1
|
Mohammed OA, Alghamdi M, Bahashwan E, Al Jarallah AlQahtani A, Alfaifi A, Hassan RH, Alfaifi J, Alamri MMS, Alhalafi AH, Adam MIE, BinAfif WF, Abdel-Reheim MA, Mageed SSA, S Doghish A. Emerging insights into the role of natural products and miRNAs in psoriasis: from pathophysiology to precision medicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2487-2509. [PMID: 39466441 DOI: 10.1007/s00210-024-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Psoriasis is a sustainable skin disease characterized by inflammation resulting from the interaction between immune cells and keratinocytes. Significant advancements have been achieved in studying the molecular process behind noncoding and coding genes, leading to valuable insights for clinical therapy. Nevertheless, our comprehension of this intricate ailment remains ambiguous. Natural products such as curcumin, vitamin D, omega-3, vitamin E, psoralen, gallic acid (GA), and resveratrol offer a promising alternative or adjunct therapy for psoriasis by modulating multiple pathways and exhibiting fewer side effects compared to conventional treatments. MicroRNAs (miRNAs) are short RNAs that are involved in regulating gene expression after transcription, namely by suppressing gene activity. Recent research on miRNAs has uncovered their significant significance in the development of psoriasis. In this review, we examined the latest developments in the investigation of miRNAs in psoriasis. Previous studies have revealed that imbalanced miRNAs in psoriasis have a significant impact on the processes of keratinocyte differentiation, proliferation, and the progression of inflammation. Furthermore, miRNAs exert an impact on the activity of immune cells involved in psoriasis, such as Langerhans cells, dendritic cells, and CD4+ T cells. Furthermore, we explore potential miRNA-focused treatment options for psoriasis, including the localized administration of external miRNA mimics, and miRNA inhibitors. The effectiveness of natural products and miRNAs in treating psoriasis, as well as the signaling pathways that may be involved, are summarized in this article.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - AbdulElah Al Jarallah AlQahtani
- Department of Internal Medicine, Division of Dermatology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Adel Alfaifi
- Department of Dermatology, Armed Forces Hospital - Southern Region, 62413, Khamis Mushait, Saudi Arabia
| | - Rania H Hassan
- Dermatology Clinic, Abbasseya Psychiatric Hospital, Abbasseya, Cairo, 11517, Egypt
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Badr City, , 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Nasr City, 11231, Egypt.
| |
Collapse
|
2
|
Bolha L, Hočevar A, Jurčić V. Current state of epigenetics in giant cell arteritis: Focus on microRNA dysregulation. Autoimmun Rev 2025; 24:103739. [PMID: 39732382 DOI: 10.1016/j.autrev.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Giant cell arteritis (GCA) is a primary systemic vasculitis affecting the elderly, characterized by a granulomatous vessel wall inflammation of large- and medium-sized arteries. The immunopathology of GCA is complex, involving both the innate and adaptive arms of the immune system, where a maladaptive inflammatory-driven vascular repair process ultimately results in vessel wall thickening, intramural vascular smooth muscle cell proliferation, neovascularization and vessel lumen occlusion, which can lead to serious ischemic complications such as visual loss and ischemic stroke. Over the past decade, microRNA (miRNA) dysregulation has been highlighted as an important contributing factor underlying the pathogenesis of GCA. Since current understanding of miRNA involvement in GCA remains largely based on extrapolation of previously determined miRNA functions in vitro or in loss- or gain-of-function studies, an overall insight into the role of miRNA alteration in GCA pathophysiology remains limited. In this narrative review, we summarize the current knowledge on aberrantly expressed miRNAs in GCA and thoroughly discuss the impact of their altered regulatory role in the context of GCA setting. Furthermore, we address challenges and future perspectives in utilization of miRNA-based diagnostic and prognostic biomarkers of GCA in clinical settings.
Collapse
Affiliation(s)
- Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
De Sá Fernandes C, Novoszel P, Gastaldi T, Krauß D, Lang M, Rica R, Kutschat AP, Holcmann M, Ellmeier W, Seruggia D, Strobl H, Sibilia M. The histone deacetylase HDAC1 controls dendritic cell development and anti-tumor immunity. Cell Rep 2024; 43:114308. [PMID: 38829740 DOI: 10.1016/j.celrep.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/17/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Dendritic cell (DC) progenitors adapt their transcriptional program during development, generating different subsets. How chromatin modifications modulate these processes is unclear. Here, we investigate the impact of histone deacetylation on DCs by genetically deleting histone deacetylase 1 (HDAC1) or HDAC2 in hematopoietic progenitors and CD11c-expressing cells. While HDAC2 is not critical for DC development, HDAC1 deletion impairs pro-pDC and mature pDC generation and affects ESAM+cDC2 differentiation from tDCs and pre-cDC2s, whereas cDC1s are unchanged. HDAC1 knockdown in human hematopoietic cells also impairs cDC2 development, highlighting its crucial role across species. Multi-omics analyses reveal that HDAC1 controls expression, chromatin accessibility, and histone acetylation of the transcription factors IRF4, IRF8, and SPIB required for efficient development of cDC2 subsets. Without HDAC1, DCs switch immunologically, enhancing tumor surveillance through increased cDC1 maturation and interleukin-12 production, driving T helper 1-mediated immunity and CD8+ T cell recruitment. Our study reveals the importance of histone acetylation in DC development and anti-tumor immunity, suggesting DC-targeted therapeutic strategies for immuno-oncology.
Collapse
Affiliation(s)
- Cristiano De Sá Fernandes
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Tommaso Gastaldi
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Dana Krauß
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Magdalena Lang
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Ramona Rica
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ana P Kutschat
- St. Anna Children's Cancer Research Institute, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Wilfried Ellmeier
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Davide Seruggia
- St. Anna Children's Cancer Research Institute, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
4
|
Jiang X, Shi R, Ma R, Tang X, Gong Y, Yu Z, Shi Y. The role of microRNA in psoriasis: A review. Exp Dermatol 2023; 32:1598-1612. [PMID: 37382420 DOI: 10.1111/exd.14871] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rongcan Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Mathew B, Acha LG, Torres LA, Huang CC, Liu A, Kalinin S, Leung K, Dai Y, Feinstein DL, Ravindran S, Roth S. MicroRNA-based engineering of mesenchymal stem cell extracellular vesicles for treatment of retinal ischemic disorders: Engineered extracellular vesiclesand retinal ischemia. Acta Biomater 2023; 158:782-797. [PMID: 36638942 PMCID: PMC10005109 DOI: 10.1016/j.actbio.2023.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cell (MSCs)-derived extracellular vesicles (EVs) are emerging therapeutic tools. Hypoxic pre-conditioning (HPC) of MSCs altered the production of microRNAs (miRNAs) in EVs, and enhanced the cytoprotective, anti-inflammatory, and neuroprotective properties of their derivative EVs in retinal cells. EV miRNAs were identified as the primary contributors of these EV functions. Through miRNA seq analyses, miRNA-424 was identified as a candidate for the retina to overexpress in EVs for enhancing cytoprotection and anti-inflammatory effects. FEEs (functionally engineered EVs) overexpressing miR424 (FEE424) significantly enhanced neuroprotection and anti-inflammatory activities in vitro in retinal cells. FEE424 functioned by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in retinal Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery after retinal ischemic insult. In an in vivo model of retinal ischemia, native, HPC, and FEE424 MSC EVs robustly and similarly restored function to close to baseline, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. These results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component. STATEMENT OF SIGNIFICANCE: We show that functionally engineered extracellular vesicles (FEEs) from mesenchymal stem cells (MSCs) provide cytoprotection in rat retina subjected to ischemia. FEEs overexpressing microRNA 424 (FEE424) function by reducing inflammatory cytokine production in retinal microglia, and attenuating oxygen free radicals in Muller cells and microvascular endothelial cells, providing a multi-pronged approach to enhancing recovery. In an in vivo model of retinal ischemia in rats, native, hypoxic-preconditioned (HPC), and FEE424 MSC EVs robustly and similarly restored function, and prevented loss of retinal ganglion cells, but HPC EVs provided the most effective attenuation of apoptosis-related and inflammatory cytokine gene expression. The results indicate the potential for EV engineering to produce ameliorative effects for retinal diseases with a significant inflammatory component.
Collapse
Affiliation(s)
- Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Lorea Gamboa Acha
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Leianne A Torres
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois-Chicago
| | - Alice Liu
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Sergey Kalinin
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago
| | - Kasey Leung
- Department of Oral Biology, College of Dentistry, University of Illinois-Chicago
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois-Chicago
| | - Douglas L Feinstein
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago; Jesse Brown Veterans Affairs, Chicago, IL
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois-Chicago.
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois-Chicago.
| |
Collapse
|
6
|
Huang CC, Kang M, Leung K, Lu Y, Shirazi S, Gajendrareddy P, Ravindran S. Micro RNA based MSC EV engineering: Targeting the BMP2 cascade for bone repair. Front Cell Dev Biol 2023; 11:1127594. [PMID: 36846585 PMCID: PMC9945088 DOI: 10.3389/fcell.2023.1127594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Mesenchymal stem cell derived extracellular vesicles (MSC EVs) possess excellent immunomodulatory and therapeutic properties. While beneficial, from a translational perspective, extracellular vesicles with consistent functionality and target specificity are required to achieve the goals of precision medicine and tissue engineering. Prior research has identified that the miRNA composition of mesenchymal stem cell derived extracellular vesicles contributes significantly towards extracellular vesicles functionality. In this study, we hypothesized that mesenchymal stem cell derived extracellular vesicle functionality can be rendered pathway-specific using a miRNA-based extracellular vesicles engineering approach. To test this hypothesis, we utilized bone repair as a model system and the BMP2 signaling cascade as the targeted pathway. We engineered mesenchymal stem cell extracellular vesicles to possess increased levels of miR-424, a potentiator of the BMP2 signaling cascade. We evaluated the physical and functional characteristics of these extracellular vesicles and their enhanced ability to trigger the osteogenic differentiation of naïve mesenchymal stem cell in vitro and facilitate bone repair in vivo. Results indicated that the engineered extracellular vesicles retained their extracellular vesicles characteristics and endocytic functionality and demonstrated enhanced osteoinductive function by activating SMAD1/5/8 phosphorylation and mesenchymal stem cell differentiation in vitro and enhanced bone repair in vivo. Furthermore, the inherent immunomodulatory properties of the mesenchymal stem cell derived extracellular vesicles remained unaltered. These results serve as a proof-of-concept for miRNA-based extracellular vesicles engineering approaches for regenerative medicine applications.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Miya Kang
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Kasey Leung
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yu Lu
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Sajjad Shirazi
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States
| | - Praveen Gajendrareddy
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States,*Correspondence: Praveen Gajendrareddy, ; Sriram Ravindran,
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois Chicago, Chicago, Illinois, United States,*Correspondence: Praveen Gajendrareddy, ; Sriram Ravindran,
| |
Collapse
|
7
|
Lecoeur H, Prina E, Gutiérrez-Sanchez M, Späth GF. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2021; 38:205-216. [PMID: 34666937 DOI: 10.1016/j.pt.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Intracellular parasites have evolved intricate strategies to subvert host cell functions for their own survival. These strategies are particularly damaging to the host if the infection involves immune cells, as illustrated by protozoan parasites of the genus Leishmania that thrive inside mononuclear phagocytic cells, causing devastating immunopathologies. While the impact of Leishmania infection on host cell phenotype and functions has been well documented, the regulatory mechanisms underlying host cell subversion were only recently investigated. Here we summarize the current knowledge on how Leishmania infection affects host nuclear activities and propose thought-provoking new concepts on the reciprocal relationship between epigenetic and transcriptional regulation in host cell phenotypic plasticity, its potential subversion by the intracellular parasite, and its relevance for host-directed therapy.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Maria Gutiérrez-Sanchez
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gerald F Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|