1
|
Liang H, Wang L, Gong F, Chang J. Functions of plant hormones and calcium signaling in regulating root hydrotropism. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154490. [PMID: 40185051 DOI: 10.1016/j.jplph.2025.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Hydrotropism enables plant roots to grow toward areas with high water availability. This capacity is essential for plant growth and development, particularly when water availability is a limiting factor. The physiological characterization of hydrotropism began approximately 270 years ago, and substantial progress has been made in elucidating its molecular mechanisms over the past two decades. Auxin, cytokinin, abscisic acid, brassinosteroid, and calcium have been reported by various laboratories to regulate root hydrotropism. However, the interrelation among these regulatory components in controlling root hydrotropism remains unknown. This review summarized the regulatory mechanisms of hydrotropism from the perspective of plant hormones and calcium, aiming to elucidate the internal cross-talks between their signaling pathways. Additionally, we addressed central scientific questions, provided insights into future research directions, and highlighted strategies for advancing the application of root hydrotropism in agricultural breeding.
Collapse
Affiliation(s)
- Huimin Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ling Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fuqiang Gong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinke Chang
- School of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Zhang Y, Wu X, Wang X, Dai M, Peng Y. Crop root system architecture in drought response. J Genet Genomics 2025; 52:4-13. [PMID: 38723744 DOI: 10.1016/j.jgg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 07/27/2024]
Abstract
Drought is a natural disaster that profoundly impacts on global agricultural production, significantly reduces crop yields, and thereby poses a severe threat to worldwide food security. Addressing the challenge of effectively improving crop drought resistance (DR) to mitigate yield loss under drought conditions is a global issue. An optimal root system architecture (RSA) plays a pivotal role in enhancing the capacity of crops to efficiently uptake water and nutrients, which consequently strengthens their resilience against environmental stresses. In this review, we discuss the compositions and roles of crop RSA and summarize the most recent developments in augmenting drought tolerance in crops by manipulating RSA-related genes. Based on the current research, we propose the potential optimal RSA configuration that could be helpful in enhancing crop DR. Lastly, we discuss the existing challenges and future directions for breeding crops with enhanced DR capabilities through genetic improvements targeting RSA.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Xi Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xingrong Wang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China; Key Laboratory of Crop Gene Resources and Germplasm Innovation in Northwest Cold and Arid Regions, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
3
|
Ju C, Javed L, Fang Y, Zhao Y, Cao C, Deng Y, Gao Y, Sun L, Wang C. Arabidopsis calcium-dependent protein kinases 4/5/6/11 negatively regulate hydrotropism via phosphorylation of MIZU-KUSSEI1. THE PLANT CELL 2024; 37:koae279. [PMID: 39405435 DOI: 10.1093/plcell/koae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Hydrotropism facilitates the orientation of plant roots toward regions of elevated water potential, enabling them to absorb adequate water. Although calcium signaling plays a crucial role in plant response to water tracking, the exact regulatory mechanisms remain a mystery. Here, we employed the Arabidopsis (Arabidopsis thaliana) hydrotropism-specific protein MIZU-KUSSEI1 (MIZ1) as bait and found that calcium-dependent protein kinases 4/5/6/11 (CPK4/5/6/11) interacted with MIZ1 in vitro and in vivo. The cpk4/5/6/11 mutant exhibited increased sensitivity to water potential and enhanced root tip curvature. Furthermore, CPK4/5/6/11 primarily phosphorylated MIZ1 at Ser14/36 residues. Additionally, CPK-mediated phosphorylation of MIZ1 relieved its inhibitory effect on the activity of the endoplasmic reticulum-localized Ca2+ pump ECA1, altering the balance between cytoplasmic Ca2+ inflow and outflow, thereby negatively regulating the hydrotropic growth of plants. Overall, our findings unveil the molecular mechanisms by which the CPK4/5/6/11-MIZ1 module functions in regulating plant hydrotropism responses and provide a theoretical foundation for enhancing plant water use efficiency and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Laiba Javed
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Yanjun Fang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Yuqing Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Chenyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Yuan Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Yaqi Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Lv Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Zhang Y, Liu Z, Huang H, Li L, Xu S, Shen W. Molecular hydrogen positively influences root gravitropism involving auxin signaling and starch accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2874-2888. [PMID: 39559980 DOI: 10.1111/tpj.17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/23/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Although geoscience of natural hydrogen (H2), hydrogen-producing soil bacteria, and especially plant-based H2, has been observed, it is not clear whether or how above H2 resources influence root gravitropic responses. Here, pharmacological, genetic, molecular, and cell biological tools were applied to investigate how plant-based H2 coordinates gravity responses in Arabidopsis roots. Since roots show higher H2 production than shoots, exogenous H2 supply was used to mimic this function. After H2 supplementation, the asymmetric expression of the auxin-response reporter DR5 driven by auxin influx and efflux carriers, and thereafter positive root gravitropism were observed. These positive responses in root gravitropism were sensitive to auxin polar transport inhibitors, and importantly, the defective phenotypes observed in aux1-7, pin1, and pin2 mutants were not significantly altered by exogenous H2. The observed starch accumulation was matched with the reprogramming gene expression linked to starch synthesis and degradation. Transgenic plants expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only displayed higher endogenous H2 concentrations, the inducible AUX1 gene expression and starch accumulation, but also showed pronounced root gravitropism. Collectively, above evidence preliminarily provides a framework for understanding the molecular basis of the possible functions of both plant/soil-based and nature H2 in root architecture.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huize Huang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Muller A, Morales-Montero P, Boss A, Hiltmann A, Castaneda-Alvarez C, Bhat AH, Arce CCM, Glauser G, Joyce SA, Clarke DJ, Machado RAR. Bacterial bioluminescence is an important regulator of multitrophic interactions in the soil. Cell Rep 2024; 43:114817. [PMID: 39365701 DOI: 10.1016/j.celrep.2024.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Enormous efforts have been made to understand the functions of bioluminescence; however, its relevance in soil ecosystems has barely been investigated. In addition, our understanding of the biological relevance of bioluminescence is hampered by the scarcity of tools to genetically manipulate this trait. Using the symbionts of entomopathogenic nematodes, Photorhabdus bacteria, we show that bioluminescence plays important regulatory roles in multitrophic interactions in the soil. Through genetic modifications and exploiting natural variability, we provide direct evidence for the multifunctional nature of bioluminescence. It regulates abiotic and biotic stress resistance, impacts other trophic levels, including nematodes, insects, and plants, and contributes to symbiosis. Our study contributes to understanding the factors that have driven the evolution and maintenance of this trait in belowground ecosystems.
Collapse
Affiliation(s)
- Arthur Muller
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Patricia Morales-Montero
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Anja Boss
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Alexandre Hiltmann
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carlos Castaneda-Alvarez
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Aashaq H Bhat
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; School of Biochemistry and Cell Biology, University College Cork, T12 YN60 Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Ricardo A R Machado
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
6
|
Zheng L, Zhang M, Zhao W. Enhanced mycelium biomass and polysaccharide production in genetically modified Pleurotus ostreatus using agricultural wastes. Int J Biol Macromol 2024; 278:134318. [PMID: 39111500 DOI: 10.1016/j.ijbiomac.2024.134318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/18/2024]
Abstract
Edible fungi, healthier for humans and sustainable for the planet, attract unprecedented attention. In the study, the genetically modified Pleurotus ostreatus overexpression phosphoglucomutase (PGM) was constructed. P. ostreatus overexpression PGM (Po::PGM) had 4.96-folds higher expression level of PGM. Po::PGM grew thicker mycelium and more mycelium branches. Additional Ca2+ can inhibit mycelium growth, and cyclic adenosine monophosphate completely inhibited their growth of Po::PGM. Secondly, Overexpression of PGM made P. ostreatus become more sensitive to cell wall disruptors, and caused 12.75 % reduction of β-1, 3-glucan and 40.53 % increase of chitin in cell wall. In submerged fermentation, the mycelia biomass yield and endopolysaccharide (IPS) production of Po::PGM in basic PDB can reach 11.18 g/l and 2.55 g/l, increasing by 20.86 % and 28.79 %, respectively. Whereas exopolysaccharide (EPS) reduced by 3.28 %. After replacing potato and glucose in PDB by wheat bran, mycelia biomass and EPS production of Po::PGM were all improved. The additional lactose in wheat bran did not only furtherly enhance mycelia biomass yield of Po::PGM to 27.78 g/l by 199.03 %, but IPS production also increased by 277.99 % to 6.07 g/l. The results provided us key ideas and important research directions that at least manipulating the PGM gene could obtain high-efficient use of agricultural wastes producing more fungus-based foods.
Collapse
Affiliation(s)
- Libing Zheng
- School of Food and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Mengqing Zhang
- School of Food and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Wei Zhao
- School of Food and Technology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
7
|
Li Y, Jiang S, Hong Y, Yao Z, Chen Y, Zhu M, Ding J, Li C, Zhu X, Xu W, Guo W, Zhu N, Zhang J. Transcriptomic and Hormonal Changes in Wheat Roots Enhance Growth under Moderate Soil Drying. Int J Mol Sci 2024; 25:9157. [PMID: 39273103 PMCID: PMC11395032 DOI: 10.3390/ijms25179157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Understanding the mechanisms that regulate plant root growth under soil drying is an important challenge in root biology. We observed that moderate soil drying promotes wheat root growth. To understand whether metabolic and hormonic changes are involved in this regulation, we performed transcriptome sequencing on wheat roots under well-watered and moderate soil drying conditions. The genes upregulated in wheat roots under soil drying were mainly involved in starch and sucrose metabolism and benzoxazinoid biosynthesis. Various plant hormone-related genes were differentially expressed during soil drying. Quantification of the plant hormones under these conditions showed that the concentrations of abscisic acid (ABA), cis-zeatin (CZ), and indole-3-acetic acid (IAA) significantly increased during soil drying, whereas the concentrations of salicylic (SA), jasmonic (JA), and glycosylated salicylic (SAG) acids significantly decreased. Correlation analysis of total root length and phytohormones indicated that CZ, ABA, and IAA are positively associated with wheat root length. These results suggest that changes in metabolic pathways and plant hormones caused by moderate soil drying help wheat roots grow into deeper soil layers.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Hong
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zixuan Yao
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Nanyan Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
8
|
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl 2 Alleviation of H 2O 2 Inhibition of Pea Primary Root Gravitropism. Int J Mol Sci 2024; 25:8613. [PMID: 39201298 PMCID: PMC11354692 DOI: 10.3390/ijms25168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.
Collapse
Affiliation(s)
- Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Site Management Center, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Zhen Cheng
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Sheng Li
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Chai
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Hong Y, Liu S, Chen Y, Yao Z, Jiang S, Wang L, Zhu X, Xu W, Zhang J, Li Y. Amyloplast is involved in the MIZ1-modulated root hydrotropism. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154224. [PMID: 38507925 DOI: 10.1016/j.jplph.2024.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Roots exhibit hydrotropism in response to moisture gradients, with the hydrotropism-related gene Mizu-kussei1 (MIZ1) playing a role in regulating root hydrotropism in an oblique orientation. However, the mechanisms underlying MIZ1-regulated root hydrotropism are not well understood. In this study, we employed obliquely oriented experimental systems to investigate root hydrotropism in Arabidopsis. We found that the miz1 mutant displays reduced root hydrotropism but increased root gravitropism following hydrostimulation, as compared to wild-type plants. Conversely, overexpression of AtMIZ1 leads to enhanced root hydrotropism but decreased root gravitropism following hydrostimulation, as compared to wild-type plants. Using co-immunoprecipitation followed by mass spectrometry (IP-MS), we explored proteins that interact with AtMIZ1, and we identified PGMC1 co-immunoprecipitated with MIZ1 in vivo. Furthermore, the miz1 mutant exhibited higher expression of the PGMC1 gene and increased phosphoglucomutase (PGM) activity, while AtMIZ1 overexpressors resulted in lower expression of the PGMC1 gene, reduced amyloplast amount, and reduced PGM activity in comparison to wild-type roots. In addition, different Arabidopsis natural accessions having difference in their hydrotropic response demonstrated expression level of PGMC1 was negatively correlated with hydrotropic root curvature and AtMIZ1 expression. Our results provide valuable insights into the role of amyloplast in MIZ1-regulated root hydrotropism.
Collapse
Affiliation(s)
- Yonghui Hong
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Siqi Liu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Yao
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Kalra A, Goel S, Elias AA. Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. THE PLANT GENOME 2024; 17:e20395. [PMID: 37853948 DOI: 10.1002/tpg2.20395] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023]
Abstract
Drought stress leads to a significant amount of agricultural crop loss. Thus, with changing climatic conditions, it is important to develop resilience measures in agricultural systems against drought stress. Roots play a crucial role in regulating plant development under drought stress. In this review, we have summarized the studies on the role of roots and root-mediated plant responses. We have also discussed the importance of root system architecture (RSA) and the various structural and anatomical changes that it undergoes to increase survival and productivity under drought. Various genes, transcription factors, and quantitative trait loci involved in regulating root growth and development are also discussed. A summarization of various instruments and software that can be used for high-throughput phenotyping in the field is also provided in this review. More comprehensive studies are required to help build a detailed understanding of RSA and associated traits for breeding drought-resilient cultivars.
Collapse
Affiliation(s)
- Anmol Kalra
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, North Campus, Delhi, India
| | - Ani A Elias
- ICFRE - Institute of Forest Genetics and Tree Breeding (ICFRE - IFGTB), Coimbatore, India
| |
Collapse
|
11
|
Li Y, Chen Y, Jiang S, Dai H, Xu W, Zhang Q, Zhang J, Dodd IC, Yuan W. ABA is required for differential cell wall acidification associated with root hydrotropic bending in tomato. PLANT, CELL & ENVIRONMENT 2024; 47:38-48. [PMID: 37705239 DOI: 10.1111/pce.14720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/15/2023]
Abstract
Hydrotropism is an important adaptation of plant roots to the uneven distribution of water, with current research mainly focused on Arabidopsis thaliana. To examine hydrotropism in tomato (Solanum lycopersicum) primary roots, we used RNA sequencing to determine gene expression of root tips (apical 5 mm) on dry and wet sides of hydrostimulated roots grown on agar plates. Hydrostimulation enhances cell division and expansion on the dry side compared with the wet side of the root tip. In hydrostimulated roots, the abscisic acid (ABA) biosynthesis gene ABA4 was induced more on the dry than the wet side of root tips. The ABA biosynthesis inhibitor Fluridone and the ABA-deficient mutant notabilis (not) significantly decreased hydrotropic curvature. Wild-type, but not the ABA biosynthesis mutant not, root tips showed asymmetric H+ efflux, with greater efflux on the dry than on the wet side of root tips. Thus, ABA mediates asymmetric H+ efflux, allowing the root to bend towards the wet side to take up more water.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Hui Dai
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan Fuzhou, China
| |
Collapse
|
12
|
Li Y, Wang L, Chen Y, Zhang J, Xu W. Recovery of root hydrotropism in miz1 mutant by eliminating root gravitropism. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154144. [PMID: 38104389 DOI: 10.1016/j.jplph.2023.154144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Mizu-kussei1 (MIZ1) plays a crucial role in root hydrotropism, but it is still unclear whether auxin-mediated gravitropism is involved in MIZ1-modulated root hydrotropism. This study aimed to investigate whether the hydrotropism of the Arabidopsis miz1 mutants could be restored through pharmacological inhibition of auxin transport or genetic modification in root gravitropism. Our findings indicate that the hydrotropic defects of miz1 mutant can be partly recovered by using an auxin transport inhibitor. Furthermore, miz1/pin2 double mutants exhibit more pronounced defects in root gravitropism compared to the wild type, while still displaying a normal hydrotropic response similar to the wild type. These results suggest that the elimination of gravitropism enables miz1 roots to become hydrotropically responsive to moisture gradients.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Liu Z, Chen Y, Liu S, Jiang S, Wang L, Hong Y, Yao Z, Hu X, Li Y. MIZ1 acts downstream of PGM1 in regulating root hydrotropism. Biochem Biophys Res Commun 2023; 679:175-178. [PMID: 37703760 DOI: 10.1016/j.bbrc.2023.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The MIZ1 play an important role in root hydrotropism. However, the relationship between MIZ1-regulated hydrotropism and amyloplast-mediated gravitropism remain largely unclear. Here, we generated the miz1/pgm1 double mutants by crossing the non-hydrotropic miz1 mutant with the amyloplast-defective pgm1 mutant, which lacks gravitropic response. Our results showed that the miz1/pgm1 mutants exhibited a significant reduction in amyloplast and gravitropic bending, while maintaining a similar ahydrotropic phenotype as the miz1 single mutant. These findings suggest that MIZ1 plays a role in hydrotropism downstream of PGM1. Understanding the mechanisms of interaction between hydrotropism and gravitropism is crucial for comprehending the rooting patterns of plants in natural conditions. The counteracting relationship between root hydrotropism and gravitropism in the miz1 mutant should receive attention in this field, particularly considering the interference from gravitropism on Earth.
Collapse
Affiliation(s)
- Zhuqian Liu
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Liu
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yonghui Hong
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Yao
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaodie Hu
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
15
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
16
|
Retzer K, Weckwerth W. Recent insights into metabolic and signalling events of directional root growth regulation and its implications for sustainable crop production systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1154088. [PMID: 37008498 PMCID: PMC10060999 DOI: 10.3389/fpls.2023.1154088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Roots are sensors evolved to simultaneously respond to manifold signals, which allow the plant to survive. Root growth responses, including the modulation of directional root growth, were shown to be differently regulated when the root is exposed to a combination of exogenous stimuli compared to an individual stress trigger. Several studies pointed especially to the impact of the negative phototropic response of roots, which interferes with the adaptation of directional root growth upon additional gravitropic, halotropic or mechanical triggers. This review will provide a general overview of known cellular, molecular and signalling mechanisms involved in directional root growth regulation upon exogenous stimuli. Furthermore, we summarise recent experimental approaches to dissect which root growth responses are regulated upon which individual trigger. Finally, we provide a general overview of how to implement the knowledge gained to improve plant breeding.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Molecular Systems Biology (MoSys), University of Vienna, Wien, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Wien, Austria
| |
Collapse
|
17
|
Guo L, Klaus A, Baer M, Kirschner GK, Salvi S, Hochholdinger F. ENHANCED GRAVITROPISM 2 coordinates molecular adaptations to gravistimulation in the elongation zone of barley roots. THE NEW PHYTOLOGIST 2023; 237:2196-2209. [PMID: 36604847 DOI: 10.1111/nph.18717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Root gravitropism includes gravity perception in the root cap, signal transduction between root cap and elongation zone, and curvature response in the elongation zone. The barley (Hordeum vulgare) mutant enhanced gravitropism 2 (egt2) displays a hypergravitropic root phenotype. We compared the transcriptomic reprogramming of the root cap, the meristem, and the elongation zone of wild-type (WT) and egt2 seminal roots upon gravistimulation in a time-course experiment and identified direct interaction partners of EGT2 by yeast-two-hybrid screening and bimolecular fluorescence complementation validation. We demonstrated that the elongation zone is subjected to most transcriptomic changes after gravistimulation. Here, 33% of graviregulated genes are also transcriptionally controlled by EGT2, suggesting a central role of this gene in controlling the molecular networks associated with gravitropic bending. Gene co-expression analyses suggested a role of EGT2 in cell wall and reactive oxygen species-related processes, in which direct interaction partners of EGT2 regulated by EGT2 and gravity might be involved. Taken together, this study demonstrated the central role of EGT2 and its interaction partners in the networks controlling root zone-specific transcriptomic reprogramming of barley roots upon gravistimulation. These findings can contribute to the development of novel root idiotypes leading to improved crop performance.
Collapse
Affiliation(s)
- Li Guo
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Alina Klaus
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Marcel Baer
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Gwendolyn K Kirschner
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| |
Collapse
|
18
|
Cui Y, Bian J, Lv Y, Li J, Deng XW, Liu X. Analysis of the Transcriptional Dynamics of Regulatory Genes During Peanut Pod Development Caused by Darkness and Mechanical Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:904162. [PMID: 35693161 PMCID: PMC9178256 DOI: 10.3389/fpls.2022.904162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Peanut is an oil crop with important economic value that is widely cultivated around the world. It blooms on the ground but bears fruit underground. When the peg penetrates the ground, it enters a dark environment, is subjected to mechanical stress from the soil, and develops into a normal pod. When a newly developed pod emerges from the soil, it turns green and stops growing. It has been reported that both darkness and mechanical stress are necessary for normal pod development. In this study, we investigated changes in gene expression during the reverse process of peg penetration: developmental arrest caused by pod (Pattee 3 pods) excavation. Bagging the aerial pods was used to simulate loss of mechanical pressure, while direct exposure of the aerial pods was used to simulate loss of both mechanical pressure and darkness. After the loss of mechanical stress and darkness, the DEGs were significantly enriched in photosynthesis, photosynthesis-antenna proteins, plant-pathogen interaction, DNA replication, and circadian rhythm pathways. The DNA replication pathway was enriched by down-regulated genes, and the other four pathways were enriched by upregulated genes. Upregulated genes were also significantly enriched in protein ubiquitination and calmodulin-related genes, highlighting the important role of ubiquitination and calcium signaling in pod development. Further analysis of DEGs showed that phytochrome A (Phy A), auxin response factor 9 (IAA9), and mechanosensitive ion channel protein played important roles in geocarpy. The expression of these two genes increased in subterranean pods but decreased in aerial pods. Based on a large number of chloroplast-related genes, calmodulin, kinases, and ubiquitin-related proteins identified in this study, we propose two possible signal transduction pathways involved in peanut geocarpy, namely, one begins in chloroplasts and signals down through phosphorylation, and the other begins during abiotic stress and signals down through calcium signaling, phosphorylation, and ubiquitination. Our study provides valuable information about putative regulatory genes for peanut pod development and contributes to a better understanding of the biological phenomenon of geocarpy.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Science, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Science, Weifang, China
| | - Yuying Lv
- Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Science, Weifang, China
| | - Jihua Li
- Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Science, Weifang, China
| | - Xing Wang Deng
- Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Science, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaoqin Liu
- Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Science, Weifang, China
| |
Collapse
|
19
|
Wang Q, Du W, Yu W, Zhang W, Huang F, Cheng H, Yu D. Genome-wide association analysis discovered new loci and candidate genes associated with low-phosphorus tolerance based on shoot mineral elements concentrations in soybean. Mol Genet Genomics 2022; 297:843-858. [PMID: 35441900 DOI: 10.1007/s00438-022-01895-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Phosphorus (P) deficiency is one of the major limitations for soybean production. Moreover, it has been well reported P and other mineral elements function interdependently or antagonistically to control nutrients homeostasis in plants. Thus, it is urgently needed to understand the genetic mechanism of the accumulation of mineral elements in response to low-P stress. In this study, to identify single nucleotide polymorphisms (SNPs) and candidate genes controlling the accumulation of mineral elements suffering low-P stress in seedling stage of soybean plants, we measured concentrations of mineral elements, including P, Zn, Fe, Mn, Mg and Ca, in shoots of 211 soybean accessions under normal phosphorus (+P) and low phosphorus (-P) conditions in two hydroponic experiments. And genome-wide association study (GWAS) using high density NJAU 355K SoySNP array and concentrations of five of these mineral elements except P was performed. A total of 36 SNPs distributed on 13 chromosomes were identified to be significantly associated with low-P tolerance, and nine SNPs on chromosome 10 formed a SNP cluster. Meanwhile, the candidate gene GmFeB1 was found to serve as a negative regulator element involved in soybean P metabolism and the haplotype1 (Hap1) of GmFeB1 showed significantly higher shoot Fe concentration under -P condition than that of Hap2. In summary, we uncover 36 SNPs significantly associated with shoot mineral elements concentrations under different P conditions and a soybean low-P related gene GmFeB1, which will provide additional genetic information for soybean low-P tolerance and new gene resources for P-efficient soybean varieties breeding.
Collapse
Affiliation(s)
- Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenqing Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihao Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Cabrera J, Conesa CM, Del Pozo JC. May the dark be with roots: a perspective on how root illumination may bias in vitro research on plant-environment interactions. THE NEW PHYTOLOGIST 2022; 233:1988-1997. [PMID: 34942016 DOI: 10.1111/nph.17936] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Roots anchor plants to the soil, providing them with nutrients and water while creating a defence network and facilitating beneficial interactions with a multitude of living organisms and climatological conditions. To facilitate morphological and molecular studies, root research has been conducted using in vitro systems. However, under natural conditions, roots grow in the dark, mainly in the absence of illumination, except for the relatively low illumination of the upper soil surface, and this has been largely ignored. Here, we discuss the results found over the last decade on how experimental exposure of roots to light may bias root development and responses through the alteration of hormonal signalling, cytoskeleton organization, reactive oxygen species or the accumulation of flavonoids, among other factors. Illumination alters the uptake of nutrients or water, and also affects the response of the roots to abiotic stresses and root interactions with the microbiota. Furthermore, we review in vitro systems created to maintain roots in darkness, and provide a comparative analysis of root transcriptomes obtained with these devices. Finally, we identify other experimental variables that should be considered to better mimic soil conditions, whose improvement would benefit studies using in vitro cultivation or enclosed ecosystems.
Collapse
Affiliation(s)
- Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
21
|
Li C, Li L, Reynolds MP, Wang J, Chang X, Mao X, Jing R. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5117-5133. [PMID: 33783492 DOI: 10.1093/jxb/erab124] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/09/2023]
Abstract
Improving drought tolerance in wheat is crucial for maintaining productivity and food security. Roots are responsible for the uptake of water from soil, and a number of root traits are associated with drought tolerance. Studies have revealed many quantitative trait loci and genes controlling root development in plants. However, the genetic dissection of root traits in response to drought in wheat is still unclear. Here, we review crop root traits associated with drought, key genes governing root development in plants, and quantitative trait loci and genes regulating root system architecture under water-limited conditions in wheat. Deep roots, optimal root length density and xylem diameter, and increased root surface area are traits contributing to drought tolerance. In view of the diverse environments in which wheat is grown, the balance among root and shoot traits, as well as individual and population performance, are discussed. The known functions of key genes provide information for the genetic dissection of root development of wheat in a wide range of conditions, and will be beneficial for molecular marker development, marker-assisted selection, and genetic improvement in breeding for drought tolerance.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|