1
|
Zheng L, Han S, Enriquez J, Martinez OM, Krams SM. Graft-derived extracellular vesicles transport miRNAs to modulate macrophage polarization after heart transplantation. Am J Transplant 2025; 25:682-694. [PMID: 39586401 PMCID: PMC11972891 DOI: 10.1016/j.ajt.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Heart transplantation, a crucial intervention for saving lives of those with end-stage cardiac failure, often faces complications from acute allograft rejection. This study focuses on the intricate dynamics of immune cell interactions and specific communication pathways between organs, which are not yet well understood. Our study investigates this interplay using a murine heterotopic transplant model, using single-cell RNA sequencing to examine CD45+ immune cells from both the heart grafts and spleens. We conduct a comprehensive analysis focused on functional enrichment, cell trajectory, and interorgan communication in heart transplants, highlighting dynamic interactions between monocyte/macrophage subtypes that is mediated by extracellular vesicles (EVs). We use unsupervised clustering and elucidate the complex cellular interactions that influence allograft outcomes. Notably, we discovered that microRNA-363 and microRNA-709, carried by EVs from CD63+ graft macrophages, can induce M1 polarization within the recipient's spleen via the Fcho2/Notch1 signaling pathway. These insights illuminate the nuanced immune responses during acute cardiac rejection and suggest that targeting EVs from graft-resident macrophages may offer a new strategy to mitigate transplant rejection.
Collapse
Affiliation(s)
- Lei Zheng
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA; Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai, China
| | - Shuling Han
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanna Enriquez
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Olivia M Martinez
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sheri M Krams
- Transplant Immunology Lab, Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
2
|
Miller-Handley H, Harper G, Pham G, Turner LH, Shao TY, Russi AE, Erickson JJ, Ford ML, Araki K, Way SS. Immune suppression sustained allograft acceptance requires PD1 inhibition of CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:192-198. [PMID: 40073258 PMCID: PMC11904129 DOI: 10.1093/jimmun/vkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells. Uninterrupted immune-suppressive therapy is required because drug discontinuation triggers allograft rejection, replicating the requirement for immune-suppressive therapy adherence in transplant recipients. Graft-specific CD8+ T cells in allograft-accepted mice show diminished effector differentiation and cytokine production, with reciprocally increased PD1 expression. Allograft acceptance-induced PD1 expression is essential, as PDL1 blockade reinvigorates graft-specific CD8+ T cell activation with ensuing allograft rejection despite continual immune-suppressive therapy. Thus, PD1 sustained CD8+ T cell inhibition is essential for allograft acceptance maintained by tacrolimus plus mycophenolate. This necessity for PD1 in sustaining allograft acceptance explains the high rates of rejection in transplant recipients with cancer administered immune checkpoint inhibitors targeting PD1/PDL1, highlighting shared immune suppression pathways exploited by tumor cells and current therapies for averting allograft rejection.
Collapse
Affiliation(s)
- Hilary Miller-Handley
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
- Department of Medicine, University of Cincinnati College of Medicine
| | - Gavin Harper
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Lucien H. Turner
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Abigail E. Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - John J. Erickson
- Division of Neonatology, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Mandy L. Ford
- Winship Cancer Institute, Emory University School of Medicine
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
3
|
Zhang W, Sen A, Pena JK, Reitsma A, Alexander OC, Tajima T, Martinez OM, Krams SM. Application of Mass Cytometry Platforms to Solid Organ Transplantation. Transplantation 2024; 108:2034-2044. [PMID: 38467594 PMCID: PMC11390974 DOI: 10.1097/tp.0000000000004925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Transplantation serves as the cornerstone of treatment for patients with end-stage organ disease. The prevalence of complications, such as allograft rejection, infection, and malignancies, underscores the need to dissect the complex interactions of the immune system at the single-cell level. In this review, we discuss studies using mass cytometry or cytometry by time-of-flight, a cutting-edge technology enabling the characterization of immune populations and cell-to-cell interactions in granular detail. We review the application of mass cytometry in human and experimental animal studies in the context of transplantation, uncovering invaluable contributions of the tool to understanding rejection and other transplant-related complications. We discuss recent innovations that have the potential to streamline and standardize mass cytometry workflows for application to multisite clinical trials. Additionally, we introduce imaging mass cytometry, a technique that couples the power of mass cytometry with spatial context, thereby mapping cellular interactions within tissue microenvironments. The synergistic integration of mass cytometry and imaging mass cytometry data with other omics data sets and high-dimensional data platforms to further define immune dynamics is discussed. In conclusion, mass cytometry technologies, when integrated with other tools and data, shed light on the intricate landscape of the immune response in transplantation. This approach holds significant potential for enhancing patient outcomes by advancing our understanding and facilitating the development of new diagnostics and therapeutics.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Ayantika Sen
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Josselyn K. Pena
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Andrea Reitsma
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Oliver C. Alexander
- Department of Surgery, Stanford University, Stanford, CA, United States
- Meharry Medical College, School of Medicine, Nashville, TN, United States
| | - Tetsuya Tajima
- Department of Surgery, Stanford University, Stanford, CA, United States
| | | | - Sheri M. Krams
- Department of Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Urie RR, Morris A, Farris D, Hughes E, Xiao C, Chen J, Lombard E, Feng J, Li JZ, Goldstein DR, Shea LD. Biomarkers from subcutaneous engineered tissues predict acute rejection of organ allografts. SCIENCE ADVANCES 2024; 10:eadk6178. [PMID: 38748794 PMCID: PMC11095459 DOI: 10.1126/sciadv.adk6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Invasive graft biopsies assess the efficacy of immunosuppression through lagging indicators of transplant rejection. We report on a microporous scaffold implant as a minimally invasive immunological niche to assay rejection before graft injury. Adoptive transfer of T cells into Rag2-/- mice with mismatched allografts induced acute cellular allograft rejection (ACAR), with subsequent validation in wild-type animals. Following murine heart or skin transplantation, scaffold implants accumulate predominantly innate immune cells. The scaffold enables frequent biopsy, and gene expression analyses identified biomarkers of ACAR before clinical signs of graft injury. This gene signature distinguishes ACAR and immunodeficient respiratory infection before injury onset, indicating the specificity of the biomarkers to differentiate ACAR from other inflammatory insult. Overall, this implantable scaffold enables remote evaluation of the early risk of rejection, which could potentially be used to reduce the frequency of routine graft biopsy, reduce toxicities by personalizing immunosuppression, and prolong transplant life.
Collapse
Affiliation(s)
- Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana Farris
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengchuan Xiao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Lombard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiane Feng
- Animal Phenotyping Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
6
|
Abstract
Single-cell technologies open up new opportunities to explore the behavior of cells at the individual level. For solid organ transplantation, single-cell technologies can provide in-depth insights into the underlying mechanisms of the immunological processes involved in alloimmune responses after transplantation by investigating the role of individual cells in tolerance and rejection. Here, we review the value of single-cell technologies, including cytometry by time-of-flight and single-cell RNA sequencing, in the context of solid organ transplantation research. Various applications of single-cell technologies are addressed, such as the characterization and identification of immune cell subsets involved in rejection or tolerance. In addition, we explore the opportunities for analyzing specific alloreactive T- or B-cell clones by linking phenotype data to T- or B-cell receptor data, and for distinguishing donor- from recipient-derived immune cells. Moreover, we discuss the use of single-cell technologies in biomarker identification and risk stratification, as well as the remaining challenges. Together, this review highlights that single-cell approaches contribute to a better understanding of underlying immunological mechanisms of rejection and tolerance, thereby potentially accelerating the development of new or improved therapies to avoid allograft rejection.
Collapse
|
7
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
8
|
New insights on the monitoring of solid-organ allografts based on immune cell signatures. Transpl Immunol 2021; 70:101509. [PMID: 34843937 DOI: 10.1016/j.trim.2021.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Attaining a fair long-term allograft survival remains a challenge for allogeneic transplantation worldwide. Although the emergence of immunosuppressants has caused noticeable progress in the management of immunologic rejection, proper application of these therapeutics and dose adjustments require delicate and real-time monitoring of recipients. Nevertheless, the majority of conventional allograft monitoring approaches are based on organ damage or functional tests that render them unable to predict the rejection events in early time points before the establishment of a functional alloimmune response. On the other hand, biopsy-based methods include invasive practices and are accompanied by serious complications. In recent years, there have been a myriad of attempts on the discovery of reliable and non-invasive approaches for the monitoring of allografts that regarding a close relationship between allografts and hosts' immune system, most of the attempts have been devoted to the studies on the immune response-associated biomarkers. The discovery of gene and protein expression patterns in immune cells along with their phenotypic characterization and secretome analysis as well as tracking the immune responses in allograft tissues and clinical specimens are among the notable attempts taken to discover the non-invasive predictive markers with a proper coincidence to the pathologic condition. Collectively, these studies suggest a list of candidate biomarkers with ideal potentials for early and non-invasive prediction of allograft rejection and shed light on the way towards developing more standardized and reproducible approaches for monitoring the allograft rejection.
Collapse
|
9
|
Single-Cell Immunoprofiling Technologies in and Beyond Solid Organ Transplantation. Transplantation 2021; 105:2332-2333. [PMID: 34709220 DOI: 10.1097/tp.0000000000003909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|