1
|
Kiuchi T, Kobayashi R, Ogawa S, Elverston LLH, Vavylonis D, Watanabe N. Laminar organization of molecular complexes in a clathrin coat revealed by nanoscale protein colocalization. Structure 2025:S0969-2126(25)00132-7. [PMID: 40273906 DOI: 10.1016/j.str.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/31/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Super-resolution microscopy achieves a few nanometers resolution, but colocalization analysis in a molecular complex is limited by its labeling density. Here we present a method for quantitative mapping of molecular complexes using multiplexed super-resolution imaging, integrating exchangeable single-molecule localization (IRIS). We developed antiserum-derived Fab IRIS probes for high-density labeling of endogenous proteins and protein cluster coloring (PC-coloring), which employs pixel-based principal component analysis and clustering. PC-coloring maps regions of distinct ratios of multiple proteins, and in each region, correlation between two proteins is calculated for evaluating the complex formation. PC-coloring revealed multi-layered complex formation in a clathrin-coated structure (CCS) prior to endocytosis. Upon epidermal growth factor (EGF) stimulation, EGF receptor (EGFR)-dominant, EGFR-Grb2-complex, and Grb2-dominant regions lined up from outside the CCS rim. Along the interior of Grb2-dominant regions, CCS components (Eps15, FCHo1/2 and intersectin-1) formed a complex with Grb2 away from EGFR. The Grb2-dominant region and Grb2-CCS component complex formation probably determine EGFR recruitment sites in the CCS rim.
Collapse
Affiliation(s)
- Tai Kiuchi
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Ryouhei Kobayashi
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuichiro Ogawa
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Louis L H Elverston
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Sakyo-ku, Kyoto 606-8501, Japan
| | | | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Wang Q, Nag D, Baldwin SL, Coler RN, McNamara RP. Antibodies as key mediators of protection against Mycobacterium tuberculosis. Front Immunol 2024; 15:1430955. [PMID: 39286260 PMCID: PMC11402706 DOI: 10.3389/fimmu.2024.1430955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterial pathogen Mycobacterium tuberculosis (M.tb) in the respiratory tract. There was an estimated 10.6 million people newly diagnosed with TB, and there were approximately 1.3 million deaths caused by TB in 2022. Although the global prevalence of TB has remained high for decades and is an annual leading cause of death attributed to infectious diseases, only one vaccine, Bacillus Calmette-Guérin (BCG), has been approved so far to prevent/attenuate TB disease. Correlates of protection or immunological mechanisms that are needed to control M.tb remain unknown. The protective role of antibodies after BCG vaccination has also remained largely unclear; however, recent studies have provided evidence for their involvement in protection against disease, as biomarkers for the state of infection, and as potential predictors of outcomes. Interestingly, the antibodies generated post-vaccination with BCG are linked to the activation of innate immune cascades, providing further evidence that antibody effector functions are critical for protection against respiratory pathogens such as M.tb. In this review, we aim to provide current knowledge of antibody application in TB diagnosis, prevention, and treatment. Particularly, this review will focus on 1) The role of antibodies in preventing M.tb infections through preventing Mtb adherence to epithelium, antibody-mediated phagocytosis, and antibody-mediated cellular cytotoxicity; 2) The M.tb-directed antibody response generated after vaccination and how humoral profiles with different glycosylation patterns of these antibodies are linked with protection against the disease state; and 3) How antibody-mediated immunity against M.tb can be further explored as early diagnosis biomarkers and different detection methods to combat the global M.tb burden. Broadening the paradigm of differentiated antibody profiling and antibody-based detection during TB disease progression offers new directions for diagnosis, treatment, and preventative strategies. This approach involves linking the aforementioned humoral responses with the disease state, progression, and clearance.
Collapse
Affiliation(s)
- Qixin Wang
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Deepika Nag
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Ryan P. McNamara
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
3
|
Miyoshi T, Vishwasrao H, Belyantseva I, Sajeevadathan M, Ishibashi Y, Adadey S, Harada N, Shroff H, Friedman T. Live-cell single-molecule fluorescence microscopy for protruding organelles reveals regulatory mechanisms of MYO7A-driven cargo transport in stereocilia of inner ear hair cells. RESEARCH SQUARE 2024:rs.3.rs-4369958. [PMID: 38826223 PMCID: PMC11142366 DOI: 10.21203/rs.3.rs-4369958/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thomas Friedman
- National Institute on Deafness and Other Communication Disorders, NIH
| |
Collapse
|
4
|
Miyoshi T, Vishwasrao HD, Belyantseva IA, Sajeevadathan M, Ishibashi Y, Adadey SM, Harada N, Shroff H, Friedman TB. Live-cell single-molecule fluorescence microscopy for protruding organelles reveals regulatory mechanisms of MYO7A-driven cargo transport in stereocilia of inner ear hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.590649. [PMID: 38766013 PMCID: PMC11100596 DOI: 10.1101/2024.05.04.590649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stereocilia are unidirectional F-actin-based cylindrical protrusions on the apical surface of inner ear hair cells and function as biological mechanosensors of sound and acceleration. Development of functional stereocilia requires motor activities of unconventional myosins to transport proteins necessary for elongating the F-actin cores and to assemble the mechanoelectrical transduction (MET) channel complex. However, how each myosin localizes in stereocilia using the energy from ATP hydrolysis is only partially understood. In this study, we develop a methodology for live-cell single-molecule fluorescence microscopy of organelles protruding from the apical surface using a dual-view light-sheet microscope, diSPIM. We demonstrate that MYO7A, a component of the MET machinery, traffics as a dimer in stereocilia. Movements of MYO7A are restricted when scaffolded by the plasma membrane and F-actin as mediated by MYO7A's interacting partners. Here, we discuss the technical details of our methodology and its future applications including analyses of cargo transportation in various organelles.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Harshad D. Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mrudhula Sajeevadathan
- Division of Molecular and Integrative Physiology, Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Samuel M. Adadey
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Narinobu Harada
- Hearing Research Laboratory, Harada ENT Clinic, Higashi-Osaka, Osaka, 577-0816, Japan
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Perera T, Gunasekara H, Hu YS. Single-Molecule Localization Microscopy Using Time-Lapse Imaging of Single-Antibody Labeling. Curr Protoc 2023; 3:e908. [PMID: 37830764 PMCID: PMC10593501 DOI: 10.1002/cpz1.908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
In single-molecule localization microscopy (SMLM), immunofluorescence (IF) staining affects the quality of the reconstructed superresolution images. However, optimizing IF staining remains challenging because IF staining is a one-step, irreversible process. Sample labeling through reversible binding presents an alternative strategy, but such techniques require significant technological advancements to enhance the dissociation of labels without sacrificing their binding specificity. In this article, we introduce time-lapse imaging of single-antibody labeling. Our versatile technique utilizes commercially available dye-conjugated antibodies. The method controls the antibody concentrations to capture single-antibody labeling of subcellular targets, thereby achieving SMLM through the labeling process. We further demonstrate dual-color single-antibody labeling to enhance the sample labeling density. The new approach allows the evaluation of antibody binding at the single-antibody level and within the cellular environment. This comprehensive guide offers step-by-step instructions for time-lapse imaging of single-antibody labeling experiments and enables the application of the single-antibody labeling technique to a wide range of targets. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample preparation for single-antibody labeling Basic Protocol 2: Data acquisition for single-molecule localization microscopy Alternate Protocol: Dual-color single-antibody labeling using OptoSplit II equation Basic Protocol 3: Image analysis.
Collapse
Affiliation(s)
- Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
6
|
Zhang Q, Miyamoto A, Watanabe N. Protocol to generate fast-dissociating recombinant antibody fragments for multiplexed super-resolution microscopy. STAR Protoc 2023; 4:102523. [PMID: 37610875 PMCID: PMC10468357 DOI: 10.1016/j.xpro.2023.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Multiplexed high-density label super-resolution microscopy image reconstruction by integrating exchangeable single-molecule localization (IRIS) enables elucidating fine structures and molecular distribution in cells and tissues. However, fast-dissociating binders are required for individual targets. Here, we present a protocol for generating antibody-based IRIS probes from existing antibody sequences. We describe steps for retrieving antibody sequences from databases. We then detail the construction, purification, and evaluation of recombinant probes after site-directed mutagenesis at the base of complementarity-determining region loops. The protocol accelerates dissociation rates without compromising the binding specificity. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.
Collapse
Affiliation(s)
- Qianli Zhang
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Akitoshi Miyamoto
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Albertazzi L, Heilemann M. When Weak Is Strong: A Plea for Low-Affinity Binders for Optical Microscopy. Angew Chem Int Ed Engl 2023; 62:e202303390. [PMID: 37158582 DOI: 10.1002/anie.202303390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/10/2023]
Abstract
The exploitation of low-affinity molecular interactions in protein labeling is an emerging topic in optical microscopy. Such non-covalent and low-affinity interactions can be realized with various concepts from chemistry and for different molecule classes, and lead to a constant renewal of fluorescence signals at target sites. Further benefits are a versatile use across microscopy methods, in 3D, live and many-target applications. In recent years, several classes of low-affinity labels were developed and a variety of powerful applications demonstrated. Still, this research field is underdeveloped, while the potential is huge.
Collapse
|
8
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
9
|
Gunasekara H, Perera T, Anderson J, Saed B, Ramseier N, Keshta N, Hu YS. Superresolution Imaging with Single-Antibody Labeling. Bioconjug Chem 2023; 34:825-833. [PMID: 37145839 PMCID: PMC10859171 DOI: 10.1021/acs.bioconjchem.3c00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a versatile single-molecule localization microscopy technique utilizing time-lapse imaging of single-antibody labeling. By performing single-molecule imaging in the subminute time scale and tuning the antibody concentration to create sparse single-molecule binding, we captured antibody labeling of subcellular targets to generate superresolution images. Single-antibody labeling enabled dual-target superresolution imaging using dye-conjugated monoclonal and polyclonal antibodies. We further demonstrate a dual-color strategy to increase the sample labeling density. Single-antibody labeling paves a new way to evaluate antibody binding for superresolution imaging in the native cellular environment.
Collapse
Affiliation(s)
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences
| | - Neal Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences
| | - Neama Keshta
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences
| |
Collapse
|
10
|
Zhang Q, Miyamoto A, Watanabe S, Arimori T, Sakai M, Tomisaki M, Kiuchi T, Takagi J, Watanabe N. Engineered fast-dissociating antibody fragments for multiplexed super-resolution microscopy. CELL REPORTS METHODS 2022; 2:100301. [PMID: 36313806 PMCID: PMC9606137 DOI: 10.1016/j.crmeth.2022.100301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 05/22/2023]
Abstract
Image reconstruction by integrating exchangeable single-molecule localization (IRIS) achieves multiplexed super-resolution imaging by high-density labeling with fast exchangeable fluorescent probes. However, previous methods to develop probes for individual targets required a great amount of time and effort. Here, we introduce a method for generating recombinant IRIS probes with a new mutagenesis strategy that can be widely applied to existing antibody sequences. Several conserved tyrosine residues at the base of complementarity-determining regions were identified as candidate sites for site-directed mutagenesis. With a high probability, mutations at candidate sites accelerated the off rate of recombinant antibody-based probes without compromising specific binding. We were able to develop IRIS probes from five monoclonal antibodies and three single-domain antibodies. We demonstrate multiplexed localization of endogenous proteins in primary neurons that visualizes small synaptic connections with high binding density. It is now practically feasible to generate fast-dissociating fluorescent probes for multitarget super-resolution imaging.
Collapse
Affiliation(s)
- Qianli Zhang
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Akitoshi Miyamoto
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Shin Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Takao Arimori
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masanori Sakai
- Kyoto University Faculty of Engineering, Kyoto 606-8317, Japan
| | - Madoka Tomisaki
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Tai Kiuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. Angew Chem Int Ed Engl 2022; 61:e202206919. [PMID: 35876263 DOI: 10.1002/anie.202206919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alexander R Carr
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ezra Bruggeman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sarah I Benaissa
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Robert F Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - James McColl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Aleks Ponjavic
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202206919. [PMID: 38505515 PMCID: PMC10946633 DOI: 10.1002/ange.202206919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 03/21/2024]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W. Sanders
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Alexander R. Carr
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Ezra Bruggeman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Markus Körbel
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Sarah I. Benaissa
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - Robert F. Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Ana M. Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - James McColl
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Simon J. Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Steven F. Lee
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Aleks Ponjavic
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- School of Physics and AstronomyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Food Science and NutritionUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
13
|
Miyoshi T, Belyantseva IA, Kitajiri SI, Miyajima H, Nishio SY, Usami SI, Kim BJ, Choi BY, Omori K, Shroff H, Friedman TB. Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Hum Genet 2022; 141:363-382. [PMID: 34232383 PMCID: PMC11351816 DOI: 10.1007/s00439-021-02304-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Stereocilia protrude up to 100 µm from the apical surface of vertebrate inner ear hair cells and are packed with cross-linked filamentous actin (F-actin). They function as mechanical switches to convert sound vibration into electrochemical neuronal signals transmitted to the brain. Several genes encode molecular components of stereocilia including actin monomers, actin regulatory and bundling proteins, motor proteins and the proteins of the mechanotransduction complex. A stereocilium F-actin core is a dynamic system, which is continuously being remodeled while maintaining an outwardly stable architecture under the regulation of F-actin barbed-end cappers, severing proteins and crosslinkers. The F-actin cores of stereocilia also provide a pathway for motor proteins to transport cargos including components of tip-link densities, scaffolding proteins and actin regulatory proteins. Deficiencies and mutations of stereocilia components that disturb this "dynamic equilibrium" in stereocilia can induce morphological changes and disrupt mechanotransduction causing sensorineural hearing loss, best studied in mouse and zebrafish models. Currently, at least 23 genes, associated with human syndromic and nonsyndromic hearing loss, encode proteins involved in the development and maintenance of stereocilia F-actin cores. However, it is challenging to predict how variants associated with sensorineural hearing loss segregating in families affect protein function. Here, we review the functions of several molecular components of stereocilia F-actin cores and provide new data from our experimental approach to directly evaluate the pathogenicity and functional impact of reported and novel variants of DIAPH1 in autosomal-dominant DFNA1 hearing loss using single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| | - Shin-Ichiro Kitajiri
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Hiroki Miyajima
- Department of Otolaryngology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
- Department of Otolaryngology, Aizawa Hospital, Matsumoto, 390-8510, Japan
| | - Shin-Ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 390-8621, Matsumoto, Japan
| | - Bong Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, South Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea. Mol Cell Neurosci 2022; 120:103720. [DOI: 10.1016/j.mcn.2022.103720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023] Open
|
15
|
Gunasekara H, Munaweera R, Novotná L, Lillemeier BF, Hu YS. Chaotropic Perturbation of Noncovalent Interactions of the Hemagglutinin Tag Monoclonal Antibody Fragment Enables Superresolution Molecular Census. ACS NANO 2022; 16:129-139. [PMID: 34797055 PMCID: PMC11196025 DOI: 10.1021/acsnano.1c04237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibody-antigen interactions represent one of the most exploited biomolecular interactions in experimental biology. While numerous techniques harnessed immobilized antibodies for nanoscale fluorescence imaging, few utilized their reversible binding kinetics. Here, we investigated noncovalent interactions of the monoclonal hemagglutinin (HA) epitope tag antibody, 12CA5, in the fixed cellular environment. We observed that the use of a chaotropic agent, potassium thiocyanate (KSCN), promoted the dissociation of the 12CA5 antibody fragment (Fab), which already displayed faster dissociation compared to its immunoglobulin G (IgG) counterpart. Molecular dynamic simulations revealed notable root-mean-square deviations and destabilizations in the presence of KSCN, while the hydrogen-bonding network remained primarily unaffected at the antigen-binding site. The reversible interactions enabled us to achieve a superresolution molecular census of local populations of 3xHA tagged microtubule fibers with improved molecular quantification consistency compared to single-molecule localization microscopy (SMLM) techniques utilizing standard immunofluorescence staining for sample labeling. Our technique, termed superresolution census of molecular epitope tags (SR-COMET), highlights the utilization of reversible antibody-antigen interactions for SMLM-based quantitative superresolution imaging.
Collapse
Affiliation(s)
- Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607-7061, United States
| | - Rangika Munaweera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607-7061, United States
| | - Lucie Novotná
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Björn F. Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis & Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Faculty of Biology and Centre for Integrative Biological Signalling Studies (CIBSS), Albert-Ludwigs-University of Freiburg, Freiburg 79104, Germany
| | - Ying S. Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, 60607-7061, United States
| |
Collapse
|
16
|
Miyoshi T, Friedman TB, Watanabe N. Fast-dissociating but highly specific antibodies are novel tools in biology, especially useful for multiplex super-resolution microscopy. STAR Protoc 2021; 2:100967. [PMID: 34841279 PMCID: PMC8605432 DOI: 10.1016/j.xpro.2021.100967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fast-dissociating, highly specific monoclonal antibodies (FDSAs) are single-molecule imaging probes useful for many biological assays including consecutive, multiplexable super-resolution microscopy. We developed a screening assay to characterize the kinetics of antibody-antigen interactions using single-molecule microscopy and established a pipeline to identify FDSAs from thousands of monoclonal candidates. Provided here are detailed protocols to prepare multi-well glass-bottom plates necessary for our assay to identify hybridoma clones secreting FDSAs. Synthesis of fluorescently labeled Fab fragments (Fab probes) from FDSAs is also described. For complete details on the use and execution of this protocol, please refer to Miyoshi et al. (2021).
Collapse
Affiliation(s)
- Takushi Miyoshi
- Laboratory of Single-Molecule Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD 20892, USA
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, Room 1F-143A, Bethesda, MD 20892, USA
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|