1
|
Mossa A, Dierdorff L, Lukin J, Garcia-Forn M, Wang W, Mamashli F, Park Y, Fiorenzani C, Akpinar Z, Kamps J, Tatzelt J, Wu Z, De Rubeis S. Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X. Nat Commun 2025; 16:4512. [PMID: 40374608 PMCID: PMC12081640 DOI: 10.1038/s41467-025-59680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/29/2025] [Indexed: 05/17/2025] Open
Abstract
DDX3X is an X-linked RNA helicase that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females (DDX3X syndrome). Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA metabolism. Compared to male neurons, female neurons display larger nucleoli, higher expression of a set of ribosomal proteins, and a higher cytoplasm-to-nucleus ratio of ribosomal RNA. All these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic arborization complexity in a sex- and dose-dependent manner in both female and male neurons. Ddx3x modulates the development of dendritic spines but only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Collapse
Affiliation(s)
- Adele Mossa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lauren Dierdorff
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jeronimo Lukin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Wang
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021, USA
| | - Fatemeh Mamashli
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yeaji Park
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chiara Fiorenzani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, New York University, College of Arts and Science, New York, NY, 10003, USA
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Zhuhao Wu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Jiao Z, Gao T, Wang X, Wang A, Ma Y, Feng L, Gao L, Gou L, Zhang W, Biglari N, Boxer EE, Steuernagel L, Ding X, Yu Z, Li M, Gao M, Hao M, Zhou H, Cao X, Li S, Jiang T, Qi J, Jia X, Feng Z, Ren B, Chen Y, Shi X, Wang D, Wang X, Han L, Liang Y, Qian L, Jin C, Huang J, Deng W, Wang C, Li E, Hu Y, Tao Z, Li H, Yu X, Xu M, Chang HC, Zhang Y, Xu H, Yan J, Li A, Luo Q, Stoop R, Sternson SM, Brüning JC, Anderson DJ, Poo MM, Sun Y, Xu S, Gong H, Sun YG, Xu X. Projectome-based characterization of hypothalamic peptidergic neurons in male mice. Nat Neurosci 2025; 28:1073-1088. [PMID: 40140607 DOI: 10.1038/s41593-025-01919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
The hypothalamus coordinately regulates physiological homeostasis and innate behaviors, yet the detailed arrangement of hypothalamic axons remains unclear. Here we mapped the whole-brain projections of over 7,000 hypothalamic neurons expressing distinct neuropeptides in male mice, identifying 2 main classes and 31 types using single-neuron projectome analysis. These classes/types exhibited regionally biased soma distribution and specific neuropeptide enrichment. Notably, many projectome types extended long-range axon collaterals to distinct brain regions, allowing single axons to co-regulate multiple targets. We uncovered topographic organization of certain peptidergic axons at specific targets, along with diverse single-neuron projectome patterns in Orexin, Agrp and Pomc populations. Furthermore, hypothalamic peptidergic neurons showed correlated innervation of subdomains in the periaqueductal gray and organized into modular subnetworks within the hypothalamus, providing a structural basis for coordinated outputs. This dataset highlights the complexity of hypothalamic axonal projections and lays a foundation for future investigation of the circuit mechanisms underlying hypothalamic functions.
Collapse
Affiliation(s)
- Zhuolei Jiao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Taosha Gao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofei Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ao Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Le Gao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lingfeng Gou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wen Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nasim Biglari
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetology and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Emma E Boxer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetology and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Xiaojing Ding
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zixian Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjuan Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengtong Gao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mingkun Hao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hua Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xuanzi Cao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shuaishuai Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Jiamei Qi
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Zhao Feng
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Biyu Ren
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Shi
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinran Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Luyao Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yikai Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liuqin Qian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chenxi Jin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiawen Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Deng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - E Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yue Hu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zi Tao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Humingzhu Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Peking University McGovern Institute, Peking University, Beijing, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hung-Chun Chang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yifeng Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Huatai Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Qingming Luo
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Ron Stoop
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Scott M Sternson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetology and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Mu-Ming Poo
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Shengjing Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaohong Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Nitzan N, Buzsáki G. Physiological characteristics of neurons in the mammillary bodies align with topographical organization of subicular inputs. Cell Rep 2024; 43:114539. [PMID: 39052483 PMCID: PMC11475818 DOI: 10.1016/j.celrep.2024.114539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
The mammillary bodies (MBOs), a group of hypothalamic nuclei, play a pivotal role in memory formation and spatial navigation. They receive extensive inputs from the hippocampus through the fornix, but the physiological significance of these connections remains poorly understood. Damage to the MBOs is associated with various forms of anterograde amnesia. However, information about the physiological characteristics of the MBO is limited, primarily due to the limited number of studies that have directly monitored MBO activity along with population patterns of its upstream partners. Employing large-scale silicon probe recording in mice, we characterize MBO activity and its interaction with the subiculum across various brain states. We find that MBO cells are highly diverse in their relationship to theta, ripple, and slow oscillations. Several of the physiological features are inherited by the topographically organized inputs to MBO cells. Our study provides insights into the functional organization of the MBOs.
Collapse
Affiliation(s)
- Noam Nitzan
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
4
|
Milczarek MM, Perry JC, Amin E, Haniffa S, Hathaway T, Vann SD. Impairments in the early consolidation of spatial memories via group II mGluR agonism in the mammillary bodies. Sci Rep 2024; 14:5977. [PMID: 38472268 PMCID: PMC10933409 DOI: 10.1038/s41598-024-56015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
mGluR2 receptors are widely expressed in limbic brain regions associated with memory, including the hippocampal formation, retrosplenial and frontal cortices, as well as subcortical regions including the mammillary bodies. mGluR2/3 agonists have been proposed as potential therapeutics for neurological and psychiatric disorders, however, there is still little known about the role of these receptors in cognitive processes, including memory consolidation. To address this, we assessed the effect of the mGluR2/3 agonist, eglumetad, on spatial memory consolidation in both mice and rats. Using the novel place preference paradigm, we found that post-sample injections of eglumetad impaired subsequent spatial discrimination when tested 6 h later. Using the immediate early gene c-fos as a marker of neural activity, we showed that eglumetad injections reduced activity in a network of limbic brain regions including the hippocampus and mammillary bodies. To determine whether the systemic effects could be replicated with more targeted manipulations, we performed post-sample infusions of the mGluR2/3 agonist 2R,4R-APDC into the mammillary bodies. This impaired novelty discrimination on a place preference task and an object-in-place task, again highlighting the role of mGluR2/3 transmission in memory consolidation and demonstrating the crucial involvement of the mammillary bodies in post-encoding processing of spatial information.
Collapse
Affiliation(s)
- Michal M Milczarek
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - James C Perry
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Eman Amin
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Salma Haniffa
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Thomas Hathaway
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK
| | - Seralynne D Vann
- School of Psychology & Neuroscience and Mental Health Innovation Institute, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
5
|
Zhang Q, Liu X, Gong L, He M. Combinatorial genetic strategies for dissecting cell lineages, cell types, and gene function in the mouse brain. Dev Growth Differ 2023; 65:546-553. [PMID: 37963088 DOI: 10.1111/dgd.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Research in neuroscience has greatly benefited from the development of genetic approaches that enable lineage tracing, cell type targeting, and conditional gene regulation. Recent advances in combinatorial strategies, which integrate multiple cellular features, have significantly enhanced the spatiotemporal precision and flexibility of these manipulations. In this minireview, we introduce the concept and design of these strategies and provide a few examples of their application in genetic fate mapping, cell type targeting, and reversible conditional gene regulation. These advancements have facilitated in-depth investigation into the developmental principles underlying the assembly of brain circuits, granting experimental access to highly specific cell lineages and subtypes, as well as offering valuable new tools for modeling and studying neurological diseases. Additionally, we discuss future directions aimed at expanding and improving the existing genetic toolkit for a better understanding of the development, structure, and function of healthy and diseased brains.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Gallart-Palau X, Lorca C, Mulet M, Sánchez Milán JA, Lisa J, Ngan SC, Iyappan R, Katoueezadeh M, Serra A, Sze SK. Differential systemic decellularization in vivo to study molecular changes in each vasculature layer in murine models of disease. STAR Protoc 2023; 4:102524. [PMID: 37624701 PMCID: PMC10463255 DOI: 10.1016/j.xpro.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular dysfunction underlies the onset and progression of many life-threatening diseases, highlighting the need for improved understanding of its molecular basis. Here, we present differential systemic decellularization in vivo (DISDIVO), a protocol that enables systemic and independent study of the molecular changes in each vasculature layer in murine models of disease. We describe steps for anesthesia, perfusion surgery, and exsanguination. We then detail detachment and collection of glycocalyx and decellularization and collection of both endothelial and smooth muscle cells. For complete details on the use and execution of this protocol, please refer to Serra et al., Gallart-Palau et al., and Vinaiphat et al.1,2,3.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Psychology, University of Lleida (UdL), 25001 Lleida, Spain.
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain
| | - José Antonio Sánchez Milán
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain
| | - Julia Lisa
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Maryam Katoueezadeh
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain.
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
7
|
Dasgupta S, Montroull LE, Pandya MA, Zanin JP, Wang W, Wu Z, Friedman WJ. Cortical Brain Injury Causes Retrograde Degeneration of Afferent Basal Forebrain Cholinergic Neurons via the p75NTR. eNeuro 2023; 10:ENEURO.0067-23.2023. [PMID: 37558465 PMCID: PMC10467018 DOI: 10.1523/eneuro.0067-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023] Open
Abstract
Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Laura E Montroull
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Mansi A Pandya
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Juan P Zanin
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Wei Wang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Zhuhao Wu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
8
|
Zhong Y, Liang B, Meng H, Ye R, Li Z, Du J, Wang B, Zhang B, Huang Y, Lin X, Hu M, Rong W, Wu Q, Yang X, Huang Z. 1,2-Dichloroethane induces cortex demyelination by depressing myelin basic protein via inhibiting aquaporin 4 in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113180. [PMID: 35026584 DOI: 10.1016/j.ecoenv.2022.113180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant, and overexposure to this hazardous material causes brain edema and demyelination in humans. We found that 1,2-DCE inhibits aquaporin 4 (AQP4) and is a primary pathogenic effector of 1,2-DCE-induced brain edema in animals. However, AQP4 down-regulation's link with cortex demyelination after 1,2-DCE exposure remains unclear. Thus, we exposed wild-type (WT) CD-1 mice and AQP4 knockout (AQP4-KO) mice to 0, 100, 350 and 700 mg/m3 1,2-DCE by inhalation for 28 days. We applied label-free proteomics and a cell co-culture system to elucidate the role of AQP4 inhibition in 1,2-DCE-induced demyelination. The results showed that 1,2-DCE down-regulated AQP4 in the WT mouse cortexes. Both 1,2-DCE exposure and AQP4 deletion induced neurotoxicity in mice, including increased brain water content, abnormal pathological vacuolations, and neurobehavioral damage. Tests for interaction of multiple regression analysis highlighted different effects of 1,2-DCE exposure level depending on the genotype, indicating the core role of AQP4 in regulation on 1,2-DCE-caused neurotoxicity. We used label-free quantitative proteomics to detect differentially expressed proteins associated with 1,2-DCE exposure and AQP4 inhibition, and identified down-regulation in myelin basic protein (MBP) and tyrosine-protein kinase Fyn (FYN) in a dose-dependent manner in WT mice but not in AQP4-KO mice. 1,2-DCE and AQP4 deletion separately resulted in demyelination, as detected by Luxol fast blue staining, and manifested as disordered nerve fibers and cavitation in the cortexes. Western blot and immunofluorescence confirmed the decreased AQP4 in the astrocytes and the down-regulated MBP in the oligodendrocytes by 1,2-DCE exposure and AQP4 inhibition, respectively. Finally, the co-culture results of SVG p12 and MO3.13 cells showed that 1,2-DCE-induced AQP4 down-regulation in the astrocytes was responsible for demyelination, by decreasing MBP in the oligodendrocytes. In conclusion, 1,2-DCE induced cortex demyelination by depressing MBP via AQP4 inhibition in the mice.
Collapse
Affiliation(s)
- Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weifeng Rong
- Department of Hygiene Monitor, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qinghong Wu
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
10
|
Wu J, Cai Y, Wu X, Ying Y, Tai Y, He M. Transcardiac Perfusion of the Mouse for Brain Tissue Dissection and Fixation. Bio Protoc 2021; 11:e3988. [PMID: 33796622 DOI: 10.21769/bioprotoc.3988] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/02/2022] Open
Abstract
Transcardiac perfusion with saline followed by 4% paraformaldehyde (PFA) is widely used to clear blood and preserve brain for immunostaining or in situ hybridization. PFA breaks into formaldehyde in solution, which cross-link protein and DNA molecules to preserve tissue and cell structure. Here we provide a step by step guide for performing this procedure in mouse.
Collapse
Affiliation(s)
- Jinyun Wu
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Yuqi Cai
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyang Wu
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Yue Ying
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Yilin Tai
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|