34625583 PMCID: PMC8501054 DOI: 10.1038/s41598-021-99345-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a significant health issue worldwide.. We attempted to fulfill the molecular mechanisms of epigenetic and genetic factors associated with chronic HBV (CHBV). Expression levels of the lncRNA growth arrest-specific 5 (GAS5) and miR-137 and their corresponding SNPs, rs2067079 (C/T) and rs1625579 (G/T) were analyzed in 117 CHBV patients and 120 controls to investigate the probable association between these biomarkers and CHBV pathogenesis in the Egyptian population. Serum expression levels of GAS5 and miR-137 were significantly down-regulated in cases vs controls. Regarding GAS5 (rs2067079), the mutant TT genotype showed an increased risk of CHBV (p < 0.001), while the dominant CC was a protective factor (p = 0.004). Regarding miR-137 rs1625579, the mutant genotype TT was reported as a risk factor for CHBV (p < 0.001) and the normal GG genotype was a protective factor, p < 0.001. The serum GAS5 was significantly higher in the mutant TT genotype of GAS5 SNP as compared to the other genotypes (p = 0.007). Concerning miR-137 rs1625579, the mutant TT genotype was significantly associated with a lower serum expression level of miR-137 (p = 0.018). We revealed the dysregulated expression levels of GAS5 and miR-137 linked to their functioning SNPs were associated with CHBV risk and might act as potential therapeutic targets.
Collapse
|
20
|
Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Pronina IV, Lukina SS, Dmitriev AA, Braga EA. Long Noncoding RNA GAS5 in Breast Cancer: Epigenetic Mechanisms and Biological Functions. Int J Mol Sci 2021; 22:ijms22136810. [PMID: 34202777 PMCID: PMC8267719 DOI: 10.3390/ijms22136810] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been identified as contributors to the development and progression of cancer through various functions and mechanisms. LncRNA GAS5 is downregulated in multiple cancers and acts as a tumor suppressor in breast cancer. GAS5 interacts with various proteins (e.g., E2F1, EZH2, and YAP), DNA (e.g., the insulin receptor promoter), and various microRNAs (miRNAs). In breast cancer, GAS5 binds with miR-21, miR-222, miR-221-3p, miR-196a-5p, and miR-378a-5p that indicates the presence of several elements for miRNA binding (MREs) in GAS5. Mediated by the listed miRNAs, GAS5 is involved in the upregulation of a number of mRNAs of suppressor proteins such as PTEN, PDCD4, DKK2, FOXO1, and SUFU. Furthermore, the aberrant promoter methylation is involved in the regulation of GAS5 gene expression in triple-negative breast cancer and some other carcinomas. GAS5 can stimulate apoptosis in breast cancer via diverse pathways, including cell death receptors and mitochondrial signaling pathways. GAS5 is also a key player in the regulation of some crucial signal pathways in breast cancer, such as PI3K/AKT/mTOR, Wnt/β-catenin, and NF-κB signaling. Through epigenetic and other mechanisms, GAS5 can increase sensitivity to multiple drugs and improve prognosis. GAS5 is thus a promising target in the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Svetlana S. Lukina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.A.F.); (A.M.B.); (V.I.L.); (I.V.P.); (S.S.L.)
- Correspondence:
| |
Collapse
|
21
|
Spetale FE, Murillo J, Villanova GV, Bulacio P, Tapia E. FGGA-lnc: automatic gene ontology annotation of lncRNA sequences based on secondary structures. Interface Focus 2021; 11:20200064. [PMID: 34123354 PMCID: PMC8193470 DOI: 10.1098/rsfs.2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks. But extensive experimental studies are required to build these networks. In this work, we present a graph-based machine learning method called FGGA-lnc for the automatic gene ontology (GO) annotation of lncRNAs across the three GO subdomains. We build upon FGGA (factor graph GO annotation), a computational method originally developed to annotate protein sequences from non-model organisms. In the FGGA-lnc version, a coding-based approach is introduced to fuse primary sequence and secondary structure information of lncRNA molecules. As a result, lncRNA sequences become sequences of a higher-order alphabet allowing supervised learning methods to assess individual GO-term annotations. Raw GO annotations obtained in this way are unaware of the GO structure and therefore likely to be inconsistent with it. The message-passing algorithm embodied by factor graph models overcomes this problem. Evaluations of the FGGA-lnc method on lncRNA data, from model and non-model organisms, showed promising results suggesting it as a candidate to satisfy the huge demand for functional annotations arising from high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Flavio E. Spetale
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Javier Murillo
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Gabriela V. Villanova
- Laboratorio Mixto de Biotecnología Acuática (FCByF-UNR), Av. Eduardo Carrasco S/N, S2000EZP Rosario, Argentina
| | - Pilar Bulacio
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Elizabeth Tapia
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| |
Collapse
|
22
|
LncRNA ZNF674-AS1 regulates granulosa cell glycolysis and proliferation by interacting with ALDOA. Cell Death Discov 2021; 7:107. [PMID: 33993190 PMCID: PMC8124069 DOI: 10.1038/s41420-021-00493-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/27/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Granulosa cell (GC) is a critical somatic component of ovarian follicles to support oocyte development, while the regulatory role of long noncoding RNA (lncRNA) in GCs is largely unknown. Here, we identified a down-regulated lncRNA ZNF674-AS1 in GCs from patients with biochemical premature ovarian insufficiency (bPOI), and its expression correlates with serum levels of clinical ovarian reserve indicators. Functional experiments showed that ZNF674-AS1 is induced by energy stress, and regulates the proliferation and glycolysis of GCs, which possibly leads to follicular dysfunction. Mechanistically, low-expressed ZNF674-AS1 reduced the enzymatic activity of aldolase A (ALDOA), concomitant with promoting the association between ALDOA and v-ATPase to activate the lysosome localized AMP-activated protein kinase (AMPK). These findings identified a new lncRNA–ALDOA complex through which ZNF674-AS1 exerts its functions, expanding the understanding of epigenetic regulation of GCs function and POI pathogenesis.
Collapse
|
23
|
Meng X, Wang ZF, Lou QY, Rankine AN, Zheng WX, Zhang ZH, Zhang L, Gu H. Long non-coding RNAs in head and neck squamous cell carcinoma: Diagnostic biomarkers, targeted therapies, and prognostic roles. Eur J Pharmacol 2021; 902:174114. [PMID: 33901464 DOI: 10.1016/j.ejphar.2021.174114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
At present, emerging evidence shows that non-coding RNAs (ncRNAs) play crucial roles for development of multiple tumors. Amongst these ncRNAs, long non-coding RNAs (lncRNAs) play prominent roles in physiological and pathological processes. LncRNAs are RNA transcripts larger than 200 nucleotides and have been shown to serve important regulatory roles in different types of cancer via interactions with DNA, RNA and proteins. Head and neck squamous cell carcinoma (HNSCC) is one of the most malignant tumors with low survival rates in advanced stages. Recently, lncRNAs have been demonstrated to be involved in a wide range of biological processes, including proliferation, metastasis, and prognosis of HNSCC. Therefore, this review describes molecular mechanisms of up- or down-regulation of lncRNAs and expounds their functions in pathology and clinical practices in HNSCC. It also highlights their potential clinical applications as biomarkers for the diagnosis, prognosis, and treatment of HNSCC. However, studies on lncRNAs are still not comprehensive, and more investigations are needed in the future.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Zi-Fei Wang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Qiu-Yue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Abigail N Rankine
- Clinical Medicine in Chinese (MBBS), Anhui Medical University, Hefei, 230032, China.
| | - Wan-Xin Zheng
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Zi-Hao Zhang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Periodontal Department, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
24
|
Rodriguez PD, Paculova H, Kogut S, Heath J, Schjerven H, Frietze S. Non-Coding RNA Signatures of B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22052683. [PMID: 33799946 PMCID: PMC7961854 DOI: 10.3390/ijms22052683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.
Collapse
Affiliation(s)
- Princess D. Rodriguez
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Jessica Heath
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
25
|
Gao Y, Shang S, Guo S, Li X, Zhou H, Liu H, Sun Y, Wang J, Wang P, Zhi H, Li X, Ning S, Zhang Y. Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data. Nucleic Acids Res 2021; 49:D1251-D1258. [PMID: 33219685 PMCID: PMC7779028 DOI: 10.1093/nar/gkaa1006] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
An updated Lnc2Cancer 3.0 (http://www.bio-bigdata.net/lnc2cancer or http://bio-bigdata.hrbmu.edu.cn/lnc2cancer) database, which includes comprehensive data on experimentally supported long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) associated with human cancers. In addition, web tools for analyzing lncRNA expression by high-throughput RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) are described. Lnc2Cancer 3.0 was updated with several new features, including (i) Increased cancer-associated lncRNA entries over the previous version. The current release includes 9254 lncRNA-cancer associations, with 2659 lncRNAs and 216 cancer subtypes. (ii) Newly adding 1049 experimentally supported circRNA-cancer associations, with 743 circRNAs and 70 cancer subtypes. (iii) Experimentally supported regulatory mechanisms of cancer-related lncRNAs and circRNAs, involving microRNAs, transcription factors (TF), genetic variants, methylation and enhancers were included. (iv) Appending experimentally supported biological functions of cancer-related lncRNAs and circRNAs including cell growth, apoptosis, autophagy, epithelial mesenchymal transformation (EMT), immunity and coding ability. (v) Experimentally supported clinical relevance of cancer-related lncRNAs and circRNAs in metastasis, recurrence, circulation, drug resistance, and prognosis was included. Additionally, two flexible online tools, including RNA-seq and scRNA-seq web tools, were developed to enable fast and customizable analysis and visualization of lncRNAs in cancers. Lnc2Cancer 3.0 is a valuable resource for elucidating the associations between lncRNA, circRNA and cancer.
Collapse
Affiliation(s)
- Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongjia Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
26
|
Bubenik JL, Hale M, McConnell O, Wang E, Swanson MS, Spitale R, Berglund JA. RNA structure probing to characterize RNA-protein interactions on a low abundance pre-mRNA in living cells. RNA (NEW YORK, N.Y.) 2020; 27:rna.077263.120. [PMID: 33310817 PMCID: PMC7901844 DOI: 10.1261/rna.077263.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
In vivo RNA structure analysis has become a powerful tool in molecular biology, largely due to the coupling of an increasingly diverse set of chemical approaches with high-throughput sequencing. This has resulted in a transition from single target to transcriptome-wide approaches. However, these methods require sequencing depths that preclude studying low abundance targets, which are not sufficiently captured in transcriptome-wide approaches. Here we present a ligation-free method to enrich for low abundance RNA sequences, which improves the diversity of molecules analyzed and results in improved analysis. In addition, this method is compatible with any choice of chemical adduct or read-out approach. We utilized this approach to study an autoregulated event in the pre-mRNA of the splicing factor, muscleblind-like splicing regulator 1 (MBNL1).
Collapse
|
27
|
Discoveries for Long Non-Coding RNA Dynamics in Traumatic Brain Injury. BIOLOGY 2020; 9:biology9120458. [PMID: 33321920 PMCID: PMC7763048 DOI: 10.3390/biology9120458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/15/2023]
Abstract
Simple Summary The biomedical studies of traumatic brain injury (TBI) can lead to insight for treatment clinically. However, TBIs are occurred by various risk factors and showing heterogeneity that make difficult to accurate diagnosis for initiation treatment of patients. Therefore, identification of biomarkers requires to prediction and therapeutics for TBI treatment. The canonical function of the long non-coding RNAs (lncRNAs) have been recently shown to promote transcription, post-transcription, and protein activity in many different conditions. Therefore, understanding the molecular mechanisms that are altered by the expression of lncRNAs will allow the design of novel therapeutic strategies. Here, we review the molecular process of lncRNA as new targets and approaches in TBIs treatment. Abstract In recent years, our understanding of long non-coding RNAs (lncRNAs) has been challenged with advances in genome sequencing and the widespread use of high-throughput analysis for identifying novel lncRNAs. Since then, the characterization of lncRNAs has contributed to the establishment of their molecular roles and functions in transcriptional regulation. Although genetic studies have so far explored the sequence-based primary function of lncRNAs that guides the expression of target genes, recent insights have shed light on the potential of lncRNAs for widening the identification of biomarkers from non-degenerative to neurodegenerative diseases. Therefore, further advances in the genetic characteristics of lncRNAs are expected to lead to diagnostic accuracy during disease progression. In this review, we summarized the latest studies of lncRNAs in TBI as a non-degenerative disease and discussed their potential limitations for clinical treatment.
Collapse
|