1
|
Alfeghaly C, Castel G, Cazottes E, Moscatelli M, Moinard E, Casanova M, Boni J, Mahadik K, Lammers J, Freour T, Chauviere L, Piqueras C, Boers R, Boers J, Gribnau J, David L, Ouimette JF, Rougeulle C. XIST dampens X chromosome activity in a SPEN-dependent manner during early human development. Nat Struct Mol Biol 2024; 31:1589-1600. [PMID: 38834912 PMCID: PMC11479943 DOI: 10.1038/s41594-024-01325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
XIST (X-inactive specific transcript) long noncoding RNA (lncRNA) is responsible for X chromosome inactivation (XCI) in placental mammals, yet it accumulates on both X chromosomes in human female preimplantation embryos without triggering X chromosome silencing. The XACT (X-active coating transcript) lncRNA coaccumulates with XIST on active X chromosomes and may antagonize XIST function. Here, we used human embryonic stem cells in a naive state of pluripotency to assess the function of XIST and XACT in shaping the X chromosome chromatin and transcriptional landscapes during preimplantation development. We show that XIST triggers the deposition of polycomb-mediated repressive histone modifications and dampens the transcription of most X-linked genes in a SPEN-dependent manner, while XACT deficiency does not significantly affect XIST activity or X-linked gene expression. Our study demonstrates that XIST is functional before XCI, confirms the existence of a transient process of X chromosome dosage compensation and reveals that XCI and dampening rely on the same set of factors.
Collapse
Affiliation(s)
- Charbel Alfeghaly
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Gaël Castel
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Emmanuel Cazottes
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | | | - Eva Moinard
- Center for Research in Transplantation and Translational Immunology (CR2TI), CHU Nantes, Inserm, Nantes Université, Nantes, France
| | - Miguel Casanova
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Juliette Boni
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Kasturi Mahadik
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Jenna Lammers
- Service de Biologie de la Reproduction, CHU Nantes, Nantes Université, Nantes, France
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes Université, Nantes, France
| | - Louis Chauviere
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Carla Piqueras
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Laurent David
- Center for Research in Transplantation and Translational Immunology (CR2TI), CHU Nantes, Inserm, Nantes Université, Nantes, France
- BioCore, CNRS, CHU Nantes, Inserm, Nantes Université, Nantes, France
| | | | - Claire Rougeulle
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Wang C, Tanizawa H, Hill C, Havas A, Zhang Q, Liao L, Hao X, Lei X, Wang L, Nie H, Qi Y, Tian B, Gardini A, Kossenkov AV, Goldman A, Berger SL, Noma KI, Adams PD, Zhang R. METTL3-mediated chromatin contacts promote stress granule phase separation through metabolic reprogramming during senescence. Nat Commun 2024; 15:5410. [PMID: 38926365 PMCID: PMC11208586 DOI: 10.1038/s41467-024-49745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
METTL3 is the catalytic subunit of the methyltransferase complex, which mediates m6A modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown. Here we show that the methyltransferase complex coordinates its enzymatic activity-dependent and independent functions to regulate cellular senescence, a state of stable cell growth arrest. Specifically, METTL3-mediated chromatin loops induce Hexokinase 2 expression through the three-dimensional chromatin organization during senescence. Elevated Hexokinase 2 expression subsequently promotes liquid-liquid phase separation, manifesting as stress granule phase separation, by driving metabolic reprogramming. This correlates with an impairment of translation of cell-cycle related mRNAs harboring polymethylated m6A sites. In summary, our results report a coordination of m6A-dependent and -independent function of the methyltransferase complex in regulating senescence through phase separation driven by metabolic reprogramming.
Collapse
Affiliation(s)
- Chen Wang
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Connor Hill
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Aaron Havas
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Qiang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Liping Liao
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xue Hao
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xue Lei
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Lu Wang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Nie
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Qi
- Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Bin Tian
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Alessandro Gardini
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew V Kossenkov
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Aaron Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Shelley L Berger
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ken-Ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Rugang Zhang
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Boddu PC, Gupta AK, Roy R, De La Peña Avalos B, Olazabal-Herrero A, Neuenkirchen N, Zimmer JT, Chandhok NS, King D, Nannya Y, Ogawa S, Lin H, Simon MD, Dray E, Kupfer GM, Verma A, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Mol Cell 2024; 84:1475-1495.e18. [PMID: 38521065 PMCID: PMC11061666 DOI: 10.1016/j.molcel.2024.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
Collapse
Affiliation(s)
- Prajwal C Boddu
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Abhishek K Gupta
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Rahul Roy
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Bárbara De La Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Anne Olazabal-Herrero
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA
| | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Namrata S Chandhok
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Darren King
- Section of Hematology and Medical Oncology, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Haifan Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center (UTHSC) at San Antonio, San Antonio, TX, USA
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Medicine and Department of Developmental and Molecular Biology, Albert Einstein-Montefiore Cancer Center, New York, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA
| | - Manoj M Pillai
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Suite 786, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Segev A, Heady L, Crewe M, Madabhushi R. Mapping catalytically engaged TOP2B in neurons reveals the principles of topoisomerase action within the genome. Cell Rep 2024; 43:113809. [PMID: 38377005 PMCID: PMC11064056 DOI: 10.1016/j.celrep.2024.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
We trapped catalytically engaged topoisomerase IIβ (TOP2B) in covalent DNA cleavage complexes (TOP2Bccs) and mapped their positions genome-wide in cultured mouse cortical neurons. We report that TOP2Bcc distribution varies with both nucleosome and compartmental chromosome organization. While TOP2Bccs in gene bodies correlate with their level of transcription, highly expressed genes that lack the usually associated chromatin marks, such as H3K36me3, show reduced TOP2Bccs, suggesting that histone posttranslational modifications regulate TOP2B activity. Promoters with high RNA polymerase II occupancy show elevated TOP2B chromatin immunoprecipitation sequencing signals but low TOP2Bccs, indicating that TOP2B catalytic engagement is curtailed at active promoters. Surprisingly, either poisoning or inhibiting TOP2B increases nascent transcription at most genes and enhancers but reduces transcription within long genes. These effects are independent of transcript length and instead correlate with the presence of intragenic enhancers. Together, these results clarify how cells modulate the catalytic engagement of topoisomerases to affect transcription.
Collapse
Affiliation(s)
- Amir Segev
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lance Heady
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Morgan Crewe
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Maas ZL, Dowell RD. Internal and external normalization of nascent RNA sequencing run-on experiments. BMC Bioinformatics 2024; 25:19. [PMID: 38216877 PMCID: PMC10785432 DOI: 10.1186/s12859-023-05607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
In experiments with significant perturbations to transcription, nascent RNA sequencing protocols are dependent on external spike-ins for reliable normalization. Unlike in RNA-seq, these spike-ins are not standardized and, in many cases, depend on a run-on reaction that is assumed to have constant efficiency across samples. To assess the validity of this assumption, we analyze a large number of published nascent RNA spike-ins to quantify their variability across existing normalization methods. Furthermore, we develop a new biologically-informed Bayesian model to estimate the error in spike-in based normalization estimates, which we term Virtual Spike-In (VSI). We apply this method both to published external spike-ins as well as using reads at the [Formula: see text] end of long genes, building on prior work from Mahat (Mol Cell 62(1):63-78, 2016. https://doi.org/10.1016/j.molcel.2016.02.025 ) and Vihervaara (Nat Commun 8(1):255, 2017. https://doi.org/10.1038/s41467-017-00151-0 ). We find that spike-ins in existing nascent RNA experiments are typically under sequenced, with high variability between samples. Furthermore, we show that these high variability estimates can have significant downstream effects on analysis, complicating biological interpretations of results.
Collapse
Affiliation(s)
- Zachary L Maas
- Department of Computer Science, University of Colorado, Boulder, USA
- BioFrontiers Institute, University of Colorado, Boulder, USA
| | - Robin D Dowell
- Department of Computer Science, University of Colorado, Boulder, USA.
- BioFrontiers Institute, University of Colorado, Boulder, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA.
| |
Collapse
|
6
|
Zhang T, Yu H, Jiang L, Bai Y, Liu X, Guo Y. Comprehensive Pan-Cancer Mutation Density Patterns in Enhancer RNA. Int J Mol Sci 2023; 25:534. [PMID: 38203707 PMCID: PMC10778997 DOI: 10.3390/ijms25010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Significant advances have been achieved in understanding the critical role of enhancer RNAs (eRNAs) in the complex field of gene regulation. However, notable uncertainty remains concerning the biology of eRNAs, highlighting the need for continued research to uncover their exact functions in cellular processes and diseases. We present a comprehensive study to scrutinize mutation density patterns, mutation strand bias, and mutation burden in eRNAs across multiple cancer types. Our findings reveal that eRNAs exhibit mutation strand bias akin to that observed in protein-coding RNAs. We also identified a novel pattern, in which mutation density is notably diminished around the central region of the eRNA, but conspicuously elevated towards both the beginning and end. This pattern can be potentially explained by a mechanism involving heightened transcriptional activity and the activation of transcription-coupled repair. The central regions of the eRNAs appear to be more conserved, hinting at a potential mechanism preserving their structural and functional integrity, while the extremities may be more susceptible to mutations due to increased exposure. The evolutionary trajectory of this mutational pattern suggests a nuanced adaptation in eRNAs, where stability at their core coexists with flexibility at their extremities, potentially facilitating their diverse interactions with other genetic entities.
Collapse
Affiliation(s)
- Troy Zhang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Hui Yu
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Limin Jiang
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| | - Yongsheng Bai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA;
| | - Xiaoyi Liu
- Department of Computer Science, University of South Carolina, Columbia, SC 29208, USA;
| | - Yan Guo
- Department of Public Health and Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (T.Z.); (L.J.)
| |
Collapse
|
7
|
Liu M, Zhu J, Huang H, Chen Y, Dong Z. Comparative analysis of nascent RNA sequencing methods and their applications in studies of cotranscriptional splicing dynamics. THE PLANT CELL 2023; 35:4304-4324. [PMID: 37708036 PMCID: PMC10689179 DOI: 10.1093/plcell/koad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
High-throughput detection of nascent RNA is critical for studies of transcription and much more challenging than that of mRNA. Recently, several massively parallel nascent RNA sequencing methods were established in eukaryotic cells. Here, we systematically compared 3 classes of methods on the same pure or crude nuclei preparations: GRO-seq for sequence nuclear run-on RNAs, pNET-seq for sequence RNA polymerase II-associated RNAs, and CB RNA-seq for sequence chromatin-bound (CB) RNAs in Arabidopsis (Arabidopsis thaliana). To improve the resolution of CB RNAs, 3'CB RNA-seq was established to sequence the 3' ends of CB RNAs. In addition, we modified pNET-seq to establish the Chromatin Native Elongation Transcript sequencing (ChrNET) method using chromatin as the starting material for RNA immunoprecipitation. Reproducibility, sensitivity and accuracy in detecting nascent transcripts, experimental procedures, and costs were analyzed, which revealed the strengths and weaknesses of each method. We found that pNET and GRO methods best detected active RNA polymerase II. CB RNA-seq is a simple and cost-effective alternative for nascent RNA studies, due to its high correlation with pNET-seq and GRO-seq. Compared with pNET, ChrNET has higher specificity for nascent RNA capture and lower sequencing cost. 3'CB is sensitive to transcription-coupled splicing. Using these methods, we identified 1,404 unknown transcripts, 4,482 unannotated splicing events, and 60 potential recursive splicing events. This comprehensive comparison of different nascent/chromatin RNA sequencing methods highlights the strengths of each method and serves as a guide for researchers aiming to select a method that best meets their study goals.
Collapse
Affiliation(s)
- Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huijuan Huang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Li Z, Duan S, Hua X, Xu X, Li Y, Menolfi D, Zhou H, Lu C, Zha S, Goff SP, Zhang Z. Asymmetric distribution of parental H3K9me3 in S phase silences L1 elements. Nature 2023; 623:643-651. [PMID: 37938774 PMCID: PMC11034792 DOI: 10.1038/s41586-023-06711-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Demis Menolfi
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Chao Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Departments of Pathology and Cell Biology, Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen P Goff
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Departments of Biochemistry and Molecular Biophysics, Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Wang Z, Ge P, Zhou XL, Shui KM, Geng H, Yang J, Chen JY, Wang J. nASAP: A Nascent RNA Profiling Data Analysis Platform. J Mol Biol 2023; 435:168142. [PMID: 37356907 DOI: 10.1016/j.jmb.2023.168142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 06/27/2023]
Abstract
Although nascent RNA profiling data are widely used in transcriptional regulation studies, the development and standardization of data processing pipeline lags far behind RNA-seq. We are filling this gap by establishing the nASAP web server (https://grobase.top/nasap/) to provide practical quality evaluation and comprehensive analysis of nascent RNA datasets. In nASAP, four customized analysis modules are provided, including i) quality assessment, which summarizes the sequencing statistics, mapping ratio, and evaluates RNA integrity and mRNA contamination; ii) quantification analysis for mRNAs, lncRNAs and eRNAs; iii) pausing analysis across the whole genome based on sequencing reads distribution; and iv) network analysis to better understand the gene regulatory mechanism by obtaining annotated enhancer-promoter interactomes. The nASAP is user-friendly and outperforms the existing pipeline for quality control of nascent RNA profiling data. We anticipate that nASAP, which eases both basic and advanced analysis of nascent RNA data, will be extremely useful in various fields.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Long Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kun-Ming Shui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huichao Geng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Yurchenko AA, Rajabi F, Braz-Petta T, Fassihi H, Lehmann A, Nishigori C, Wang J, Padioleau I, Gunbin K, Panunzi L, Morice-Picard F, Laplante P, Robert C, Kannouche PL, Menck CFM, Sarasin A, Nikolaev SI. Genomic mutation landscape of skin cancers from DNA repair-deficient xeroderma pigmentosum patients. Nat Commun 2023; 14:2561. [PMID: 37142601 PMCID: PMC10160032 DOI: 10.1038/s41467-023-38311-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
Xeroderma pigmentosum (XP) is a genetic disorder caused by mutations in genes of the Nucleotide Excision Repair (NER) pathway (groups A-G) or in Translesion Synthesis DNA polymerase η (V). XP is associated with an increased skin cancer risk, reaching, for some groups, several thousand-fold compared to the general population. Here, we analyze 38 skin cancer genomes from five XP groups. We find that the activity of NER determines heterogeneity of the mutation rates across skin cancer genomes and that transcription-coupled NER extends beyond the gene boundaries reducing the intergenic mutation rate. Mutational profile in XP-V tumors and experiments with POLH knockout cell line reveal the role of polymerase η in the error-free bypass of (i) rare TpG and TpA DNA lesions, (ii) 3' nucleotides in pyrimidine dimers, and (iii) TpT photodimers. Our study unravels the genetic basis of skin cancer risk in XP and provides insights into the mechanisms reducing UV-induced mutagenesis in the general population.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Fatemeh Rajabi
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Tirzah Braz-Petta
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, s/n, Natal, 59078-970, Brazil
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London, SE1 7EH, UK
| | - Alan Lehmann
- National Xeroderma Pigmentosum Service, Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London, SE1 7EH, UK
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jinxin Wang
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Ismael Padioleau
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Konstantin Gunbin
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Leonardo Panunzi
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | | | - Pierre Laplante
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Department of Medical Oncology, Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Patricia L Kannouche
- CNRS UMR9019 Genome Integrity and Cancers, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Carlos F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alain Sarasin
- CNRS UMR9019 Genome Integrity and Cancers, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sergey I Nikolaev
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.
| |
Collapse
|
11
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
13
|
Antisense Transcription in Plants: A Systematic Review and an Update on cis-NATs of Sugarcane. Int J Mol Sci 2022; 23:ijms231911603. [PMID: 36232906 PMCID: PMC9569758 DOI: 10.3390/ijms231911603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Initially, natural antisense transcripts (NATs, natRNAs, or asRNAs) were considered repressors; however, their functions in gene regulation are diverse. Positive, negative, or neutral correlations to the cognate gene expression have been noted. Although the first studies were published about 50 years ago, there is still much to be investigated regarding antisense transcripts in plants. A systematic review of scientific publications available in the Web of Science databases was conducted to contextualize how the studying of antisense transcripts has been addressed. Studies were classified considering three categories: “Natural antisense” (208), artificial antisense used in “Genetic Engineering” (797), or “Natural antisense and Genetic Engineering”-related publications (96). A similar string was used for a systematic search in the NCBI Gene database. Of the 1132 antisense sequences found for plants, only 0.8% were cited in PubMed and had antisense information confirmed. This value was the lowest when compared to fungi (2.9%), bacteria (2.3%), and mice (54.1%). Finally, we present an update for the cis-NATs identified in Saccharum spp. Of the 1413 antisense transcripts found in different experiments, 25 showed concordant expressions, 22 were discordant, 1264 did not correlate with the cognate genes, and 102 presented variable results depending on the experiment.
Collapse
|
14
|
A complex epigenome-splicing crosstalk governs epithelial-to-mesenchymal transition in metastasis and brain development. Nat Cell Biol 2022; 24:1265-1277. [PMID: 35941369 DOI: 10.1038/s41556-022-00971-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.
Collapse
|
15
|
Functional annotation of breast cancer risk loci: current progress and future directions. Br J Cancer 2022; 126:981-993. [PMID: 34741135 PMCID: PMC8980003 DOI: 10.1038/s41416-021-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Genome-wide association studies coupled with large-scale replication and fine-scale mapping studies have identified more than 150 genomic regions that are associated with breast cancer risk. Here, we review efforts to translate these findings into a greater understanding of disease mechanism. Our review comes in the context of a recently published fine-scale mapping analysis of these regions, which reported 352 independent signals and a total of 13,367 credible causal variants. The vast majority of credible causal variants map to noncoding DNA, implicating regulation of gene expression as the mechanism by which functional variants influence risk. Accordingly, we review methods for defining candidate-regulatory sequences, methods for identifying putative target genes and methods for linking candidate-regulatory sequences to putative target genes. We provide a summary of available data resources and identify gaps in these resources. We conclude that while much work has been done, there is still much to do. There are, however, grounds for optimism; combining statistical data from fine-scale mapping with functional data that are more representative of the normal "at risk" breast, generated using new technologies, should lead to a greater understanding of the mechanisms that influence an individual woman's risk of breast cancer.
Collapse
|
16
|
Luo H, Zhu G, Eshelman MA, Fung TK, Lai Q, Wang F, Zeisig BB, Lesperance J, Ma X, Chen S, Cesari N, Cogle C, Chen B, Xu B, Yang FC, So CWE, Qiu Y, Xu M, Huang S. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell 2022; 82:833-851.e11. [PMID: 35180428 PMCID: PMC8985430 DOI: 10.1016/j.molcel.2022.01.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of β-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced β-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.
Collapse
MESH Headings
- Animals
- CCCTC-Binding Factor/genetics
- CCCTC-Binding Factor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Transgenic
- R-Loop Structures
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Structure-Activity Relationship
- Transcription, Genetic
- Transcriptional Activation
- beta Catenin/genetics
- beta Catenin/metabolism
- Cohesins
Collapse
Affiliation(s)
- Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Melanie A Eshelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tsz Kan Fung
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fei Wang
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bernd B Zeisig
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Xiaoyan Ma
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Shi Chen
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Nicholas Cesari
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Baoan Chen
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 21009, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Feng-Chun Yang
- Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Mays Cancer Center, Joe R. & Teresa Lozano Long School of Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA
| | - Chi Wai Eric So
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK.
| | - Yi Qiu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA; Department of Cell System & Anatomy, the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3904, USA.
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
17
|
Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol 2022; 23:389-406. [DOI: 10.1038/s41580-021-00447-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
|
18
|
Vervoort SJ, Welsh SA, Devlin JR, Barbieri E, Knight DA, Offley S, Bjelosevic S, Costacurta M, Todorovski I, Kearney CJ, Sandow JJ, Fan Z, Blyth B, McLeod V, Vissers JHA, Pavic K, Martin BP, Gregory G, Demosthenous E, Zethoven M, Kong IY, Hawkins ED, Hogg SJ, Kelly MJ, Newbold A, Simpson KJ, Kauko O, Harvey KF, Ohlmeyer M, Westermarck J, Gray N, Gardini A, Johnstone RW. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell 2021; 184:3143-3162.e32. [PMID: 34004147 PMCID: PMC8567840 DOI: 10.1016/j.cell.2021.04.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022]
Abstract
Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia.
| | - Sarah A Welsh
- The Wistar Institute, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer R Devlin
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | | | - Deborah A Knight
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Sarah Offley
- The Wistar Institute, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Bjelosevic
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Matteo Costacurta
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Izabela Todorovski
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Conor J Kearney
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Zheng Fan
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Benjamin Blyth
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Victoria McLeod
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Joseph H A Vissers
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Ben P Martin
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Gareth Gregory
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton 3168, VIC, Australia
| | | | - Magnus Zethoven
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute, Parkville 3010, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Simon J Hogg
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Madison J Kelly
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | - Andrea Newbold
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia
| | | | - Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia; Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton 3168, VIC, Australia
| | - Michael Ohlmeyer
- Mount Sinai School of Medicine, New York, NY 10029, USA; Atux Iskay LLC, Plainsboro, NJ 08536, USA
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20014, Finland; Institute of Biomedicine, University of Turku, Turku FI-20014, Finland
| | | | | | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne 3000, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
19
|
Rubin JD, Stanley JT, Sigauke RF, Levandowski CB, Maas ZL, Westfall J, Taatjes DJ, Dowell RD. Transcription factor enrichment analysis (TFEA) quantifies the activity of multiple transcription factors from a single experiment. Commun Biol 2021; 4:661. [PMID: 34079046 PMCID: PMC8172830 DOI: 10.1038/s42003-021-02153-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Detecting changes in the activity of a transcription factor (TF) in response to a perturbation provides insights into the underlying cellular process. Transcription Factor Enrichment Analysis (TFEA) is a robust and reliable computational method that detects positional motif enrichment associated with changes in transcription observed in response to a perturbation. TFEA detects positional motif enrichment within a list of ranked regions of interest (ROIs), typically sites of RNA polymerase initiation inferred from regulatory data such as nascent transcription. Therefore, we also introduce muMerge, a statistically principled method of generating a consensus list of ROIs from multiple replicates and conditions. TFEA is broadly applicable to data that informs on transcriptional regulation including nascent transcription (eg. PRO-Seq), CAGE, histone ChIP-Seq, and accessibility data (e.g., ATAC-Seq). TFEA not only identifies the key regulators responding to a perturbation, but also temporally unravels regulatory networks with time series data. Consequently, TFEA serves as a hypothesis-generating tool that provides an easy, rigorous, and cost-effective means to broadly assess TF activity yielding new biological insights.
Collapse
Affiliation(s)
- Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Jacob T Stanley
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Rutendo F Sigauke
- Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | | | - Zachary L Maas
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Jessica Westfall
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Department of Computer Science, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
20
|
Sousa-Luís R, Dujardin G, Zukher I, Kimura H, Weldon C, Carmo-Fonseca M, Proudfoot NJ, Nojima T. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol Cell 2021; 81:1935-1950.e6. [PMID: 33735606 PMCID: PMC8122139 DOI: 10.1016/j.molcel.2021.02.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
Mammalian chromatin is the site of both RNA polymerase II (Pol II) transcription and coupled RNA processing. However, molecular details of such co-transcriptional mechanisms remain obscure, partly because of technical limitations in purifying authentic nascent transcripts. We present a new approach to characterize nascent RNA, called polymerase intact nascent transcript (POINT) technology. This three-pronged methodology maps nascent RNA 5′ ends (POINT-5), establishes the kinetics of co-transcriptional splicing patterns (POINT-nano), and profiles whole transcription units (POINT-seq). In particular, we show by depletion of the nuclear exonuclease Xrn2 that this activity acts selectively on cleaved 5′ P-RNA at polyadenylation sites. Furthermore, POINT-nano reveals that co-transcriptional splicing either occurs immediately after splice site transcription or is delayed until Pol II transcribes downstream sequences. Finally, we connect RNA cleavage and splicing with either premature or full-length transcript termination. We anticipate that POINT technology will afford full dissection of the complexity of co-transcriptional RNA processing. POINT methodology dissects intact nascent RNA processing Specificity of Xrn2 exonuclease in co-transcriptional RNA degradation Splicing suppresses Xrn2-dependent premature termination Different kinetic classes of co-transcriptional splicing in human genes
Collapse
Affiliation(s)
- Rui Sousa-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Gwendal Dujardin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Inna Zukher
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Hiroshi Kimura
- Cell Biology Centre, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Carika Weldon
- Wellcome Trust Center for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|