1
|
Zhu M, Peng J, Wang M, Lin S, Zhang H, Zhou Y, Dai X, Zhao H, Yu YQ, Shen L, Li XM, Chen J. Transcriptomic and spatial GABAergic neuron subtypes in zona incerta mediate distinct innate behaviors. Nat Commun 2025; 16:3107. [PMID: 40169544 PMCID: PMC11961626 DOI: 10.1038/s41467-025-57896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the anatomical connection and behaviors of transcriptomic neuron subtypes is critical to delineating cell type-specific functions in the brain. Here we integrated single-nucleus transcriptomic sequencing, in vivo circuit mapping, optogenetic and chemogenetic approaches to dissect the molecular identity and function of heterogeneous GABAergic neuron populations in the zona incerta (ZI) in mice, a region involved in modulating various behaviors. By microdissecting ZI for transcriptomic and spatial gene expression analyses, our results revealed two non-overlapping Ecel1- and Pde11a-expressing GABAergic neurons with dominant expression in the rostral and medial zona incerta (ZIrEcel1 and ZImPde11a), respectively. The GABAergic projection from ZIrEcel1 to periaqueductal gray mediates self-grooming, while the GABAergic projection from ZImPde11a to the oral part of pontine reticular formation promotes transition from sleep to wakefulness. Together, our results revealed the molecular markers, spatial organization and specific neuronal circuits of two discrete GABAergic projection neuron populations in segregated subregions of the ZI that mediate distinct innate behaviors, advancing our understanding of the functional organization of the brain.
Collapse
Affiliation(s)
- Mengyue Zhu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jieqiao Peng
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mi Wang
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhou
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xinyue Dai
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhao
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 311305, China.
| | - Jiadong Chen
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
2
|
Moghadam FF, Gutierrez Guzman BE, Zheng X, Parsa M, Hozyen LM, Dannenberg H. Cholinergic dynamics in the septo-hippocampal system provide phasic multiplexed signals for spatial novelty and correlate with behavioral states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634097. [PMID: 39896475 PMCID: PMC11785060 DOI: 10.1101/2025.01.21.634097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice. Using a general linear model, we quantified the extent to which cholinergic dynamics were explained by changes in movement speed, behavioral states such as locomotion, grooming, and rearing, and hippocampus-dependent cognitive states such as recognizing a novel location of a familiar object. The data show that cholinergic dynamics contain a multiplexed code of fast and slow signals i) coding for the logarithm of movement speed at sub-second timescales, ii) providing a phasic spatial novelty signal during the brief periods of exploring a novel object location, and iii) coding for environmental novelty at a seconds-long timescale. Furthermore, behavioral event-related phasic cholinergic activity around the onset and offset of the behavior demonstrates that fast cholinergic transients help facilitate a switch in cognitive and behavioral state before and during the onset of behavior. These findings enhance understanding of the mechanisms by which cholinergic modulation contributes to the coding of movement speed and encoding of novel spatial information.
Collapse
Affiliation(s)
| | | | - Xihui Zheng
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Mina Parsa
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Lojy M. Hozyen
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
3
|
Tuna T, Banks T, Glickert G, Sevinc C, Nair SS, Unal G. Basal forebrain innervation of the amygdala: an anatomical and computational exploration. Brain Struct Funct 2025; 230:30. [PMID: 39805973 PMCID: PMC11729089 DOI: 10.1007/s00429-024-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity. We used retrograde tracing with fluorescent immunohistochemistry to identify cholinergic and non-cholinergic parvalbumin- or calbindin-immunoreactive BF neuronal subgroups targeting the input (lateral and basolateral nuclei) and output (central nucleus and the central bed nucleus of the stria terminalis) regions of the amygdaloid complex. We observed a dense non-cholinergic, putative GABAergic projection from the ventral pallidum (VP) and the substantia innominata (SI) to the basolateral amygdala (BLA). The VP/SI axonal projections to the BLA were confirmed using viral anterograde tracing and transsynaptic labeling. We tested the potential function of this VP/SI-BLA pathway in a 1000-cell biophysically realistic network model, which incorporated principal neurons and three major interneuron groups of the BLA, together with extrinsic glutamatergic, cholinergic, and VP/SI GABAergic inputs. We observed in silico that theta-modulation of VP/SI GABAergic projections enhanced theta oscillations in the BLA via their selective innervation of the parvalbumin-expressing local interneurons. Ablation of parvalbumin-, but not somatostatin- or calretinin-expressing, interneurons reduced theta power in the BLA model. These results suggest that long-range BF GABAergic projections may modulate network activity at their target regions through the formation of a common interneuron-type and oscillatory phase-specific disinhibitory motif.
Collapse
Affiliation(s)
- Tuğçe Tuna
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Tyler Banks
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gregory Glickert
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Satish S Nair
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
4
|
Hasselmo ME. Development of the SPEAR Model: Separate Phases of Encoding and Retrieval Are Necessary for Storing Multiple Overlapping Associative Memories. Hippocampus 2025; 35:e23676. [PMID: 39721980 DOI: 10.1002/hipo.23676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
In keeping with the historical focus of this special issue of Hippocampus, this paper reviews the history of my development of the SPEAR model. The SPEAR model proposes that separate phases of encoding and retrieval (SPEAR) allow effective storage of multiple overlapping associative memories in the hippocampal formation and other cortical structures. The separate phases for encoding and retrieval are proposed to occur within different phases of theta rhythm with a cycle time on the order of 125 ms. The same framework applies to the slower transition between encoding and consolidation dynamics regulated by acetylcholine. The review includes description of the experimental data on acetylcholine and theta rhythm that motivated this model, the realization that existing associative memory models require these different dynamics, and the subsequent experimental data supporting these dynamics. The review also includes discussion of my work on the encoding of episodic memories as spatiotemporal trajectories, and some personal description of the episodic memories from my own spatiotemporal trajectory as I worked on this model.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Robinson JC, Ying J, Hasselmo ME, Brandon MP. Optogenetic silencing of medial septal GABAergic neurons disrupts grid cell spatial and temporal coding in the medial entorhinal cortex. Cell Rep 2024; 43:114590. [PMID: 39163200 DOI: 10.1016/j.celrep.2024.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 07/21/2024] [Indexed: 08/22/2024] Open
Abstract
The hippocampus and medial entorhinal cortex (MEC) form a cognitive map that facilitates spatial navigation. As part of this map, MEC grid cells fire in a repeating hexagonal pattern across an environment. This grid pattern relies on inputs from the medial septum (MS). The MS, and specifically GABAergic neurons, are essential for theta rhythm oscillations in the entorhinal-hippocampal network; however, the role of this population in grid cell function is unclear. To investigate this, we use optogenetics to inhibit MS-GABAergic neurons and observe that MS-GABAergic inhibition disrupts grid cell spatial periodicity. Grid cell spatial periodicity is disrupted during both optogenetic inhibition periods and short inter-stimulus intervals. In contrast, longer inter-stimulus intervals allow for the recovery of grid cell spatial firing. In addition, grid cell phase precession is also disrupted. These findings highlight the critical role of MS-GABAergic neurons in maintaining grid cell spatial and temporal coding in the MEC.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| | - Johnson Ying
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Utashiro N, MacLaren DAA, Liu YC, Yaqubi K, Wojak B, Monyer H. Long-range inhibition from prelimbic to cingulate areas of the medial prefrontal cortex enhances network activity and response execution. Nat Commun 2024; 15:5772. [PMID: 38982042 PMCID: PMC11233578 DOI: 10.1038/s41467-024-50055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kaneschka Yaqubi
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf and Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Wojak
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of the Heidelberg University and of the German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Applegate MC, Gutnichenko KS, Aronov D. Topography of inputs into the hippocampal formation of a food-caching bird. J Comp Neurol 2023; 531:1669-1688. [PMID: 37553864 PMCID: PMC10611445 DOI: 10.1002/cne.25533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
The mammalian hippocampal formation (HF) is organized into domains associated with different functions. These differences are driven in part by the pattern of input along the hippocampal long axis, such as visual input to the septal hippocampus and amygdalar input to the temporal hippocampus. HF is also organized along the transverse axis, with different patterns of neural activity in the hippocampus and the entorhinal cortex. In some birds, a similar organization has been observed along both of these axes. However, it is not known what role inputs play in this organization. We used retrograde tracing to map inputs into HF of a food-caching bird, the black-capped chickadee. We first compared two locations along the transverse axis: the hippocampus and the dorsolateral hippocampal area (DL), which is analogous to the entorhinal cortex. We found that pallial regions predominantly targeted DL, while some subcortical regions like the lateral hypothalamus (LHy) preferentially targeted the hippocampus. We then examined the hippocampal long axis and found that almost all inputs were topographic along this direction. For example, the anterior hippocampus was preferentially innervated by thalamic regions, while the posterior hippocampus received more amygdalar input. Some of the topographies we found bear a resemblance to those described in the mammalian brain, revealing a remarkable anatomical similarity of phylogenetically distant animals. More generally, our work establishes the pattern of inputs to HF in chickadees. Some of these patterns may be unique to chickadees, laying the groundwork for studying the anatomical basis of these birds' exceptional hippocampal memory.
Collapse
Affiliation(s)
| | | | - Dmitriy Aronov
- Zuckerman Mind Brain Behavior Institute Columbia University
| |
Collapse
|
8
|
Huang X, Schlesiger MI, Barriuso-Ortega I, Leibold C, MacLaren DAA, Bieber N, Monyer H. Distinct spatial maps and multiple object codes in the lateral entorhinal cortex. Neuron 2023; 111:3068-3083.e7. [PMID: 37478849 DOI: 10.1016/j.neuron.2023.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
The lateral entorhinal cortex (LEC) is a major cortical input area to the hippocampus, and it is crucial for associative object-place-context memories. An unresolved question is whether these associations are performed exclusively in the hippocampus or also upstream of it. Anatomical evidence suggests that the LEC processes both object and spatial information. We describe here a gradient of spatial selectivity along the antero-posterior axis of the LEC. We demonstrate that the LEC generates distinct spatial maps for different contexts that are independent of object coding and vice versa, thus providing evidence for pure spatial and pure object codes upstream of the hippocampus. While space and object coding occur by and large separately in the LEC, we identified neurons that encode for space and objects conjunctively. Together, these findings point to a scenario in which the LEC sustains both distinct space and object coding and associative space-object coding.
Collapse
Affiliation(s)
- Xu Huang
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Magdalene Isabell Schlesiger
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Isabel Barriuso-Ortega
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christian Leibold
- Institute Biology III & Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany; BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nina Bieber
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Robinson JC, Wilmot JH, Hasselmo ME. Septo-hippocampal dynamics and the encoding of space and time. Trends Neurosci 2023; 46:712-725. [PMID: 37479632 PMCID: PMC10538955 DOI: 10.1016/j.tins.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Encoding an event in memory requires neural activity to represent multiple dimensions of behavioral experience in space and time. Recent experiments have explored the influence of neural dynamics regulated by the medial septum on the functional encoding of space and time by neurons in the hippocampus and associated structures. This review addresses these dynamics, focusing on the role of theta rhythm, the differential effects of septal inactivation and activation on the functional coding of space and time by individual neurons, and the influence on phase coding that appears as phase precession. We also discuss data indicating that theta rhythm plays a role in timing the internal dynamics of memory encoding and retrieval, as well as the behavioral influences of these neuronal manipulations with regard to memory function.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Jacob H Wilmot
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Tang Y, Yan Y, Mao J, Ni J, Qing H. The hippocampus associated GABAergic neural network impairment in early-stage of Alzheimer's disease. Ageing Res Rev 2023; 86:101865. [PMID: 36716975 DOI: 10.1016/j.arr.2023.101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the commonest neurodegenerative disease with slow progression. Pieces of evidence suggest that the GABAergic system is impaired in the early stage of AD, leading to hippocampal neuron over-activity and further leading to memory and cognitive impairment in patients with AD. However, the precise impairment mechanism of the GABAergic system on the pathogenesis of AD is still unclear. The impairment of neural networks associated with the GABAergic system is tightly associated with AD. Therefore, we describe the roles played by hippocampus-related GABAergic circuits and their impairments in AD neuropathology. In addition, we give our understand on the process from GABAergic circuit impairment to cognitive and memory impairment, since recent studies on astrocyte in AD plays an important role behind cognition dysfunction caused by GABAergic circuit impairment, which helps better understand the GABAergic system and could open up innovative AD therapy.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Mao
- Zhengzhou Tobacco Institute of China National Tobacco Company, Zhengzhou 450001, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
11
|
Applegate MC, Gutnichenko KS, Aronov D. Topography of inputs into the hippocampal formation of a food-caching bird. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532572. [PMID: 36993579 PMCID: PMC10054989 DOI: 10.1101/2023.03.14.532572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The mammalian hippocampal formation (HF) is organized into domains associated with different functions. These differences are driven in part by the pattern of input along the hippocampal long axis, such as visual input to the septal hippocampus and amygdalar input to temporal hippocampus. HF is also organized along the transverse axis, with different patterns of neural activity in the hippocampus and the entorhinal cortex. In some birds, a similar organization has been observed along both of these axes. However, it is not known what role inputs play in this organization. We used retrograde tracing to map inputs into HF of a food-caching bird, the black-capped chickadee. We first compared two locations along the transverse axis: the hippocampus and the dorsolateral hippocampal area (DL), which is analogous to the entorhinal cortex. We found that pallial regions predominantly targeted DL, while some subcortical regions like the lateral hypothalamus (LHy) preferentially targeted the hippocampus. We then examined the hippocampal long axis and found that almost all inputs were topographic along this direction. For example, the anterior hippocampus was preferentially innervated by thalamic regions, while posterior hippocampus received more amygdalar input. Some of the topographies we found bear resemblance to those described in the mammalian brain, revealing a remarkable anatomical similarity of phylogenetically distant animals. More generally, our work establishes the pattern of inputs to HF in chickadees. Some of these patterns may be unique to chickadees, laying the groundwork for studying the anatomical basis of these birds ’ exceptional hippocampal memory.
Collapse
Affiliation(s)
| | | | - Dmitriy Aronov
- Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
12
|
Tsanov M. Basal Forebrain Impairment: Understanding the Mnemonic Function of the Septal Region Translates in Therapeutic Advances. Front Neural Circuits 2022; 16:916499. [PMID: 35712645 PMCID: PMC9194835 DOI: 10.3389/fncir.2022.916499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The basal forebrain is one of the three major brain circuits involved in episodic memory formation together with the hippocampus and the diencephalon. The dysfunction of each of these regions is known to cause anterograde amnesia. While the hippocampal pyramidal neurons are known to encode episodic information and the diencephalic structures are known to provide idiothetic information, the contribution of the basal forebrain to memory formation has been exclusively associated with septo-hippocampal cholinergic signaling. Research data from the last decade broadened our understanding about the role of septal region in memory formation. Animal studies revealed that septal neurons process locomotor, rewarding and attentional stimuli. The integration of these signals results in a systems model for the mnemonic function of the medial septum that could guide new therapeutic strategies for basal forebrain impairment (BFI). BFI includes the disorders characterized with basal forebrain amnesia and neurodegenerative disorders that affect the basal forebrain. Here, we demonstrate how the updated model of septal mnemonic function can lead to innovative translational treatment approaches that include pharmacological, instrumental and behavioral techniques.
Collapse
Affiliation(s)
- Marian Tsanov
- UCD School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Yen TY, Huang X, MacLaren DAA, Schlesiger MI, Monyer H, Lien CC. Inhibitory projections connecting the dentate gyri in the two hemispheres support spatial and contextual memory. Cell Rep 2022; 39:110831. [PMID: 35584671 DOI: 10.1016/j.celrep.2022.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2021] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
The dentate gyrus (DG) receives substantial input from the homologous brain area of the contralateral hemisphere. This input is by and large excitatory. Viral-tracing experiments provided anatomical evidence for the existence of GABAergic connectivity between the two DGs, but the function of these projections has remained elusive. Combining electrophysiological and optogenetic approaches, we demonstrate that somatostatin-expressing contralateral DG (SOM+ cDG)-projecting neurons preferentially engage dendrite-targeting interneurons over principal neurons. Single-unit recordings from freely moving mice reveal that optogenetic stimulation of SOM+ cDG projections modulates the activity of GABAergic neurons and principal neurons over multiple timescales. Importantly, we demonstrate that optogenetic silencing of SOM+ cDG projections during spatial memory encoding, but not during memory retrieval, results in compromised DG-dependent memory. Moreover, optogenetic stimulation of SOM+ cDG projections is sufficient to disrupt contextual memory recall. Collectively, our findings reveal that SOM+ long-range projections mediate inter-DG inhibition and contribute to learning and memory.
Collapse
Affiliation(s)
- Ting-Yun Yen
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Xu Huang
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Duncan Archibald Allan MacLaren
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Magdalene Isabell Schlesiger
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Cheng-Chang Lien
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
14
|
AlSubaie R, Wee RWS, Ritoux A, Mishchanchuk K, Passlack J, Regester D, MacAskill AF. Control of parallel hippocampal output pathways by amygdalar long-range inhibition. eLife 2021; 10:e74758. [PMID: 34845987 PMCID: PMC8654375 DOI: 10.7554/elife.74758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.
Collapse
Affiliation(s)
- Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Ryan WS Wee
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Anne Ritoux
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jessica Passlack
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Daniel Regester
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
15
|
Mocellin P, Mikulovic S. The Role of the Medial Septum-Associated Networks in Controlling Locomotion and Motivation to Move. Front Neural Circuits 2021; 15:699798. [PMID: 34366795 PMCID: PMC8340000 DOI: 10.3389/fncir.2021.699798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
The Medial Septum and diagonal Band of Broca (MSDB) was initially studied for its role in locomotion. However, the last several decades were focussed on its intriguing function in theta rhythm generation. Early studies relied on electrical stimulation, lesions and pharmacological manipulation, and reported an inconclusive picture regarding the role of the MSDB circuits. Recent studies using more specific methodologies have started to elucidate the differential role of the MSDB's specific cell populations in controlling both theta rhythm and behaviour. In particular, a novel theory is emerging showing that different MSDB's cell populations project to different brain regions and control distinct aspects of behaviour. While the majority of these behaviours involve movement, increasing evidence suggests that MSDB-related networks govern the motivational aspect of actions, rather than locomotion per se. Here, we review the literature that links MSDB, theta activity, and locomotion and propose open questions, future directions, and methods that could be employed to elucidate the diverse roles of the MSDB-associated networks.
Collapse
Affiliation(s)
- Petra Mocellin
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
- International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Sanja Mikulovic
- Research Group Cognition and Emotion, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|