1
|
McFadden MJ, Reynolds MB, Michmerhuizen BC, Ólafsson EB, Marshall SM, Davis FA, Schultz TL, Iwawaki T, Sexton JZ, O'Riordan MXD, O'Meara TR. IRE1α promotes phagosomal calcium flux to enhance macrophage fungicidal activity. Cell Rep 2025; 44:115694. [PMID: 40349346 PMCID: PMC12166542 DOI: 10.1016/j.celrep.2025.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
The mammalian endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) is essential for cellular homeostasis and plays key roles in infection responses, including innate immunity and microbicidal activity. While IRE1α functions through the IRE1α-XBP1S axis are known, its XBP1S-independent roles are less well understood, and its functions during fungal infection are still emerging. We demonstrate that Candida albicans activates macrophage IRE1α via C-type lectin receptor signaling independent of protein misfolding, suggesting non-canonical activation. IRE1α enhances macrophage fungicidal activity by promoting phagosome maturation, which is crucial for containing C. albicans hyphae. IRE1α facilitates early phagosomal calcium flux post-phagocytosis, which is required for phagolysosomal fusion. In macrophages lacking the IRE1α endoribonuclease domain, defective calcium flux correlates with fewer ER-early endosome contact sites, suggesting a homeostatic role for IRE1α-promoting membrane contact sites. Overall, our findings illustrate non-canonical IRE1α activation during infection and a function for IRE1α in supporting organelle contact sites to safeguard against rapidly growing microbes.
Collapse
Affiliation(s)
- Michael J McFadden
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mack B Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Einar B Ólafsson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sofia M Marshall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith Anderson Davis
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Jonathan Z Sexton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Teresa R O'Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Guo J, Shi C, Wang Y, Zhang D, Zhang Q, Zhang X, Wang L, Gong Z. Targeting the HDAC6/Hint2/MICU1 axis to ameliorate acute liver failure via inhibiting NETosis. Life Sci 2025; 366-367:123498. [PMID: 39983829 DOI: 10.1016/j.lfs.2025.123498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
AIMS Acute liver failure (ALF) is marked by extensive inflammation and immune dysregulation, which are closely associated with neutrophil infiltration and NETosis. However, the specific mechanisms that drive NETosis in ALF remain poorly understood. MATERIALS AND METHODS We employed flow cytometry, western blot, qRT-PCR, and cf-DNA assay to investigate the link between NETosis and ALF. The role of HDAC6-mediated deacetylation of histidine triad nucleotide-binding protein 2 (Hint2) was assessed, along with the effects of lentiviral vector-based overexpression and knockdown of Hint2 on mitochondrial function and NETosis. Additionally, CO-IP, IF, protein docking analysis, mCa2+ uptake assay, and mtROS measurement were used to explore the interaction between Hint2 and mitochondrial calcium uniporter complex (MCUc). Finally, experimental neutrophil depletion in mice was conducted to confirm the protective effect of NETosis inhibition in ALF. KEY FINDINGS Our study demonstrated that Hint2 undergoes HDAC6-mediated deacetylation, disrupting mitochondrial dynamics and triggering NETosis during ALF. Furthermore, MICU1 bridges Hint2 and NETosis by regulating mCa2+ homeostasis and mtROS production. Activation of Hint2, either through the HDAC6 inhibitor ACY1215 or via overexpression, increased the level of MICU1 to suppress the opening of the MCUc and the associated mtROS release, thereby inhibiting NETosis. Conversely, Hint2 knockdown induced NETosis by surging mCa2+ overload and mtROS production, while the MCUc inhibitor RU265 mitigates NETosis by blocking mCa2+ influx. SIGNIFICANCE Our findings recognized the HDAC6/Hint2/MICU1 axis as a novel pathway in neutrophils, the inhibition of which intercepts mCa2+ overload and mtROS accumulation, thereby reducing NETosis and facilitating liver recovery during ALF.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoya Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Yang J, Zhong J, Fu Z, He D, Zhang J, Yuan J. Piezo1 Enhances Macrophage Phagocytosis and Pyrin Activation to Ameliorate Fungal Keratitis. Invest Ophthalmol Vis Sci 2025; 66:33. [PMID: 39808118 PMCID: PMC11737460 DOI: 10.1167/iovs.66.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Fungal keratitis (FK) remains a treatment challenge, necessitating new therapeutic targets. Piezo1, a mechanosensitive ion channel, regulates calcium signaling and immune cell function. This study investigates its role in macrophage-mediated antifungal responses in FK. Methods Piezo1 and Pyrin expression in corneas and bone marrow-derived macrophages (BMDMs) were assessed by RNAseq, quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescence. Intracellular calcium ion concentration was detected by Fluo-4 AM fluorescent probe staining. Heterozygous Piezo1 deficiency (Piezo1+/-) mice and Yoda1 were performed to regulate the expression of Piezo1. Results Our investigation demonstrates elevated expression of Piezo1 in the corneas of patients with FK and infected mice. This upregulation of Piezo1 corresponded with the swift recruitment of macrophages via the limbus. Additionally, Piezo1+/- mice exacerbate the progression of FK in the infection model. Furthermore, Piezo1 knockdown in macrophages exhibit a notable reduction phagocytic capacity, accompanied by an increase in viable colony-forming units in an in vitro model of fungal infection. Moreover, using a pharmacologic activator of Piezo1 (Yoda1), a calcium ion (Ca2+) chelator of BAPTA or Piezo1+/- mice, we demonstrate that Piezo1 activation triggers the Pyrin inflammasome via augmented calcium ion influx, which is required for protection against FK in murine hosts. Conclusions Piezo1 is crucial for innate immunity in FK, enhancing macrophage recruitment, activation, and Pyrin inflammasome-mediated antifungal activity via calcium signaling. Using Piezo1+/- mice and Yoda1, we confirm Piezo1's role in fungal clearance. Targeting Piezo1 offers a novel strategy to improve FK outcomes by boosting macrophage function and immune response.
Collapse
Affiliation(s)
- Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhenyuan Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Shumanska M, Lodygin D, Gibhardt CS, Ickes C, Stejerean-Todoran I, Krause LCM, Pahl K, Jacobs LJHC, Paluschkiwitz A, Liu S, Boshnakovska A, Voigt N, Legler TJ, Haubrock M, Mitkovski M, Poschmann G, Rehling P, Dennerlein S, Riemer J, Flügel A, Bogeski I. Mitochondrial calcium uniporter complex controls T-cell-mediated immune responses. EMBO Rep 2025; 26:407-442. [PMID: 39623165 PMCID: PMC11772621 DOI: 10.1038/s44319-024-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 01/29/2025] Open
Abstract
T-cell receptor (TCR)-induced Ca2+ signals are essential for T-cell activation and function. In this context, mitochondria play an important role and take up Ca2+ to support elevated bioenergetic demands. However, the functional relevance of the mitochondrial-Ca2+-uniporter (MCU) complex in T-cells was not fully understood. Here, we demonstrate that TCR activation causes rapid mitochondrial Ca2+ (mCa2+) uptake in primary naive and effector human CD4+ T-cells. Compared to naive T-cells, effector T-cells display elevated mCa2+ and increased bioenergetic and metabolic output. Transcriptome and proteome analyses reveal molecular determinants involved in the TCR-induced functional reprogramming and identify signalling pathways and cellular functions regulated by MCU. Knockdown of MCUa (MCUaKD), diminishes mCa2+ uptake, mitochondrial respiration and ATP production, as well as T-cell migration and cytokine secretion. Moreover, MCUaKD in rat CD4+ T-cells suppresses autoimmune responses in an experimental autoimmune encephalomyelitis (EAE) multiple sclerosis model. In summary, we demonstrate that mCa2+ uptake through MCU is essential for proper T-cell function and has a crucial role in autoimmunity. T-cell specific MCU inhibition is thus a potential tool for targeting autoimmune disorders.
Collapse
Affiliation(s)
- Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Dmitri Lodygin
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Christian Ickes
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Lena C M Krause
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Kira Pahl
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Lianne J H C Jacobs
- Redox Metabolism, Institute of Biochemistry and CECAD, University of Cologne, Cologne, Germany
| | - Andrea Paluschkiwitz
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Shuya Liu
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Tobias J Legler
- Department of Transfusion Medicine, University Medical Centre, Göttingen, Germany
| | - Martin Haubrock
- Department of Medical Bioinformatics, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Jan Riemer
- Redox Metabolism, Institute of Biochemistry and CECAD, University of Cologne, Cologne, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
5
|
Bao-Yuan H, Shu-Ru L, Le-Xin C, Liang-Liang B, Cheng-Cheng L, Chun-Qi X, Ming-Jun L, Jia-Xin Z, En-Xin Z, Xiao-Jun Z. Shikonin ameliorated LPS-induced acute lung injury in mice via modulating MCU-mediated mitochondrial Ca 2+ and macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156043. [PMID: 39366155 DOI: 10.1016/j.phymed.2024.156043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Macrophages play a pivotal role in the development and recovery of acute lung injury (ALI), wherein their phenotypic differentiation and metabolic programming are orchestrated by mitochondria. Specifically, the mitochondrial calcium uniporter (MCU) regulates mitochondrial Ca2+ (mCa2+) uptake and may bridge the metabolic reprogramming and functional regulation of immune cells. However, the precise mechanism on macrophages remains elusive. Shikonin, a natural naphthoquinone, has demonstrated efficacy in mitigating ALI and suppressing glycolysis in macrophages, yet which mechanism remains to be fully elucidated. PURPOSE This study explored whether Shikonin ameliorated ALI via modulating MCU-mediated mCa2+ and macrophage polarization. METHODS This study firstly examined the protective effects of Shikonin on LPS-induced ALI mice, and investigated whether it is depends on macrophage by depleting macrophage using clodronate liposomes. The regulatory effect of Shikonin on macrophage polarization and mitochondrial MCU/Ca2+ signal was testified on RAW264.7 cells, and further validated by knocking-down MCU expression or by using RU360, an MCU inhibitor. Additionally, the crucial role of MCU in the therapeutic effect of Shikonin, along with its regulation on macrophage polarization was validated in mice with LPS-induced ALI under the intervention of RU360. RESULTS Shikonin alleviated LPS-induced mice ALI, down-regulated inflammatory cytokines and inhibited the pro-inflammatory polarization of macrophages. Intravenous injection of clodronate liposomes on mice abolished the protective effects of Shikonin on ALI. On RAW264.7 cells, LPS&IFN decreased the protein expression of MCU, while induced pro-inflammatory polarization and glycolytic metabolism. In contrast, Shikonin increased MCU expression, activated MCU-mediated mCa2+ signal, promoted the polarization of macrophages to anti-inflammatory M2 phenotype, and driven a metabolic shift from glycolysis to oxidative phosphorylation. Either knocking-down MCU expression or pharmacological inhibiting MCU by using RU360 mitigated the effects of Shikonin on Raw 264.7 cells. Furthermore, RU360 counteracted the ameliorative effect of Shikonin on ALI mice. CONCLUSION The current data showed that Shikonin alleviated LPS-induced mice ALI by activating mitochondrial MCU/mCa2+ signal and regulating macrophage metabolism.
Collapse
Affiliation(s)
- Huang Bao-Yuan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Province Lingnan Characteristic Hospital Preparation Transformation Engineering Technology Research Center, Guangzhou, China
| | - Lu Shu-Ru
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China; Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Chen Le-Xin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bai Liang-Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Cheng-Cheng
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Chun-Qi
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Ming-Jun
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeng Jia-Xin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhang En-Xin
- Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China.
| | - Zhang Xiao-Jun
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Alvarez Y, Mancebo C, Alonso S, Montero O, Fernández N, Sánchez Crespo M. Central carbon metabolism exhibits unique characteristics during the handling of fungal patterns by monocyte-derived dendritic cells. Redox Biol 2024; 73:103187. [PMID: 38744190 PMCID: PMC11103932 DOI: 10.1016/j.redox.2024.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Monocyte-derived dendritic cells (MDDCs) are key players in the defense against fungal infection because of their outstanding capacity for non-opsonic phagocytosis and phenotypic plasticity. Accordingly, MDDCs rewire metabolism to meet the energetic demands for microbial killing and biomass synthesis required to restore homeostasis. It has been commonplace considering the metabolic reprogramming a mimicry of the Warburg effect observed in tumor cells. However, this may be an oversimplification since the offshoots of glycolysis and the tricarboxylic acid (TCA) cycle are connected in central carbon metabolism. Zymosan, the external wall of Saccharomyces cerevisiae, contains β-glucan and α-mannan chains that engage the C-type lectin receptors dectin-1/2 and Toll-like receptors. This makes it an optimal fungal surrogate for experimental research. Using real-time bioenergetic assays and [U-13C]glucose labeling, central hubs connected to cytokine expression were identified. The pentose phosphate pathway (PPP) exhibited a more relevant capacity to yield ribose-5-phosphate than reducing equivalents of NADPH, as judged from the high levels of isotopologues showing 13C-labeling in the ribose moiety and the limited contribution of the oxidative arm of the PPP to the production of ROS by NADPH oxidases (NOX). The finding of 13C-label in the purine ring and in glutathione unveiled the contribution of serine-derived glycine to purine ring and glutathione synthesis. Serine synthesis also supported the TCA cycle. Zymosan exhausted NAD+ and ATP, consistent with intracellular consumption and/or extracellular export. Poly-ADP-ribosylated proteins detected in the nuclear fractions of MDDCs did not show major changes upon zymosan stimulation, which suggests its dependence on constitutive Fe(II)/2-oxoglutarate-dependent demethylation of 5-methylcytosine by TET translocases and/or demethylation of histone H3 lysine 27 by JMJD demethylases rather than on NOX activities. These results disclose a unique pattern of central carbon metabolism following fungal challenge, characterized by the leverage of glycolysis offshoots and an extensive recycling of NAD+ and poly(ADP-ribose).
Collapse
Affiliation(s)
- Yolanda Alvarez
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Cristina Mancebo
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Nieves Fernández
- Departamento de Bioquímica, Biología Molecular y Fisiología, Universidad de Valladolid, 47003, Valladolid, Spain; Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular, CSIC-Universidad de Valladolid, 47003, Valladolid, Spain.
| |
Collapse
|
7
|
McFadden MJ, Reynolds MB, Michmerhuizen BC, Ólafsson EB, Anderson FM, Schultz TL, O’Riordan MX, O’Meara TR. Non-canonical activation of IRE1α during Candida albicans infection enhances macrophage fungicidal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560560. [PMID: 37873171 PMCID: PMC10592910 DOI: 10.1101/2023.10.02.560560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
While the canonical function of IRE1α is to detect misfolded proteins and activate the unfolded protein response (UPR) to maintain cellular homeostasis, microbial pathogens can also activate IRE1α, which modulates innate immunity and infection outcomes. However, how infection activates IRE1α and its associated inflammatory functions have not been fully elucidated. Recognition of microbe-associated molecular patterns can activate IRE1α, but it is unclear whether this depends on protein misfolding. Here, we report that a common and deadly fungal pathogen, Candida albicans, activates macrophage IRE1α through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. This activation did not depend on protein misfolding in response to C. albicans infection. Moreover, lipopolysaccharide treatment was also able to activate IRE1α prior to protein misfolding, suggesting that pathogen-mediated activation of IRE1α occurs through non-canonical mechanisms. During C. albicans infection, we observed that IRE1α activity promotes phagolysosomal fusion that supports the fungicidal activity of macrophages. Consequently, macrophages lacking IRE1α activity displayed inefficient phagosome maturation, enabling C. albicans to lyse the phagosome, evade fungal killing, and drive aberrant inflammatory cytokine production. Mechanistically, we show that IRE1α activity supports phagosomal calcium flux after phagocytosis of C. albicans, which is crucial for phagosome maturation. Importantly, deletion of IRE1α activity decreased the fungicidal activity of phagocytes in vivo during systemic C. albicans infection. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.
Collapse
Affiliation(s)
- Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mack B. Reynolds
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Einar B. Ólafsson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tracey L. Schultz
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X.D. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Aaes TL, Burgoa Cardás J, Ravichandran KS. Defining solute carrier transporter signatures of murine immune cell subsets. Front Immunol 2023; 14:1276196. [PMID: 38077407 PMCID: PMC10704505 DOI: 10.3389/fimmu.2023.1276196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells.
Collapse
Affiliation(s)
- Tania Løve Aaes
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Javier Burgoa Cardás
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kodi S. Ravichandran
- Department of Biomedical Molecular Biology, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Zhu Y, Xu Y, Yan J, Fang Y, Dong N, Shan A. "AMP plus": Immunostimulant-Inspired Design Based on Chemotactic Motif -( PhHA hPH) n. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43563-43579. [PMID: 37691475 DOI: 10.1021/acsami.3c09353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Ability to stimulate antimicrobial immunity has proven to be a useful therapeutic strategy in treating infections, especially in the face of increasing antibiotic resistance. Natural antimicrobial peptides (AMPs) exhibiting immunomodulatory functions normally encompass complex activities, which make it difficult to optimize their therapeutic benefits. Here, a chemotactic motif was harnessed as a template to design a series of AMPs with immunostimulatory activities plus bacteria-killing activities ("AMP plus"). An amphipathic peptide ((PhHAhPH)n) was employed to improve the antimicrobial impact and expand the therapeutic potential of the chemotactic motif that lacked obvious bacteria-killing properties. A total of 18 peptides were designed and evaluated for their structure-activity relationships. Among the designed, KWH2 (1) potently killed bacteria and exhibited a narrow antimicrobial spectrum against Gram-negative bacteria and (2) activated macrophages (i.e., inducing Ca2+ influx, cell migration, and reactive oxygen species production) as a macrophage chemoattractant. Membrane permeabilization is the major antimicrobial mechanism of KWH2. Furthermore, the mouse subcutaneous abscess model supported the dual immunomodulatory and antimicrobial potential of KWH2 in vivo. The above results confirmed the efficiency of KWH2 in treating bacterial infection and provided a viable approach to develop immunomodulatory antimicrobial materials with desired properties.
Collapse
Affiliation(s)
- Yunhui Zhu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yinghan Xu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Jianming Yan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| |
Collapse
|
10
|
Awasthi D, Chopra S, Cho BA, Emmanuelli A, Sandoval TA, Hwang SM, Chae CS, Salvagno C, Tan C, Vasquez-Urbina L, Fernandez Rodriguez JJ, Santagostino SF, Iwawaki T, Romero-Sandoval EA, Crespo MS, Morales DK, Iliev ID, Hohl TM, Cubillos-Ruiz JR. Inflammatory ER stress responses dictate the immunopathogenic progression of systemic candidiasis. J Clin Invest 2023; 133:e167359. [PMID: 37432737 PMCID: PMC10471176 DOI: 10.1172/jci167359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns can trigger the inositol-requiring enzyme 1 α (IRE1α) arm of the endoplasmic reticulum (ER) stress response in innate immune cells. This process maintains ER homeostasis and also coordinates diverse immunomodulatory programs during bacterial and viral infections. However, the role of innate IRE1α signaling in response to fungal pathogens remains elusive. Here, we report that systemic infection with the human opportunistic fungal pathogen Candida albicans induced proinflammatory IRE1α hyperactivation in myeloid cells that led to fatal kidney immunopathology. Mechanistically, simultaneous activation of the TLR/IL-1R adaptor protein MyD88 and the C-type lectin receptor dectin-1 by C. albicans induced NADPH oxidase-driven generation of ROS, which caused ER stress and IRE1α-dependent overexpression of key inflammatory mediators such as IL-1β, IL-6, chemokine (C-C motif) ligand 5 (CCL5), prostaglandin E2 (PGE2), and TNF-α. Selective ablation of IRE1α in leukocytes, or treatment with an IRE1α pharmacological inhibitor, mitigated kidney inflammation and prolonged the survival of mice with systemic C. albicans infection. Therefore, controlling IRE1α hyperactivation may be useful for impeding the immunopathogenic progression of disseminated candidiasis.
Collapse
Affiliation(s)
| | - Sahil Chopra
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Byuri A. Cho
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | | | - Chen Tan
- Department of Obstetrics and Gynecology, and
| | | | - Jose J. Fernandez Rodriguez
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | - Sara F. Santagostino
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medicine, New York, New York, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - E. Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mariano Sanchez Crespo
- Unit of Excellence, Institute of Biology and Molecular Genetics, CSIC–Universidad de Valladolid, Valladolid, Spain
| | | | - Iliyan D. Iliev
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Department of Medicine and
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York, USA
| | - Tobias M. Hohl
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, and
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Seegren PV, Harper LR, Downs TK, Zhao XY, Viswanathan SB, Stremska ME, Olson RJ, Kennedy J, Ewald SE, Kumar P, Desai BN. Reduced mitochondrial calcium uptake in macrophages is a major driver of inflammaging. NATURE AGING 2023:10.1038/s43587-023-00436-8. [PMID: 37277641 DOI: 10.1038/s43587-023-00436-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Mitochondrial dysfunction is linked to age-associated inflammation or inflammaging, but underlying mechanisms are not understood. Analyses of 700 human blood transcriptomes revealed clear signs of age-associated low-grade inflammation. Among changes in mitochondrial components, we found that the expression of mitochondrial calcium uniporter (MCU) and its regulatory subunit MICU1, genes central to mitochondrial Ca2+ (mCa2+) signaling, correlated inversely with age. Indeed, mCa2+ uptake capacity of mouse macrophages decreased significantly with age. We show that in both human and mouse macrophages, reduced mCa2+ uptake amplifies cytosolic Ca2+ oscillations and potentiates downstream nuclear factor kappa B activation, which is central to inflammation. Our findings pinpoint the mitochondrial calcium uniporter complex as a keystone molecular apparatus that links age-related changes in mitochondrial physiology to systemic macrophage-mediated age-associated inflammation. The findings raise the exciting possibility that restoring mCa2+ uptake capacity in tissue-resident macrophages may decrease inflammaging of specific organs and alleviate age-associated conditions such as neurodegenerative and cardiometabolic diseases.
Collapse
Affiliation(s)
- Philip V Seegren
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Logan R Harper
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Taylor K Downs
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Marta E Stremska
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rachel J Olson
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joel Kennedy
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Microbiology, Immunology, and Cancer Biology Department, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pankaj Kumar
- Biochemistry and Molecular Genetics Department, University of Virginia School of Medicine, Charlottesville, VA, USA
- University of Virginia, Bioinformatics Core, Charlottesville, VA, USA
| | - Bimal N Desai
- Pharmacology Department, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Jost P, Klein F, Brand B, Wahl V, Wyatt A, Yildiz D, Boehm U, Niemeyer BA, Vaeth M, Alansary D. Acute Downregulation but Not Genetic Ablation of Murine MCU Impairs Suppressive Capacity of Regulatory CD4 T Cells. Int J Mol Sci 2023; 24:ijms24097772. [PMID: 37175478 PMCID: PMC10178810 DOI: 10.3390/ijms24097772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
By virtue of mitochondrial control of energy production, reactive oxygen species (ROS) generation, and maintenance of Ca2+ homeostasis, mitochondria play an essential role in modulating T cell function. The mitochondrial Ca2+ uniporter (MCU) is the pore-forming unit in the main protein complex mediating mitochondrial Ca2+ uptake. Recently, MCU has been shown to modulate Ca2+ signals at subcellular organellar interfaces, thus fine-tuning NFAT translocation and T cell activation. The mechanisms underlying this modulation and whether MCU has additional T cell subpopulation-specific effects remain elusive. However, mice with germline or tissue-specific ablation of Mcu did not show impaired T cell responses in vitro or in vivo, indicating that 'chronic' loss of MCU can be functionally compensated in lymphocytes. The current work aimed to specifically investigate whether and how MCU influences the suppressive potential of regulatory CD4 T cells (Treg). We show that, in contrast to genetic ablation, acute siRNA-mediated downregulation of Mcu in murine Tregs results in a significant reduction both in mitochondrial Ca2+ uptake and in the suppressive capacity of Tregs, while the ratios of Treg subpopulations and the expression of hallmark transcription factors were not affected. These findings suggest that permanent genetic inactivation of MCU may result in compensatory adaptive mechanisms, masking the effects on the suppressive capacity of Tregs.
Collapse
Affiliation(s)
- Priska Jost
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Franziska Klein
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| | - Benjamin Brand
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Vanessa Wahl
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Daniela Yildiz
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, 66421 Homburg, Germany
| | | | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group at Julius-Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
13
|
de Figueiredo AMB, dos Santos JC, Kischkel B, Ardiansyah E, Oosting M, Guimarães Matos G, Barreto Neves Oliveira I, van de Veerdonk F, Netea MG, Soares CMDA, Ribeiro-Dias F, Joosten LAB. Genome-Wide Association Study Reveals CLEC7A and PROM1 as Potential Regulators of Paracoccidioides brasiliensis-Induction of Cytokine Production in Peripheral Blood Mononuclear Cells. J Fungi (Basel) 2023; 9:jof9040428. [PMID: 37108883 PMCID: PMC10144159 DOI: 10.3390/jof9040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides and the different clinical forms of the disease are associated with the host immune responses. Quantitative trait loci mapping analysis was performed to assess genetic variants associated with mononuclear-cells-derived cytokines induced by P. brasiliensis on 158 individuals. We identified the rs11053595 SNP, which is present in the CLEC7A gene (encodes the Dectin-1 receptor) and the rs62290169 SNP located in the PROM1 gene (encodes CD133) associated with the production of IL-1β and IL-22, respectively. Functionally, the blockade of the dectin-1 receptor abolished the IL-1β production in P. brasiliensis-stimulated PBMCs. Moreover, the rs62290169-GG genotype was associated with higher frequency of CD38+ Th1 cells in PBMCs cultured with P. brasiliensis yeasts. Therefore, our research indicates that the CLEC7A and PROM1 genes are important for the cytokine response induced by P. brasiliensis and may influence the Paracoccidioidomycosis disease outcome.
Collapse
|
14
|
Lei X, Tan G, Wang Y, Chen L, Cao Y, Si B, Zhen Z, Li B, Jin Y, Wang W, Jin F. Mitochondrial Calcium Nanoregulators Reverse the Macrophage Proinflammatory Phenotype Through Restoring Mitochondrial Calcium Homeostasis for the Treatment of Osteoarthritis. Int J Nanomedicine 2023; 18:1469-1489. [PMID: 36998601 PMCID: PMC10046163 DOI: 10.2147/ijn.s402170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a chronic degenerative joint disease accompanied by an elevated macrophage proinflammatory phenotype, which is triggered by persistent pathologically elevated calcium ion levels in mitochondria. However, existing pharmacological compounds targeting the inhibition of mitochondrial calcium ion (m[Ca2+]) influx are currently limited in terms of plasma membrane permeability and low specificity for ion channels and transporters. In the present study, we synthesized mesoporous silica nanoparticle-amidated (MSN)-ethylenebis (oxyethylenenitrilo)tetraacetic acid (EGTA)/triphenylphosphine (TPP)-polyethylene glycol (PEG) [METP] nanoparticles (NPs), which specifically target mitochondria and block excess calcium ion influx. Methods m[Ca2+] overload in OA mouse bone marrow-derived macrophages (BMDMs) was detected by a fluorescence probe. A tissue in situ fluorescence colocalization assay was used to evaluate METP NP uptake by macrophages. BMDMs from healthy mice were pretreated with a concentration gradient of METP NPs followed by lipopolysaccharide (LPS) stimulation and detection of m[Ca2+] levels in vitro. The optimal METP NP concentration was further applied, and the endoplasmic reticulum (ER) and cytoplasm calcium levels were detected. The inflammatory phenotype was measured by surface markers, cytokine secretion and intracellular inflammatory gene/protein expression. A Seahorse cell energy metabolism assay was performed to elucidate the mechanism by which METP NPs reverse the BMDM proinflammatory phenotype. Results The present study identified calcium overload in BMDM mitochondria of OA mice. We demonstrated that METP NPs reversed the increased m[Ca2+] levels in mitochondria and the proinflammatory phenotype of BMDMs, with both in vivo and in vitro experiments, via the inhibition of the mitochondrial aspartate-arginosuccinate shunt and ROS production. Conclusion We demonstrated that METP NPs are effective and highly specific regulators of m[Ca2+] overload. In addition, we demonstrated that these METP NPs reverse the macrophage proinflammatory phenotype by restoring m[Ca2+] homeostasis, thereby inhibiting the tissue inflammatory response and achieving a therapeutic effect for OA.
Collapse
Affiliation(s)
- Xiao Lei
- Shaanxi Clinical Research Center for Oral Disease & Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Guodong Tan
- Air Force Medical Center, Fourth Military Medical University, Beijing, People’s Republic of China
| | - Yiming Wang
- Shaanxi Clinical Research Center for Oral Diseases & Department of Oral Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Li Chen
- Shaanxi Key Laboratory of Energy Chemical Process Intensification & Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiao Tong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuan Cao
- Shaanxi Clinical Research Center for Oral Disease & Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Bingxin Si
- Air Force Medical Center, Fourth Military Medical University, Beijing, People’s Republic of China
| | - Zhen Zhen
- Air Force Medical Center, Fourth Military Medical University, Beijing, People’s Republic of China
| | - Bei Li
- State Key Laboratory of Military Stomatology & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Wei Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- Wei Wang, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China, Email
| | - Fang Jin
- Shaanxi Clinical Research Center for Oral Disease & Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
- Correspondence: Fang Jin, Shaanxi Clinical Research Center for Oral Disease & Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China, Email
| |
Collapse
|
15
|
Delgado BD, Long SB. Mechanisms of ion selectivity and throughput in the mitochondrial calcium uniporter. SCIENCE ADVANCES 2022; 8:eade1516. [PMID: 36525497 PMCID: PMC9757755 DOI: 10.1126/sciadv.ade1516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The mitochondrial calcium uniporter, which regulates aerobic metabolism by catalyzing mitochondrial Ca2+ influx, is arguably the most selective ion channel known. The mechanisms for this exquisite Ca2+ selectivity have not been defined. Here, using a reconstituted system, we study the electrical properties of the channel's minimal Ca2+-conducting complex, MCU-EMRE, from Tribolium castaneum to probe ion selectivity mechanisms. The wild-type TcMCU-EMRE complex recapitulates hallmark electrophysiological properties of endogenous Uniporter channels. Through interrogation of pore-lining mutants, we find that a ring of glutamate residues, the "E-locus," serves as the channel's selectivity filter. Unexpectedly, a nearby "D-locus" at the mouth of the pore has diminutive influence on selectivity. Anomalous mole fraction effects indicate that multiple Ca2+ ions are accommodated within the E-locus. By facilitating ion-ion interactions, the E-locus engenders both exquisite Ca2+ selectivity and high ion throughput. Direct comparison with structural information yields the basis for selective Ca2+ conduction by the channel.
Collapse
Affiliation(s)
- Bryce D. Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
Sánchez Crespo M, Montero O, Fernandez N. The role of PAF in immunopathology: From immediate hypersensitivity reactions to fungal defense. Biofactors 2022; 48:1217-1225. [PMID: 36176024 PMCID: PMC10087027 DOI: 10.1002/biof.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/03/2022] [Indexed: 12/24/2022]
Abstract
Platelet-activating factor (PAF, 1-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) was discovered when the mechanisms involved in the deposition of immune complex in tissues were being scrutinized in the experimental model of rabbit serum sickness. The initial adscription of PAF to IgE-dependent anaphylaxis was soon extended after disclosing its release from phagocytes stimulated by calcium mobilizing agents, formylated peptides, and phagocytosable particles. This explains why ongoing research in the field turned to the analysis of immune cell types and stimuli involved in PAF production with the purpose of establishing its role in pathology. This was spurred by the identification of the chemical structure of PAF and the enzymic mechanisms involved in its biosynthesis and degradation, which showed commonalities with those involved in eicosanoid production and the Lands' cycle of phospholipid fatty acid remodeling. The reassignment of PAF function in immunopathology is explained by the finding that the most robust mechanisms leading to PAF production are associated with opsonic and non-opsonic phagocytosis, depending on the cell type. While polymorphonuclear leukocytes exhibit opsonic phagocytosis, monocyte-derived dendritic cells show a marked preference for non-opsonic phagocytosis associated with C-type lectin receptors. This is particularly relevant to the defense against fungal invasion and explains why PAF exerts an autocrine feed-forwarding mechanism required for the selective expression of some cytokines.
Collapse
Affiliation(s)
- Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Olimpio Montero
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Nieves Fernandez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
17
|
Mancebo C, Fernández JJ, Herrero-Sánchez C, Alvarez Y, Alonso S, Sandoval TA, Cubillos-Ruiz JR, Montero O, Fernández N, Crespo MS. Fungal Patterns Induce Cytokine Expression through Fluxes of Metabolic Intermediates That Support Glycolysis and Oxidative Phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2779-2794. [PMID: 35688467 DOI: 10.4049/jimmunol.2100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
Cytokine expression is fine-tuned by metabolic intermediates, which makes research on immunometabolism suitable to yield drugs with a wider prospect of application than the biological therapies that block proinflammatory cytokines. Switch from oxidative phosphorylation (OXPHOS) to glycolysis has been considered a characteristic feature of activated immune cells. However, some stimuli might enhance both routes concomitantly. The connection between the tricarboxylic acid cycle and cytokine expression was scrutinized in human monocyte-derived dendritic cells stimulated with the fungal surrogate zymosan. Results showed that nucleocytosolic citrate and ATP-citrate lyase activity drove IL1B, IL10, and IL23A expression by yielding acetyl-CoA and oxaloacetate, with the latter one supporting glycolysis and OXPHOS by maintaining cytosolic NAD+ and mitochondrial NADH levels through mitochondrial shuttles. Succinate dehydrogenase showed a subunit-specific ability to modulate IL23A and IL10 expression. Succinate dehydrogenase A subunit activity supported cytokine expression through the control of the 2-oxoglutarate/succinate ratio, whereas C and D subunits underpinned cytokine expression by conveying electron flux from complex II to complex III of the electron transport chain. Fatty acids may also fuel the tricarboxylic acid cycle and influence cytokine expression. Overall, these results show that fungal patterns support cytokine expression through a strong boost of glycolysis and OXPHOS supported by the use of pyruvate, citrate, and succinate, along with the compartmentalized NAD(H) redox state maintained by mitochondrial shuttles.
Collapse
Affiliation(s)
- Cristina Mancebo
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - José Javier Fernández
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Carmen Herrero-Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Yolanda Alvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Sara Alonso
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Tito A Sandoval
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY; and
| | - Juan R Cubillos-Ruiz
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY; and
| | - Olimpio Montero
- Centro para el Desarrollo de la Biotecnología, CSIC, Parque Tecnológico de Boecillo, Valladolid, Spain
| | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain;
| |
Collapse
|
18
|
Efferocytosis requires periphagosomal Ca 2+-signaling and TRPM7-mediated electrical activity. Nat Commun 2022; 13:3230. [PMID: 35680919 PMCID: PMC9184625 DOI: 10.1038/s41467-022-30959-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient clearance of apoptotic cells by phagocytosis, also known as efferocytosis, is fundamental to developmental biology, organ physiology, and immunology. Macrophages use multiple mechanisms to detect and engulf apoptotic cells, but the signaling pathways that regulate the digestion of the apoptotic cell cargo, such as the dynamic Ca2+ signals, are poorly understood. Using an siRNA screen, we identify TRPM7 as a Ca2+-conducting ion channel essential for phagosome maturation during efferocytosis. Trpm7-targeted macrophages fail to fully acidify or digest their phagosomal cargo in the absence of TRPM7. Through perforated patch electrophysiology, we demonstrate that TRPM7 mediates a pH-activated cationic current necessary to sustain phagosomal acidification. Using mice expressing a genetically-encoded Ca2+ sensor, we observe that phagosome maturation requires peri-phagosomal Ca2+-signals dependent on TRPM7. Overall, we reveal TRPM7 as a central regulator of phagosome maturation during macrophage efferocytosis. Efficient removal of apoptotic cells by phagocytosis underlies tissue development, wound repair, host defense and organ homeostasis. Here, authors identify TRPM7 as a regulator of cargo acidification and Ca2+ signaling during apoptotic cell clearance.
Collapse
|
19
|
Lima-Silva LF, Lee J, Moraes-Vieira PM. Soluble Carrier Transporters and Mitochondria in the Immunometabolic Regulation of Macrophages. Antioxid Redox Signal 2022; 36:906-919. [PMID: 34555943 PMCID: PMC9271333 DOI: 10.1089/ars.2021.0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Immunometabolic regulation of macrophages is a growing area of research across many fields. Here, we review the contribution of solute carriers (SLCs) in regulating macrophage metabolism. We also highlight key mechanisms that regulate SLC function, their effects on mitochondrial activity, and how these intracellular activities contribute to macrophage fitness in health and disease. Recent Advances: SLCs serve as a major drug absorption pathway and represent a novel category of therapeutic drug targets. SLC dynamics affect cellular nutritional sensors, such as AMP-activated protein kinase and mammalian target of rapamycin, and consequently alter the cellular metabolism and mitochondrial dynamics within macrophages to adapt to a new functional phenotype. Critical Issues: SLC function affects macrophage phenotype, but their mechanisms of action and how their functions contribute to host health remain incompletely defined. Future Directions: Few studies focus on the impact of solute transporters on macrophage function. Identifying which SLCs are present in macrophages and determining their functional roles may reveal novel therapeutic targets with which to treat metabolic and inflammatory diseases. Antioxid. Redox Signal. 36, 906-919.
Collapse
Affiliation(s)
- Lincon Felipe Lima-Silva
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Post Graduate Program in Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
20
|
Wu H, Brand B, Eckstein M, Hochrein SM, Shumanska M, Dudek J, Nickel A, Maack C, Bogeski I, Vaeth M. Genetic Ablation of the Mitochondrial Calcium Uniporter (MCU) Does not Impair T Cell-Mediated Immunity In Vivo. Front Pharmacol 2022; 12:734078. [PMID: 34987384 PMCID: PMC8721163 DOI: 10.3389/fphar.2021.734078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cell activation and differentiation is associated with metabolic reprogramming to cope with the increased bioenergetic demand and to provide metabolic intermediates for the biosynthesis of building blocks. Antigen receptor stimulation not only promotes the metabolic switch of lymphocytes but also triggers the uptake of calcium (Ca2+) from the cytosol into the mitochondrial matrix. Whether mitochondrial Ca2+ influx through the mitochondrial Ca2+ uniporter (MCU) controls T cell metabolism and effector function remained, however, enigmatic. Using mice with T cell-specific deletion of MCU, we here show that genetic inactivation of mitochondrial Ca2+ uptake increased cytosolic Ca2+ levels following antigen receptor stimulation and store-operated Ca2+ entry (SOCE). However, ablation of MCU and the elevation of cytosolic Ca2+ did not affect mitochondrial respiration, differentiation and effector function of inflammatory and regulatory T cell subsets in vitro and in animal models of T cell-mediated autoimmunity and viral infection. These data suggest that MCU-mediated mitochondrial Ca2+ uptake is largely dispensable for murine T cell function. Our study has also important technical implications. Previous studies relied mostly on pharmacological inhibition or transient knockdown of mitochondrial Ca2+ uptake, but our results using mice with genetic deletion of MCU did not recapitulate these findings. The discrepancy of our study to previous reports hint at compensatory mechanisms in MCU-deficient mice and/or off-target effects of current MCU inhibitors.
Collapse
Affiliation(s)
- Hao Wu
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Benjamin Brand
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Miriam Eckstein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sophia M Hochrein
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Magdalena Shumanska
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Hospital, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|