1
|
Mogi K, Tomita H, Yoshihara M, Kajiyama H, Hara A. Advances in bacterial artificial chromosome (BAC) transgenic mice for gene analysis and disease research. Gene 2025; 934:149014. [PMID: 39461574 DOI: 10.1016/j.gene.2024.149014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Transgenic mice, including those created using Bacterial Artificial Chromosomes (BACs), are artificial manipulations that have become critical tools for studying gene function. While conventional transgenic techniques face challenges in achieving precise expression of foreign genes in specific cells and tissues, BAC transgenic mice offer a solution by incorporating large DNA segments that can include entire expression units with tissue-specific enhancers. This review provides a thorough examination of BAC transgenic mouse technology, encompassing both traditional and humanized models. We explore the benefits and drawbacks of BAC transgenesis compared to other techniques such as knock-in and CRISPR/Cas9 technologies. The review emphasizes the applications of BAC transgenic mice in various disciplines, including neuroscience, immunology, drug metabolism, and disease modeling. Additionally, we address crucial aspects of generating and analyzing BAC transgenic mice, such as position effects, copy number variations, and strategies to mitigate these challenges. Despite certain limitations, humanized BAC transgenic mice have proven to be invaluable tools for studying the pathogenesis of human diseases, drug development, and understanding intricate gene regulatory mechanisms. This review discusses current topics on BAC transgenic mice and their evolving significance in biomedical research.
Collapse
Affiliation(s)
- Kazumasa Mogi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan.
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
2
|
Ito Y, Yamada D, Kobayashi S, Sasaki K, Iwagami Y, Tomimaru Y, Asaoka T, Noda T, Takahashi H, Shimizu J, Doki Y, Eguchi H. The combination of gemcitabine plus an anti-FGFR inhibitor can have a synergistic antitumor effect on FGF-activating cholangiocarcinoma. Cancer Lett 2024; 595:216997. [PMID: 38801887 DOI: 10.1016/j.canlet.2024.216997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Anti-FGFR treatment for cholangiocarcinoma (CCA) with fibroblast growth factor receptor (FGFR) alteration is a promising treatment option. Since the antitumor mechanisms of anti-FGFR inhibitors and conventional cytotoxic drugs differ, synergistic effects can be possible. This study aimed to evaluate the efficacy of the combined administration of gemcitabine (GEM) and pemigatinib in CCA cells with FGFR2 alterations. To simulate the treatment for patients with 3 kinds of CCA, chemonaïve CCA with activation of the FGF pathway, chemo-resistant CCA with activation of the FGF pathway, and CCA without FGF pathway activation (as controls), we evaluated 3 different CCA cell lines, CCLP-1 (with a FGFR2 fusion mutation), CCLP-GR (GEM-resistant cells established from CCLP-1), and HuCCT1 (without FGFR mutations). There was no significant difference between CCLP-1 and HuCCT1 in GEM suspensibility (IC50 = 19.3, 22.6 mg/dl, p = 0.1187), and the drug sensitivity to pemigatinib did not differ between CCLP-1 and CCLP-GR (IC50 = 7.18,7.60 nM, p = 0.3089). Interestingly, only CCLP-1 showed a synergistic effect with combination therapy consisting of GEM plus pemigatinib in vitro and in vivo. In a comparison of the reaction to GEM exposure, only CCLP-1 cells showed an increase in the activation of downstream proteins in the FGF pathway, especially FRS2 and ERK. In association with this reaction, cell cycle and mitosis were increased with GEM exposure in CCLP-1, but HuCCT1/CCLP-GR did not show this reaction. Our results suggested that combination therapy with GEM plus pemigatinib is a promising treatment for chemonaïve patients with CCA with activation of the FGF pathway.
Collapse
MESH Headings
- Gemcitabine
- Humans
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/pathology
- Cholangiocarcinoma/genetics
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/administration & dosage
- Drug Synergism
- Animals
- Bile Duct Neoplasms/drug therapy
- Bile Duct Neoplasms/pathology
- Bile Duct Neoplasms/genetics
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Xenograft Model Antitumor Assays
- Pyrimidines/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Mice
- Cell Proliferation/drug effects
- Mice, Nude
- Signal Transduction/drug effects
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Drug Resistance, Neoplasm/drug effects
- Protein Kinase Inhibitors/pharmacology
- Mutation
- Apoptosis/drug effects
- Morpholines
- Pyrroles
Collapse
Affiliation(s)
- Yoshiro Ito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan.
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan.
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayama-cho Tennoji-Ku, Osaka, 543-0035, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Junzo Shimizu
- Department of Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibahara-cho, Toyonaka, Osaka, 560-8565, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2(E2), Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Huang XH, Chen TX, Liu HL, Huang MW. A Review of Type 1 and Type 2 Intraductal Papillary Neoplasms of the Bile Duct. Curr Med Sci 2024; 44:485-493. [PMID: 38748369 DOI: 10.1007/s11596-024-2863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/29/2024] [Indexed: 06/29/2024]
Abstract
Intraductal papillary neoplasm of the bile duct (IPNB) is a heterogeneous disease similar to intraductal papillary mucinous neoplasm of the pancreas. These lesions have been recognized as one of the three major precancerous lesions in the biliary tract since 2010. In 2018, Japanese and Korean pathologists reached a consensus, classifying IPNBs into type l and type 2 IPNBs. IPNBs are more prevalent in male patients in East Asia and are closely related to diseases such as cholelithiasis and schistosomiasis. From a molecular genetic perspective, IPNBs exhibit early genetic variations, and different molecular pathways may be involved in the tumorigenesis of type 1 and type 2 IPNBs. The histological subtypes of IPNBs include gastric, intestinal, pancreaticobiliary, or oncocytic subtypes, but type 1 IPNBs typically exhibit more regular and well-organized histological features than type 2 IPNBs and are more commonly found in the intrahepatic bile ducts with abundant mucin. Due to the rarity of these lesions and the absence of specific clinical and laboratory features, imaging is crucial for the preoperative diagnosis of IPNB, with local bile duct dilation and growth along the bile ducts being the main imaging features. Surgical resection remains the optimal treatment for IPNBs, but negative bile duct margins and the removal of lymph nodes in the hepatic hilum significantly improve the postoperative survival rates for patients with IPNBs.
Collapse
Affiliation(s)
- Xia-Hui Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian-Xiang Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hong-Liang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ming-Wen Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Manzano-Núñez F, Prates Tiago Aguilar L, Sempoux C, Lemaigre FP. Biliary Tract Cancer: Molecular Biology of Precursor Lesions. Semin Liver Dis 2023; 43:472-484. [PMID: 37944999 DOI: 10.1055/a-2207-9834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Biliary tract cancer is a devastating malignancy of the bile ducts and gallbladder with a dismal prognosis. The study of precancerous lesions has received considerable attention and led to a histopathological classification which, in some respects, remains an evolving field. Consequently, increasing efforts have been devoted to characterizing the molecular pathogenesis of the precursor lesions, with the aim of better understanding the mechanisms of tumor progression, and with the ultimate goal of meeting the challenges of early diagnosis and treatment. This review delves into the molecular mechanisms that initiate and promote the development of precursor lesions of intra- and extrahepatic cholangiocarcinoma and of gallbladder carcinoma. It addresses the genomic, epigenomic, and transcriptomic landscape of these precursors and provides an overview of animal and organoid models used to study them. In conclusion, this review summarizes the known molecular features of precancerous lesions in biliary tract cancer and highlights our fragmentary knowledge of the molecular pathogenesis of tumor initiation.
Collapse
Affiliation(s)
| | | | - Christine Sempoux
- Institute of Pathology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
5
|
Shirakami Y, Kato J, Ohnishi M, Taguchi D, Maeda T, Ideta T, Kubota M, Sakai H, Tomita H, Tanaka T, Shimizu M. A Novel Mouse Model of Intrahepatic Cholangiocarcinoma Induced by Azoxymethane. Int J Mol Sci 2023; 24:14581. [PMID: 37834032 PMCID: PMC10572168 DOI: 10.3390/ijms241914581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Cholangiocarcinoma is the second most common primary cancer of the liver and has a poor prognosis. Various animal models, including carcinogen-induced and genetically engineered rodent models, have been established to clarify the mechanisms underlying cholangiocarcinoma development. In the present study, we developed a novel mouse model of malignant lesions in the biliary ducts induced by the administration of the carcinogen azoxymethane to obese C57BLKS/J-db/db mice. A histopathological analysis revealed that the biliary tract lesions in the liver appeared to be an intrahepatic cholangiocarcinoma with higher tumor incidence, shorter experimental duration, and a markedly increased incidence in obese mice. Molecular markers analyzed using a microarray and a qPCR indicated that the cancerous lesions originated from the cholangiocytes and developed in the inflamed livers. These findings indicated that this is a novel mouse model of intrahepatic cholangiocarcinoma in the context of steatohepatitis. This model can be used to provide a better understanding of the pathogenic mechanisms of cholangiocarcinoma and to develop novel therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Junichi Kato
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Masaya Ohnishi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Daisuke Taguchi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Toshihide Maeda
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Masaya Kubota
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Hiroyasu Sakai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (J.K.); (M.O.); (D.T.); (T.M.); (T.I.); (M.K.); (H.S.); (M.S.)
| |
Collapse
|
6
|
Veth TS, Francavilla C, Heck AJR, Altelaar M. Elucidating Fibroblast Growth Factor-Induced Kinome Dynamics Using Targeted Mass Spectrometry and Dynamic Modeling. Mol Cell Proteomics 2023; 22:100594. [PMID: 37328066 PMCID: PMC10368922 DOI: 10.1016/j.mcpro.2023.100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition. The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment and ARAF-driven activation upon FGF4 treatment.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, and Manchester Breast Centre, Manchester Cancer Research Centre, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Zhu X, Ni Q, Wang Q, Ma C, Yang F, Gao H, Zhu H, Zhou X, Chang H, Lu J, Liu F. Intraductal papillary mucinous neoplasm of the biliary tract in the caudate lobe of the liver: a case report and literature review. Front Oncol 2023; 13:1114514. [PMID: 37465111 PMCID: PMC10351580 DOI: 10.3389/fonc.2023.1114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023] Open
Abstract
An intraductal papillary mucinous neoplasm of the biliary tract (BT-IPMN) in the caudate lobe of the liver is a rare tumor originating from the bile duct. Approximately 40% of the intraductal papillary neoplasms of the biliary tract (IPNB) secrete mucus and can grow in the intrahepatic or extrahepatic bile ducts. A 65-year-old woman presented with recurrent episodes of right upper pain. She developed her first episode 8 years ago, which resolved spontaneously. The frequency of symptoms has increased in the last 2 years. She underwent laparoscopic hepatectomy and choledochal exploration and was pathologically diagnosed with a rare BT-IPMN of the caudate lobe after admission. Here, we review studies on IPNB cases and systematically describe the pathological type, diagnosis, and treatment of IPNB to provide a valuable reference for hepatobiliary surgeons in the diagnosis and treatment of this disease.
Collapse
|
8
|
Oeurn K, Jusakul A, Jaidee R, Kukongviriyapan V, Senggunprai L, Prawan A, Kongpetch S. FGF10/FGFR2 Signaling: Therapeutically Targetable Vulnerability in Ligand-responsive Cholangiocarcinoma Cells. In Vivo 2023; 37:1628-1637. [PMID: 37369494 PMCID: PMC10347910 DOI: 10.21873/invivo.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND/AIM Increasing evidence has revealed FGFR2 as an attractive therapeutic target for cancer including cholangiocarcinoma (CCA). The present study investigated the oncogenic mechanisms by which FGF10 ligand activates FGFR2 in CCA cells and determined whether FGFR inhibitors could suppress FGF10-mediated migration of CCA cells. MATERIALS AND METHODS Effects of FGF10 on the proliferation, migration, and invasion of KKU-M213A cells were assessed using clonogenic and transwell assays. Protein expression levels of FGFR2 and pro-angiogenic factors were determined via immunoblotting and antibody array analysis. FGFR2 knockdown using a small interfering RNA was used to validate the role of FGF10 in promoting cell migration via FGFR2. The effects of infigratinib (FGFR inhibitor) on cell viability, were determined in KKU-100, KKU-M213A, KKU-452 cells. Moreover, the efficacy of the FGFR inhibitor in suppressing migration via FGF10/FGFR2 stimulation was assessed in KKU-M213A cells. RESULTS FGF10 significantly increased the expression of phospho-FGFR/FGFR2 and promoted the proliferation, migration, and invasion of KKU-M213A cells. FGF10 increased the expression levels of p-Akt, p-mTOR, VEGF, Slug, and pro-angiogenic proteins related to metastasis. Cell migration mediated by FGF10 was markedly decreased in FGFR2-knockdown cells. Moreover, FGF10/FGFR2 promoted the migration of cells, which was suppressed by the FGFR inhibitor. CONCLUSION FGF10/FGFR2 activates the Akt/mTOR and VEGF/Slug pathways, which are associated with the stimulation of migration and invasion in CCA. Moreover, the FGF10/FGFR2 signaling was inhibited by an FGFR inhibitor resulting suppression of cell migration, which warrants further studies on their clinical utility for CCA treatment.
Collapse
Affiliation(s)
- Kimyeun Oeurn
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Rattanaporn Jaidee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand;
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Duwe L, Fouassier L, Lafuente-Barquero J, Andersen JB. Unraveling the actin cytoskeleton in the malignant transformation of cholangiocyte biology. Transl Oncol 2022; 26:101531. [PMID: 36113344 PMCID: PMC9483793 DOI: 10.1016/j.tranon.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Correct actin cytoskeleton organization is vital in the liver organ homeostasis and disease control. Rearrangements of the actin cytoskeleton may play a vital role in the bile duct cells cholangiocytes. An abnormal actin network leads to aberrant cell morphology, deregulated signaling networks and ultimately triggering the development of cholangiocarcinoma (CCA) and paving the route for cancer cell dissemination (metastasis). In this review, we will outline alterations of the actin cytoskeleton and the potential role of this dynamic network in initiating CCA, as well as regulating the course of this malignancy. Actin rearrangements not only occur because of signaling pathways, but also regulate and modify cellular signaling. This emphasizes the importance of the actin cytoskeleton itself as cause for aberrant signaling and in promoting tumorigenic phenotypes. We will highlight the impact of aberrant signaling networks on the actin cytoskeleton and its rearrangement as potential cause for CCA. Often, these exact mechanisms in CCA are limited understood and still must be elucidated. Indeed, focusing future research on how actin affects and regulates other signaling pathways may provide more insights into the mechanisms of CCA development, progression, and metastasis. Moreover, manipulation of the actin cytoskeleton organization highlights the potential for a novel therapeutic area.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark.
| |
Collapse
|
10
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
11
|
CD24 Expression Dampens the Basal Antiviral State in Human Neuroblastoma Cells and Enhances Permissivity to Zika Virus Infection. Viruses 2022; 14:v14081735. [PMID: 36016357 PMCID: PMC9416398 DOI: 10.3390/v14081735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) exhibits distinct selectivity for infection of various cells and tissues, but how host cellular factors modulate varying permissivity remains largely unknown. Previous studies showed that the neuroblastoma cell line SK-N-AS (expressing low levels of cellular protein CD24) was highly restricted for ZIKV infection, and that this restriction was relieved by ectopic expression of CD24. We tested the hypothesis that CD24 expression allowed ZIKV replication by suppression of the antiviral response. SK-N-AS cells expressing an empty vector (termed CD24-low cells) showed elevated basal levels of phosphorylated STAT1, IRF-1, IKKE, and NFκB. In response to exogenously added type I interferon (IFN-I), CD24-low cells had higher-level induction of antiviral genes and activity against two IFN-I-sensitive viruses (VSV and PIV5-P/V) compared to SK-N-AS cells with ectopic CD24 expression (termed CD24-high cells). Media-transfer experiments showed that the inherent antiviral state of CD24-low cells was not dependent on a secreted factor such as IFN-I. Transcriptomics analysis revealed that CD24 expression decreased expression of genes involved in intracellular antiviral pathways, including IFN-I, NFκB, and Ras. Our findings that CD24 expression in neuroblastoma cells represses intracellular antiviral pathways support the proposal that CD24 may represent a novel biomarker in cancer cells for susceptibility to oncolytic viruses.
Collapse
|
12
|
Desjonqueres E, Campani C, Marra F, Zucman-Rossi J, Nault JC. Preneoplastic lesions in the liver: Molecular insights and relevance for clinical practice. Liver Int 2022; 42:492-506. [PMID: 34982503 DOI: 10.1111/liv.15152] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the most frequent primary liver cancers, accounting for approximately 80% and 15%, respectively. HCC carcinogenesis occurs mostly in cirrhosis and is a complex multi-step process, from precancerous lesions (low-grade and high-grade dysplastic nodules) to progressed HCC. During the different stages of liver carcinogenesis, there is an accumulation of pathological, genetic and epigenetic changes leading to initiation, malignant transformation and finally tumour progression. In contrast, a small subset of HCC occurs in normal liver from the transformation of hepatocellular adenoma (HCA), a benign hepatocellular tumour. The recent molecular classification enables to stratify HCAs according to their risk of complication, in particular malignant transformation, associated with mutations in exon 3 of the catenin beta 1 (CTNNB1) gene. Cholangiocarcinoma (CCA) derives from the multistep malignant transformation of preneoplastic lesions, like biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB), for which a pre-operative diagnosis remains difficult. Different genetic alterations are involved in BilIN and IPNB progression, leading to the development of tubular or intestinal adenocarcinoma. The aims of this review are to describe the main clinical and molecular features of preneoplastic lesions leading to the development of HCC and CCA, their implications in clinical practice and the perspectives for future research.
Collapse
Affiliation(s)
- Elvire Desjonqueres
- Service d'hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France.,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Claudia Campani
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France.,Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Jean-Charles Nault
- Service d'hépatologie, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bobigny, France.,Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.,Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, team « Functional Genomics of Solid Tumors », Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| |
Collapse
|