1
|
Chen ZH, Pan TB, Zhang YH, Wang B, Sun XL, Gao M, Sun Y, Xu M, Han S, Shi X, Correa-da-Silva F, Yang C, Guo J, Wu H, Li YZ, Liu XQ, Gao F, Xu Z, Xu S, Liu X, Zhu Y, Deng Z, Liu S, Zhou Y, Yi CX, Liu L, Wu QF. Transcriptional conservation and evolutionary divergence of cell types across mammalian hypothalamus development. Dev Cell 2025:S1534-5807(25)00156-X. [PMID: 40203835 DOI: 10.1016/j.devcel.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025]
Abstract
The hypothalamus, an "ancient" subcortical brain structure, maintains physiological homeostasis and controls native behaviors. The evolution of homeostatic regulation and behavioral control in mammals may rely on adaptable neuronal identity establishment but conserved neural patterning mechanisms during neurodevelopment. Here, we combined single-cell, single-nucleus, and spatial transcriptomic datasets to map the spatial patterning of diverse progenitor domains and reconstruct their neurogenic lineages in the developing human and mouse hypothalamus. While the regional organizers orchestrating neural patterning are conserved between primates and rodents, we identified a human-enriched neuronal subtype and found a substantial increase in neuromodulatory gene expression among human neurons. Furthermore, cross-species comparison demonstrated a potential redistribution of two neuroendocrine neuronal subtypes and a shift in inter-transmitter and transmitter-peptide coupling within hypothalamic dopamine neurons. Together, our study lays a critical foundation for understanding cellular development and evolution of the mammalian hypothalamus.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | | | - Yu-Hong Zhang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Ben Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | | | - Yang Sun
- BGI Research, Beijing 102601, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | | | - Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | | | - Junfu Guo
- BGI Research, Beijing 102601, China; BGI Research, Shenzhen 518083, China
| | - Haoda Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zheng Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Qin Liu
- Department of Obstetrics and Gynecology, Baoding Second Central Hospital, Baoding 072750, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjin Xu
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Liu
- BGI Research, Beijing 102601, China
| | - Ying Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University Shanghai, Shanghai 200032, China
| | | | | | - Yi Zhou
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | | | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China.
| |
Collapse
|
2
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
3
|
Taudien JE, Bracht D, Olbrich H, Swirski S, D’Abrusco F, Van der Zwaag B, Möller M, Lücke T, Teig N, Lindberg U, Wohlgemuth K, Wallmeier J, Blanque A, Gatsogiannis C, George S, Jüschke C, Owczarek-Lipska M, Veer D, Kroes HY, Valente EM, Korenke GC, Omran H, Neidhardt J. Pathogenic KIAA0586/TALPID3 variants are associated with defects in primary and motile cilia. iScience 2025; 28:111670. [PMID: 39898050 PMCID: PMC11783387 DOI: 10.1016/j.isci.2024.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/18/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Pathogenic variants in KIAA0586/TALPID3 are associated with the ciliopathy Joubert syndrome (JS). We report individuals with KIAA0586/TALPID3 variants affected by primary and motile cilia defects leading to JS and chronic destructive airway disease. DNA variants were detected in three families by sequencing. In two unrelated families, a deep-intronic variant (KIAA0586/TALPID3:c.3990 + 3186G>A) activated a cryptic exon. We performed histological and functional analyses in native and air-liquid interface (ALI) cultured respiratory cells. Primary cilia lengths were measured in patient-derived fibroblasts. Our data associate KIAA0586/TALPID3 variants with a syndrome combining JS and chronic destructive airway disease, reduced number of motile cilia, disorganized basal body location, and ciliary clearance malfunction. Additionally, patient-derived cell lines showed primary cilia defects. Disease causing KIAA0586/TALPID3 variants, including a deep-intronic sequence variant, were associated with primary and motile cilia defects in JS patients. The combination of JS and respiratory symptoms should be considered indicative for KIAA0586/TALPID3 sequence alterations.
Collapse
Affiliation(s)
- Jacqueline E. Taudien
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Diana Bracht
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Heike Olbrich
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Sebastian Swirski
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Fulvio D’Abrusco
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Bert Van der Zwaag
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, the Netherlands
| | - Maike Möller
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Thomas Lücke
- Department of Neuropaediatrics and Social Paediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Norbert Teig
- Department of Neonatalogy, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ulrika Lindberg
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund, Sweden
| | - Kai Wohlgemuth
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Julia Wallmeier
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Anja Blanque
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms University Münster, 48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms University Münster, 48149 Münster, Germany
| | - Sebastian George
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Christoph Jüschke
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| | - Dorothee Veer
- Social-pediatric Outpatient and Therapy Center, Hospital Ludmillenstift, 49716 Meppen, Germany
| | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, the Netherlands
| | - Enza Maria Valente
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - G. Christoph Korenke
- University Children’s Hospital Oldenburg, Department of Neuropaediatric and Metabolic Diseases, 26133 Oldenburg, Germany
| | - Heymut Omran
- Department of General Paediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - John Neidhardt
- Human Genetics, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Lu D, Zhi Y, Su H, Lin X, Lin J, Shi Y, Yi W, Hong C, Zhang T, Fu Z, Chen LY, Zhao Z, Li R, Xu Z, Chen W, Wang N, Xu D. ESCRT-I protein UBAP1 controls ventricular expansion and cortical neurogenesis via modulating adherens junctions of radial glial cells. Cell Rep 2024; 43:113818. [PMID: 38402586 DOI: 10.1016/j.celrep.2024.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and β-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.
Collapse
Affiliation(s)
- Danping Lu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Huizhen Su
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jingjing Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yan Shi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China
| | - Wenxiang Yi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chaoyin Hong
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Tongtong Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhifei Fu
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| | - Li-Yu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqi Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
5
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Li X, Zou S, Tu X, Hao S, Jiang T, Chen JG. Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells, Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice. Neurosci Bull 2023; 39:1131-1145. [PMID: 36646976 PMCID: PMC10313612 DOI: 10.1007/s12264-022-01004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023] Open
Abstract
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.
Collapse
Affiliation(s)
- Xue Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Shimin Zou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Xiaomeng Tu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Shishuai Hao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China
| | - Tian Jiang
- Research Center for Translational Medicine, the Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, China
| | - Jie-Guang Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, and Zhejiang Provincial Key Laboratory of Optometry and Ophthalmology, Wenzhou, 325027, China.
| |
Collapse
|
8
|
Sun XL, Chen ZH, Guo X, Wang J, Ge M, Wong SZH, Wang T, Li S, Yao M, Johnston LA, Wu QF. Stem cell competition driven by the Axin2-p53 axis controls brain size during murine development. Dev Cell 2023; 58:744-759.e11. [PMID: 37054704 DOI: 10.1016/j.devcel.2023.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/08/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023]
Abstract
Cell competition acts as a quality-control mechanism that eliminates cells less fit than their neighbors to optimize organ development. Whether and how competitive interactions occur between neural progenitor cells (NPCs) in the developing brain remains unknown. Here, we show that endogenous cell competition occurs and intrinsically correlates with the Axin2 expression level during normal brain development. Induction of genetic mosaicism predisposes Axin2-deficient NPCs to behave as "losers" in mice and undergo apoptotic elimination, but homogeneous ablation of Axin2 does not promote cell death. Mechanistically, Axin2 suppresses the p53 signaling pathway at the post-transcriptional level to maintain cell fitness, and Axin2-deficient cell elimination requires p53-dependent signaling. Furthermore, mosaic Trp53 deletion confers a "winner" status to p53-deficient cells that outcompete their neighbors. Conditional loss of both Axin2 and Trp53 increases cortical area and thickness, suggesting that the Axin2-p53 axis may coordinate to survey cell fitness, regulate natural cell competition, and optimize brain size during neurodevelopment.
Collapse
Affiliation(s)
- Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen-Hua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xize Guo
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengmeng Ge
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Samuel Zheng Hao Wong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ting Wang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Si Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingze Yao
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Laura A Johnston
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Beijing Children's Hospital, Capital Medical University, Beijing 100045, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Zhang G, Tai P, Fang J, Chen A, Chen X, Cao K. Molecular subtypes based on centrosome-related genes can predict prognosis and therapeutic responsiveness in patients with low-grade gliomas. Front Oncol 2023; 13:1157115. [PMID: 37051542 PMCID: PMC10083401 DOI: 10.3389/fonc.2023.1157115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundAbnormalities in centrosome regulatory genes can induce chromosome instability, cell differentiation errors, and tumorigenesis. However, a limited number of comprehensive analyses of centrosome-related genes have been performed in low-grade gliomas (LGG).MethodsLGG data were extracted from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. The ConsensusClusterPlus” R package was used for unsupervised clustering. We constructed a centrosome-related genes (CRGs) signature using a random forest model, lasso Cox model, and multivariate Cox model, and quantified the centrosome-related risk score (centS). The prognostic prediction efficacy of centS was evaluated using a Receiver Operating Characteristic (ROC) curve. Immune cell infiltration and genomic mutational landscapes were evaluated using the ESTIMATE algorithm, single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm, and “maftools” R package, respectively. Differences in clinical features, isocitrate dehydrogenase (IDH) mutation, 1p19q codeletion, O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation, and response to antitumor therapy between the high- and low-centS groups were explored. “pRRophetic” R packages were used for temozolomide (TMZ) sensitivity analysis. qRT-PCR verified the differential expression of the centrosomal gene team, the core of which is CEP135, between LGG cells and normal cells.ResultsTwo distinct CRG-based clusters were identified using consensus unsupervised clustering analysis. The prognosis, biological characteristics, and immune cell infiltration of the two clusters differed significantly. A well-performing centS signature was developed to predict the prognosis of patients with LGG based on 12 potential CRGs. We found that patients in the high-centS group showed poorer prognosis and lower proportion of IDH mutation and 1p19q codeletion compared to those in the low-centS group. Furthermore, patients in the high-centS group showed higher sensitivity to TMZ, higher tumor mutation burden, and immune cell infiltration. Finally, we identified a centrosomal gene team whose core was CEP135, and verified their differential expression between LGG cells and normal glial cells.ConclusionOur findings reveal a novel centrosome-related signature for predicting the prognosis and therapeutic responsiveness of patients with LGG. This may be helpful for the accurate clinical treatment of LGG.
Collapse
|
10
|
Maślanka T. Effect of IL-27, Teriflunomide and Retinoic Acid and Their Combinations on CD4 + T Regulatory T Cells-An In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238471. [PMID: 36500570 PMCID: PMC9739213 DOI: 10.3390/molecules27238471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
The principal goal of the study was to verify the concept of pharmacological induction of Foxp3+CD25+CD4+ T regulatory (Treg) cells which will additionally be characterized by a highly suppressive phenotype, i.e., by extensive CD25 and CD39 expression and IL-10 and TGF-β production. Stimulated and unstimulated murine lymphocytes were exposed to IL-27, teriflunomide (TER), and all trans retinoic acid (ATRA) alone and to their combinations. The study demonstrated that: (a) IL-27 alone induced CD39 expression on Treg cells and the generation of Tr1 cells; (b) TER alone induced Foxp3-expressing CD4+ T cells and up-regulated density of CD25 on these cells; TER also induced the ability of Treg cells to TGF-β production; (c) ATRA alone induced CD39 expression on Treg cells. The experiments revealed a strong superadditive effect between IL-27 and ATRA with respect to increasing CD39 expression on Treg cells. Moreover, IL-27 and ATRA in combination, but not alone, induced the ability of Treg cells to IL-10 production. However, the combination of IL-27, TER, and ATRA did not induce the generation of Treg cell subset with all described above features. This was due to the fact that TER abolished all listed above desired effects induced by IL-27 alone, ATRA alone, and their combination. IL-27 alone, ATRA alone, and their combination affected TER-induced effects to a lesser extent. Therefore, it can be concluded that in the aspect of pharmacological induction of Treg cells with a highly suppressive phenotype, the triple combination treatment with TER, IL-27, and ATRA does not provide any benefits over TER alone or dual combination including IL-27 and ATRA.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| |
Collapse
|
11
|
A Spacetime Odyssey of Neural Progenitors to Generate Neuronal Diversity. Neurosci Bull 2022; 39:645-658. [PMID: 36214963 PMCID: PMC10073374 DOI: 10.1007/s12264-022-00956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022] Open
Abstract
To understand how the nervous system develops from a small pool of progenitors during early embryonic development, it is fundamentally important to identify the diversity of neuronal subtypes, decode the origin of neuronal diversity, and uncover the principles governing neuronal specification across different regions. Recent single-cell analyses have systematically identified neuronal diversity at unprecedented scale and speed, leaving the deconstruction of spatiotemporal mechanisms for generating neuronal diversity an imperative and paramount challenge. In this review, we highlight three distinct strategies deployed by neural progenitors to produce diverse neuronal subtypes, including predetermined, stochastic, and cascade diversifying models, and elaborate how these strategies are implemented in distinct regions such as the neocortex, spinal cord, retina, and hypothalamus. Importantly, the identity of neural progenitors is defined by their spatial position and temporal patterning factors, and each type of progenitor cell gives rise to distinguishable cohorts of neuronal subtypes. Microenvironmental cues, spontaneous activity, and connectional pattern further reshape and diversify the fate of unspecialized neurons in particular regions. The illumination of how neuronal diversity is generated will pave the way for producing specific brain organoids to model human disease and desired neuronal subtypes for cell therapy, as well as understanding the organization of functional neural circuits and the evolution of the nervous system.
Collapse
|
12
|
Camargo Ortega G, Götz M. Centrosome heterogeneity in stem cells regulates cell diversity. Trends Cell Biol 2022; 32:707-719. [PMID: 35750615 DOI: 10.1016/j.tcb.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
Stem cells are at the source of creating cellular diversity. Multiple mechanisms, including basic cell biological processes, regulate their fate. The centrosome is at the core of many stem cell functions and recent work highlights the association of distinct proteins at the centrosome in stem cell differentiation. As showcased by a novel centrosome protein regulating neural stem cell differentiation, it is timely to review the heterogeneity of the centrosome at protein and RNA levels and how this impacts their function in stem and progenitor cells. Together with evidence for heterogeneity of other organelles so far considered as similar between cells, we call for exploring the cell type-specific composition of organelles as a way to expand protein function in development with relevance to regenerative medicine.
Collapse
Affiliation(s)
- Germán Camargo Ortega
- Department of Biosystems Science and Engineering, ETH, Zurich, 4058 Basel, Switzerland.
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 82152 Planegg-Martinsried, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilians University, 82152 Planegg-Martinsried, Germany; 4 SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
13
|
Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022; 10:892922. [PMID: 35602606 PMCID: PMC9119302 DOI: 10.3389/fcell.2022.892922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
During development, the decision of stem and progenitor cells to switch from proliferation to differentiation is of critical importance for the overall size of an organ. Too early a switch will deplete the stem/progenitor cell pool, and too late a switch will not generate the required differentiated cell types. With a focus on the developing neocortex, a six-layered structure constituting the major part of the cerebral cortex in mammals, we discuss here the cell biological features that are crucial to ensure the appropriate proliferation vs. differentiation decision in the neural progenitor cells. In the last two decades, the neural progenitor cells giving rise to the diverse types of neurons that function in the neocortex have been intensely investigated for their role in cortical expansion and gyrification. In this review, we will first describe these different progenitor types and their diversity. We will then review the various cell biological features associated with the cell fate decisions of these progenitor cells, with emphasis on the role of the radial processes emanating from these progenitor cells. We will also discuss the species-specific differences in these cell biological features that have allowed for the evolutionary expansion of the neocortex in humans. Finally, we will discuss the emerging role of cell cycle parameters in neocortical expansion.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| |
Collapse
|
14
|
Lee J, Kim D, Min B. Tissue Resident Foxp3+ Regulatory T Cells: Sentinels and Saboteurs in Health and Disease. Front Immunol 2022; 13:865593. [PMID: 35359918 PMCID: PMC8963273 DOI: 10.3389/fimmu.2022.865593] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells are a CD4 T cell subset with unique immune regulatory function that are indispensable in immunity and tolerance. Their indisputable importance has been investigated in numerous disease settings and experimental models. Despite the extensive efforts in determining the cellular and molecular mechanisms operating their functions, our understanding their biology especially in vivo remains limited. There is emerging evidence that Treg cells resident in the non-lymphoid tissues play a central role in regulating tissue homeostasis, inflammation, and repair. Furthermore, tissue-specific properties of those Treg cells that allow them to express tissue specific functions have been explored. In this review, we will discuss the potential mechanisms and key cellular/molecular factors responsible for the homeostasis and functions of tissue resident Treg cells under steady-state and inflammatory conditions.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Dongkyun Kim
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Booki Min
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Booki Min,
| |
Collapse
|
15
|
Wilsch-Bräuninger M, Huttner WB. Primary Cilia and Centrosomes in Neocortex Development. Front Neurosci 2021; 15:755867. [PMID: 34744618 PMCID: PMC8566538 DOI: 10.3389/fnins.2021.755867] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
During mammalian brain development, neural stem and progenitor cells generate the neurons for the six-layered neocortex. The proliferative capacity of the different types of progenitor cells within the germinal zones of the developing neocortex is a major determinant for the number of neurons generated. Furthermore, the various modes of progenitor cell divisions, for which the orientation of the mitotic spindle of progenitor cells has a pivotal role, are a key parameter to ensure the appropriate size and proper cytoarchitecture of the neocortex. Here, we review the roles of primary cilia and centrosomes of progenitor cells in these processes during neocortical development. We specifically focus on the apical progenitor cells in the ventricular zone. In particular, we address the alternating, dual role of the mother centriole (i) as a component of one of the spindle poles during mitosis, and (ii) as the basal body of the primary cilium in interphase, which is pivotal for the fate of apical progenitor cells and their proliferative capacity. We also discuss the interactions of these organelles with the microtubule and actin cytoskeleton, and with junctional complexes. Centriolar appendages have a specific role in this interaction with the cell cortex and the plasma membrane. Another topic of this review is the specific molecular composition of the ciliary membrane and the membrane vesicle traffic to the primary cilium of apical progenitors, which underlie the ciliary signaling during neocortical development; this signaling itself, however, is not covered in depth here. We also discuss the recently emerging evidence regarding the composition and roles of primary cilia and centrosomes in basal progenitors, a class of progenitors thought to be of particular importance for neocortex expansion in development and evolution. While the tight interplay between primary cilia and centrosomes makes it difficult to allocate independent roles to either organelle, mutations in genes encoding ciliary and/or centrosome proteins indicate that both are necessary for the formation of a properly sized and functioning neocortex during development. Human neocortical malformations, like microcephaly, underpin the importance of primary cilia/centrosome-related processes in neocortical development and provide fundamental insight into the underlying mechanisms involved.
Collapse
Affiliation(s)
| | - Wieland B Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
16
|
Centrosome regulation and function in mammalian cortical neurogenesis. Curr Opin Neurobiol 2021; 69:256-266. [PMID: 34303132 DOI: 10.1016/j.conb.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
As the primary microtubule-organizing center in animal cells, centrosomes regulate microtubule cytoskeleton to support various cellular behaviors. They also serve as the base for nucleating primary cilia, the hub of diverse signaling pathways. Cells typically possess one centrosome that contains two inequal centrioles and undergoes semi-conservative duplication during cell division, resulting in two centrosomes with an inherent asymmetry in age and properties. While the centrosome is ubiquitously present, mutations of centrosome proteins are strongly associated with human microcephaly characterized by a small cerebral cortex, underscoring the importance of an intact centrosome in supporting cortical neurogenesis. Here we review recent advances on centrosome regulation and function in mammalian cortical neural progenitors and discuss the implications for a better understanding of cortical neurogenesis and related disease mechanisms.
Collapse
|