1
|
Sun Q, Cui X, Yin D, Li J, Li J, Du L. Molecular mechanisms of UCP1-independent thermogenesis: the role of futile cycles in energy dissipation. J Physiol Biochem 2025:10.1007/s13105-025-01090-x. [PMID: 40380026 DOI: 10.1007/s13105-025-01090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Adipose tissue thermogenesis has emerged as a prominent research focus for the treatment of metabolic diseases, particularly through mitochondrial uncoupling, which oxidizes nutrients to produce heat rather than synthesizing ATP. Uncoupling protein 1 (UCP1) has garnered significant attention as a core protein mediating non-shivering thermogenesis(NST). However, recent studies indicate that energy dissipation can also occur via UCP1-independent thermogenesis, partially driven by futile metabolic cycles. These cycles involve ATP depletion coupled with reversible energy reactions, resulting in futile energy expenditure. Unlike classical UCP1-mediated thermogenesis, futile cycling is not confined to brown and beige adipose tissue, suggesting a broader range of therapeutic targets. These findings open new avenues for targeting these pathways to enhance metabolic health. This review explores the characteristics and distinctions of the primary metabolic organs (adipose tissue, liver, and skeletal muscle) involved in the futile cycles of thermogenesis. It further elaborates on the cellular and molecular mechanisms underlying calcium, creatine, and lipid cycling, emphasizing their strengths, limitations, and roles beyond thermogenesis.
Collapse
Affiliation(s)
- Quanhao Sun
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xinyue Cui
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Dong Yin
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Juan Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Jiarui Li
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Likun Du
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
2
|
Davidson JW, Jain R, Kizzar T, Geoghegan G, Nesbitt DJ, Cavanagh A, Abe A, Nyame K, Hunger A, Chao X, James I, Walesewicz H, Baldwin DA, Wade G, Michorowska S, Verma R, Schueler K, Hinkovska-Galcheva V, Shishkova E, Ding WX, Coon JJ, Shayman JA, Abu-Remaileh M, Simcox JA. Hepatic lipid remodeling in cold exposure uncovers direct regulation of bis(monoacylglycero)phosphate lipids by phospholipase A2 group XV. Cell Metab 2025:S1550-4131(25)00253-0. [PMID: 40373767 DOI: 10.1016/j.cmet.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2025] [Accepted: 04/21/2025] [Indexed: 05/17/2025]
Abstract
Cold exposure is a selective environmental stress that elicits a rapid metabolic shift to maintain energy homeostasis. In response to cold exposure, the liver rewires the metabolic state, shifting from glucose to lipid catabolism. By probing the liver lipids in cold exposure, we observed that the lysosomal bis(monoacylglycero)phosphate (BMP) lipids were rapidly increased during cold exposure. BMP lipid changes occurred independently of lysosomal abundance but were dependent on the lysosomal transcriptional regulator transcription factor EB (TFEB). Knockdown of Tfeb in hepatocytes decreased BMP lipid levels and led to cold intolerance in mice. We assessed TFEB-binding sites of lysosomal genes and determined that the phospholipase a2 group XV (PLA2G15) regulates BMP lipid catabolism. Decreasing Pla2g15 levels in mice increased BMP lipids, ablated the cold-induced rise in BMP lipids, and improved cold tolerance. Mutation of the catalytic site of PLA2G15 ablated the BMP lipid breakdown. Together, our studies uncover TFEB regulation of BMP lipids through PLA2G15 catabolism.
Collapse
Affiliation(s)
- Jessica W Davidson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas Kizzar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gisela Geoghegan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel J Nesbitt
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy Cavanagh
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Akira Abe
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Andrea Hunger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Isabella James
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Helaina Walesewicz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dominique A Baldwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sylwia Michorowska
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Rakesh Verma
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Shayman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Judith A Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Gong W, Zhao Y, Zhang H, Duan C, Xiao Y, Wang Y, Wang C, Nie X. Environmentally relevant concentrations lithium exposure induces neurotoxicity in yellowstripe goby (Mugilogobius chulae): Responses of BDNF/AKT/FoxOs in regulating glutamate excitotoxicity and mitochondrial function. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107294. [PMID: 40015150 DOI: 10.1016/j.aquatox.2025.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
The wide application of lithium in green energy and clinical psychiatry results in ubiquitous occurrence of lithium in aquatic environments. However, researches on the toxicity of lithium are largely confined to acute and/or high-dose scenarios, with insufficient data on its impacts on non-target organisms at environmental levels. The present study investigated the neurotoxicological effects of environmentally relevant concentrations of lithium exposure on yellowstripe goby (Mugilogobius chulae) and the related molecular response mechanisms. The results showed that lithium exposure significantly inhibited the expression of the target protein GSK-3β in the brain of M. chulae, and induced a series of harmful events including oxidative stress, glutamate accumulation, and even behavioral alteration. The organism mitigated the excitotoxic effects of glutamate accumulation by down-regulating ionotropic glutamate receptors. At the same time, the organism met the energy supply and alleviated oxidative stress by altering mitochondrial function. Notably, the stress regulators FoxOs and sestrins both modulated synaptic sensitivities to enhance the neural signaling and altered the energy metabolism pattern to alleviate energy crisis, all of which were important for maintaining neuronal survival and organismal homeostasis. In conclusion, lithium exposure induced glutamate excitability and led to a series of toxic events. Meanwhile, FoxOs played an important role in neural signaling and homeostatic regulation of energy metabolism in brain. This study furthered the comprehension of the neurotoxic impacts of lithium on aquatic organisms, elucidated the associated molecular mechanisms, and underscored the environmental risks posed by increasing lithium contamination.
Collapse
Affiliation(s)
- Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
4
|
Davidson JW, Jain R, Kizzar T, Geoghegan G, Nesbitt DJ, Cavanagh A, Abe A, Nyame K, Hunger A, Chao X, James I, Von Bank H, Baldwin DA, Wade G, Michorowska S, Verma R, Scheuler K, Hinkovska-Galcheva V, Shishkova E, Ding WX, Coon JJ, Shayman JA, Abu-Remaileh M, Simcox JA. Modulation of hepatic transcription factor EB activity during cold exposure uncovers direct regulation of bis(monoacylglycero)phosphate lipids by Pla2g15. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.03.565498. [PMID: 37986778 PMCID: PMC10659384 DOI: 10.1101/2023.11.03.565498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Cold exposure is a selective environmental stress that elicits a rapid metabolic shift to maintain energy homeostasis. In response to cold exposure, the liver rewires the metabolic state shifting from glucose to lipid catabolism. By probing the liver lipids in cold exposure, we observed that the lysosomal bis(monoacylglycero)phosphate (BMP) lipids were rapidly increased during cold exposure. BMP lipid changes occurred independently of lysosomal abundance but were dependent on the lysosomal transcriptional regulator transcription factor EB (TFEB). Knockdown of TFEB in hepatocytes decreased BMP lipid levels and led to cold intolerance in mice. We assessed TFEB binding sites of lysosomal genes and determined that the phospholipase Pla2g15 regulates BMP lipid catabolism. Knockdown of Pla2g15 in mice increased BMP lipid levels, ablated the cold-induced rise, and improved cold tolerance. Knockout of Pla2g15 in mice and hepatocytes led to increased BMP lipid levels, that were decreased with re-expression of Pla2g15. Mutation of the catalytic site of Pla2g15 ablated the BMP lipid breakdown. Together, our studies uncover TFEB regulation of BMP lipids through Pla2g15 catabolism.
Collapse
|
5
|
Paneru BD, Chini J, McCright SJ, DeMarco N, Miller J, Joannas LD, Henao-Mejia J, Titchenell PM, Merrick DM, Lim HW, Lazar MA, Hill DA. Myeloid-derived miR-6236 potentiates adipocyte insulin signaling and prevents hyperglycemia during obesity. Nat Commun 2024; 15:5394. [PMID: 38918428 PMCID: PMC11199588 DOI: 10.1038/s41467-024-49632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) influence obesity-associated metabolic dysfunction, but the mechanisms by which they do so are not well understood. We show that miR-6236 is a bona fide miRNA that is secreted by ATMs during obesity. Global or myeloid cell-specific deletion of miR-6236 aggravates obesity-associated adipose tissue insulin resistance, hyperglycemia, hyperinsulinemia, and hyperlipidemia. miR-6236 augments adipocyte insulin sensitivity by inhibiting translation of negative regulators of insulin signaling, including PTEN. The human genome harbors a miR-6236 homolog that is highly expressed in the serum and adipose tissue of obese people. hsa-MIR-6236 expression negatively correlates with hyperglycemia and glucose intolerance, and positively correlates with insulin sensitivity. Together, our findings establish miR-6236 as an ATM-secreted miRNA that potentiates adipocyte insulin signaling and protects against metabolic dysfunction during obesity.
Collapse
Affiliation(s)
- Bam D Paneru
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julia Chini
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sam J McCright
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicole DeMarco
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Miller
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonel D Joannas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul M Titchenell
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David M Merrick
- Department of Medicine, Division of Endocrinology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Division of Endocrinology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David A Hill
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
7
|
Dewal RS, Yang FT, Baer LA, Vidal P, Hernandez-Saavedra D, Seculov NP, Ghosh A, Noé F, Togliatti O, Hughes L, DeBari MK, West MD, Soroko R, Sternberg H, Malik NN, Puchulu-Campanella E, Wang H, Yan P, Wolfrum C, Abbott RD, Stanford KI. Transplantation of committed pre-adipocytes from brown adipose tissue improves whole-body glucose homeostasis. iScience 2024; 27:108927. [PMID: 38327776 PMCID: PMC10847743 DOI: 10.1016/j.isci.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Obesity and its co-morbidities including type 2 diabetes are increasing at epidemic rates in the U.S. and worldwide. Brown adipose tissue (BAT) is a potential therapeutic to combat obesity and type 2 diabetes. Increasing BAT mass by transplantation improves metabolic health in rodents, but its clinical translation remains a challenge. Here, we investigated if transplantation of 2-4 million differentiated brown pre-adipocytes from mouse BAT stromal fraction (SVF) or human pluripotent stem cells (hPSCs) could improve metabolic health. Transplantation of differentiated brown pre-adipocytes, termed "committed pre-adipocytes" from BAT SVF from mice or derived from hPSCs improves glucose homeostasis and insulin sensitivity in recipient mice under conditions of diet-induced obesity, and this improvement is mediated through the collaborative actions of the liver transcriptome, tissue AKT signaling, and FGF21. These data demonstrate that transplantation of a small number of brown adipocytes has significant long-term translational and therapeutic potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Revati S. Dewal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Felix T. Yang
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa A. Baer
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Diego Hernandez-Saavedra
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nickolai P. Seculov
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Adhideb Ghosh
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Olivia Togliatti
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lexis Hughes
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan K. DeBari
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael D. West
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Richard Soroko
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Estella Puchulu-Campanella
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huabao Wang
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
9
|
Mukherjee S, Chakraborty M, Msengi EN, Haubner J, Zhang J, Jellinek MJ, Carlson HL, Pyles K, Ulmasov B, Lutkewitte AJ, Carpenter D, McCommis KS, Ford DA, Finck BN, Neuschwander-Tetri BA, Chakraborty A. Ube4A maintains metabolic homeostasis and facilitates insulin signaling in vivo. Mol Metab 2023; 75:101767. [PMID: 37429524 PMCID: PMC10368927 DOI: 10.1016/j.molmet.2023.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Defining the regulators of cell metabolism and signaling is essential to design new therapeutic strategies in obesity and NAFLD/NASH. E3 ubiquitin ligases control diverse cellular functions by ubiquitination-mediated regulation of protein targets, and thus their functional aberration is associated with many diseases. The E3 ligase Ube4A has been implicated in human obesity, inflammation, and cancer. However, its in vivo function is unknown, and no animal models are available to study this novel protein. METHODS A whole-body Ube4A knockout (UKO) mouse model was generated, and various metabolic parameters were compared in chow- and high fat diet (HFD)-fed WT and UKO mice, and in their liver, adipose tissue, and serum. Lipidomics and RNA-Seq studies were performed in the liver samples of HFD-fed WT and UKO mice. Proteomic studies were conducted to identify Ube4A's targets in metabolism. Furthermore, a mechanism by which Ube4A regulates metabolism was identified. RESULTS Although the body weight and composition of young, chow-fed WT and UKO mice are similar, the knockouts exhibit mild hyperinsulinemia and insulin resistance. HFD feeding substantially augments obesity, hyperinsulinemia, and insulin resistance in both sexes of UKO mice. HFD-fed white and brown adipose tissue depots of UKO mice have increased insulin resistance and inflammation and reduced energy metabolism. Moreover, Ube4A deletion exacerbates hepatic steatosis, inflammation, and liver injury in HFD-fed mice with increased lipid uptake and lipogenesis in hepatocytes. Acute insulin treatment resulted in impaired activation of the insulin effector protein kinase Akt in liver and adipose tissue of chow-fed UKO mice. We identified the Akt activator protein APPL1 as a Ube4A interactor. The K63-linked ubiquitination (K63-Ub) of Akt and APPL1, known to facilitate insulin-induced Akt activation, is impaired in UKO mice. Furthermore, Ube4A K63-ubiquitinates Akt in vitro. CONCLUSION Ube4A is a novel regulator of obesity, insulin resistance, adipose tissue dysfunction and NAFLD, and preventing its downregulation may ameliorate these diseases.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eliwaza N Msengi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Matthew J Jellinek
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kelly Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Andrew J Lutkewitte
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
10
|
KIM SUJIN, PARK DONGHO, LEE SANGHYUN, KWAK HYOBUM, KANG JUHEE. Contribution of High-Intensity Interval Exercise in the Fasted State to Fat Browning: Potential Roles of Lactate and β-Hydroxybutyrate. Med Sci Sports Exerc 2023; 55:1160-1171. [PMID: 36790381 PMCID: PMC10242519 DOI: 10.1249/mss.0000000000003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Fat browning contributes to energy consumption and may have metabolic benefits against obesity; however, the potential roles of lactate and β-hydroxybutyrate (β-HB) in fat browning remain unclear. We investigated the roles of a single bout of aerobic exercise that increases lactate and β-HB levels in the fasted state on the regulation of fat browning in rats and humans. METHODS Male Sprague-Dawley rats were exposed to 24-h fasting and/or a single bout moderate-intensity aerobic exercise (40 min): sedentary (CON), exercise (ND-EX), fasting (FAST), and exercise + fasting (F-EX). Adult men ( n = 13) were randomly assigned into control with food intake (CON), exercise with intensity at onset of blood lactate accumulation in the fasted state (F-OBLA), and high-intensity interval exercise in the fasted state (F-HIIE) until each participant expended 350 kcal of energy. For evaluating the effects of exercise intensity in rats, we conducted another set of animal experiment, including groups of sedentary fed control, fasting control, and exercise with moderate-intensity or HIIE for 40 min after a 24-h fasting. RESULTS Regardless of fasting, single bout of exercise increases the concentration of lactate and β-HB in rats, but the exercise in the fasted state increases the β-HB level more significantly in rats and humans. F-EX-activated fat browning (AMPK-SirT1-PGC1α pathway and PRDM16) and thermogenic factor (UCP1) in white fat of rats. In rats and humans, exercise in the fasted state increased the blood levels of fat browning-related adipomyokines. In particular, compared with F-OBLA, F-HIIE more efficiently increases free fatty acid as well as blood levels of fat browning adipomyokines in humans, which was correlated with blood levels of lactate and β-HB. In rats that performed exercise with different intensity, the higher plasma lactate and β-HB levels, and higher expression of p-AMPK, UCP1, and PRDM16 in white adipose tissue of HIIE group than those of moderate-intensity group, were observed. CONCLUSIONS A single bout of aerobic exercise in the fasted state significantly induced fat browning-related pathways, free fatty acid, and adipomyokines, particularly F-HIIE in human. Although further evidence for supporting our results is required in humans, aerobic exercise in the fasted state with high intensity that increase lactate and β-HB may be a modality of fat browning.
Collapse
Affiliation(s)
- SUJIN KIM
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
| | - DONG-HO PARK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - SANG-HYUN LEE
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
| | - HYO-BUM KWAK
- Department of Kinesiology, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| | - JU-HEE KANG
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, REPUBLIC OF KOREA
- Program in Biomedical Science and Engineering, Inha University, Incheon, REPUBLIC OF KOREA
| |
Collapse
|
11
|
Takahashi K, Yamada T, Hosaka S, Kaneko K, Asai Y, Munakata Y, Seike J, Horiuchi T, Kodama S, Izumi T, Sawada S, Hoshikawa K, Inoue J, Masamune A, Ueno Y, Imai J, Katagiri H. Inter-organ insulin-leptin signal crosstalk from the liver enhances survival during food shortages. Cell Rep 2023:112415. [PMID: 37116488 DOI: 10.1016/j.celrep.2023.112415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023] Open
Abstract
Crosstalk among organs/tissues is important for regulating systemic metabolism. Here, we demonstrate inter-organ crosstalk between hepatic insulin and hypothalamic leptin actions, which maintains survival during food shortages. In inducible liver insulin receptor knockout mice, body weight is increased with hyperphagia and decreased energy expenditure, accompanied by increased circulating leptin receptor (LepR) and decreased hypothalamic leptin actions. Additional hepatic LepR deficiency reverses these metabolic phenotypes. Thus, decreased hepatic insulin action suppresses hypothalamic leptin action with increased liver-derived soluble LepR. Human hepatic and circulating LepR levels also correlate negatively with hepatic insulin action indices. In mice, food restriction decreases hepatic insulin action and energy expenditure with increased circulating LepR. Hepatic LepR deficiency increases mortality with enhanced energy expenditure during food restriction. The liver translates metabolic cues regarding energy-deficient status, which is reflected by decreased hepatic insulin action, into soluble LepR, thereby suppressing energy dissipation and assuring survival during food shortages.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan.
| | - Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Junro Seike
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Horiuchi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Yamagata 990-9585, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Yamagata 990-9585, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
12
|
Crespo M, Nikolic I, Mora A, Rodríguez E, Leiva-Vega L, Pintor-Chocano A, Horrillo D, Hernández-Cosido L, Torres JL, Novoa E, Nogueiras R, Medina-Gómez G, Marcos M, Leiva M, Sabio G. Myeloid p38 activation maintains macrophage-liver crosstalk and BAT thermogenesis through IL-12-FGF21 axis. Hepatology 2023; 77:874-887. [PMID: 35592906 PMCID: PMC9936978 DOI: 10.1002/hep.32581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/08/2022]
Abstract
Obesity features excessive fat accumulation in several body tissues and induces a state of chronic low-grade inflammation that contributes to the development of diabetes, steatosis, and insulin resistance. Recent research has shown that this chronic inflammation is crucially dependent on p38 pathway activity in macrophages, suggesting p38 inhibition as a possible treatment for obesity comorbidities. Nevertheless, we report here that lack of p38 activation in myeloid cells worsens high-fat diet-induced obesity, diabetes, and steatosis. Deficient p38 activation increases macrophage IL-12 production, leading to inhibition of hepatic FGF21 and reduction of thermogenesis in the brown fat. The implication of FGF21 in the phenotype was confirmed by its specific deletion in hepatocytes. We also found that IL-12 correlates with liver damage in human biopsies, indicating the translational potential of our results. Our findings suggest that myeloid p38 has a dual role in inflammation and that drugs targeting IL-12 might improve the homeostatic regulation of energy balance in response to metabolic stress.
Collapse
Affiliation(s)
- María Crespo
- Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain
| | - Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain
| | | | - Daniel Horrillo
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Biología Molecular, Lipobeta group , Universidad Rey Juan Carlos , Madrid , Spain.,Laboratorio LAFEMEX, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud , Universidad Rey Juan Carlos , Madrid , Spain
| | - Lourdes Hernández-Cosido
- Department of General Surgery , University Hospital of Salamanca-IBSAL , Salamanca , Spain.,Department of Surgery , University of Salamanca , Salamanca , Spain
| | - Jorge L Torres
- Department of Internal Medicine , University Hospital of Salamanca-Institute of Biomedical Research of Salamanca (IBSAL) , Salamanca , Spain.,Department of Medicine , University of Salamanca , Salamanca , Spain
| | - Eva Novoa
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) , University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela , Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn) , Madrid , Spain
| | - Rubén Nogueiras
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) , University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela , Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn) , Madrid , Spain
| | - Gema Medina-Gómez
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Biología Molecular, Lipobeta group , Universidad Rey Juan Carlos , Madrid , Spain.,Laboratorio LAFEMEX, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud , Universidad Rey Juan Carlos , Madrid , Spain
| | - Miguel Marcos
- Department of Internal Medicine , University Hospital of Salamanca-Institute of Biomedical Research of Salamanca (IBSAL) , Salamanca , Spain.,Department of Medicine , University of Salamanca , Salamanca , Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares , Madrid , Spain
| |
Collapse
|
13
|
Shin KC, Huh JY, Ji Y, Han JS, Han SM, Park J, Nahmgoong H, Lee WT, Jeon YG, Kim B, Park C, Kang H, Choe SS, Kim JB. VLDL-VLDLR axis facilitates brown fat thermogenesis through replenishment of lipid fuels and PPARβ/δ activation. Cell Rep 2022; 41:111806. [PMID: 36516764 DOI: 10.1016/j.celrep.2022.111806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/22/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
In mammals, brown adipose tissue (BAT) is specialized to conduct non-shivering thermogenesis for survival under cold acclimation. Although emerging evidence suggests that lipid metabolites are essential for heat generation in cold-activated BAT, the underlying mechanisms of lipid uptake in BAT have not been thoroughly understood. Here, we show that very-low-density lipoprotein (VLDL) uptaken by VLDL receptor (VLDLR) plays important roles in thermogenic execution in BAT. Compared with wild-type mice, VLDLR knockout mice exhibit impaired thermogenic features. Mechanistically, VLDLR-mediated VLDL uptake provides energy sources for mitochondrial oxidation via lysosomal processing, subsequently enhancing thermogenic activity in brown adipocytes. Moreover, the VLDL-VLDLR axis potentiates peroxisome proliferator activated receptor (PPAR)β/δ activity with thermogenic gene expression in BAT. Accordingly, VLDL-induced thermogenic capacity is attenuated in brown-adipocyte-specific PPARβ/δ knockout mice. Collectively, these data suggest that the VLDL-VLDLR axis in brown adipocytes is a key factor for thermogenic execution during cold exposure.
Collapse
Affiliation(s)
- Kyung Cheul Shin
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jin Young Huh
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Bohyeon Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Chanyoon Park
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Korea
| | - Heonjoong Kang
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Korea; School of Earth and Environmental Sciences, Interdisciplinary Graduate Program in Genetic Engineering, Research Institute of Oceanography, Seoul National University, Seoul 08826, Korea
| | - Sung Sik Choe
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
14
|
Jain R, Wade G, Ong I, Chaurasia B, Simcox J. Determination of tissue contributions to the circulating lipid pool in cold exposure via systematic assessment of lipid profiles. J Lipid Res 2022; 63:100197. [PMID: 35300982 PMCID: PMC9234243 DOI: 10.1016/j.jlr.2022.100197] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 01/07/2023] Open
Abstract
Plasma lipid levels are altered in chronic conditions such as type 2 diabetes and cardiovascular disease as well as during acute stresses such as fasting and cold exposure. Advances in MS-based lipidomics have uncovered a complex plasma lipidome of more than 500 lipids that serve functional roles, including as energy substrates and signaling molecules. This plasma lipid pool is maintained through regulation of tissue production, secretion, and uptake. A major challenge in understanding the lipidome complexity is establishing the tissues of origin and uptake for various plasma lipids, which is valuable for determining lipid functions. Using cold exposure as an acute stress, we performed global lipidomics on plasma and in nine tissues that may contribute to the circulating lipid pool. We found that numerous species of plasma acylcarnitines (ACars) and ceramides (Cers) were significantly altered upon cold exposure. Through computational assessment, we identified the liver and brown adipose tissue as major contributors and consumers of circulating ACars, in agreement with our previous work. We further identified the kidney and intestine as novel contributors to the circulating ACar pool and validated these findings with gene expression analysis. Regression analysis also identified that the brown adipose tissue and kidney are interactors with the plasma Cer pool. Taken together, these studies provide an adaptable computational tool to assess tissue contribution to the plasma lipid pool. Our findings have further implications in understanding the function of plasma ACars and Cers, which are elevated in metabolic diseases.
Collapse
Affiliation(s)
- Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, USA
| | - Irene Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
15
|
Santoleri D, Lim HW, Emmett MJ, Stoute J, Gavin MJ, Sostre-Colón J, Uehara K, Welles JE, Liu KF, Lazar MA, Titchenell PM. Global-run on sequencing identifies Gm11967 as an Akt-dependent long noncoding RNA involved in insulin sensitivity. iScience 2022; 25:104410. [PMID: 35663017 PMCID: PMC9156944 DOI: 10.1016/j.isci.2022.104410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
The insulin responsive Akt and FoxO1 signaling axis is a key regulator of the hepatic transcriptional response to nutrient intake. Here, we used global run-on sequencing (GRO-seq) to measure the nascent transcriptional response to fasting and refeeding as well as define the specific role of hepatic Akt and FoxO1 signaling in mediating this response. We identified 599 feeding-regulated transcripts, as well as over 6,000 eRNAs, and mapped their dependency on Akt and FoxO1 signaling. Further, we identified several feeding-regulated lncRNAs, including the lncRNA Gm11967, whose expression was dependent upon the liver Akt-FoxO1 axis. Restoring Gm11967 expression in mice lacking liver Akt improved insulin sensitivity and induced glucokinase protein expression, indicating that Akt-dependent control of Gm11967 contributes to the translational control of glucokinase. More broadly, we have generated a unique genome-wide dataset that defines the feeding and Akt/FoxO1-dependent transcriptional changes in response to nutrient availability.
Collapse
Affiliation(s)
- Dominic Santoleri
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Matthew J. Emmett
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julian Stoute
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew J. Gavin
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Jaimarie Sostre-Colón
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Kahealani Uehara
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Jaclyn E. Welles
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M. Titchenell
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Biomedical Graduate Studies, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Smilow Center for Translational Research, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA 19104, USA
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Refined-JinQi-JiangTang tablet ameliorates hypertension through activation of FGF21/FGFR1 axis in fructose-fed rats. J Nat Med 2022; 76:765-773. [PMID: 35534765 DOI: 10.1007/s11418-022-01626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate the therapeutic effect of JQ-R on metabolic hypertension and its correlation with Fibroblast growth factor 21/Fibroblast growth factor receptors 1(FGF21/FGFR1) pathway. In this study, fructose-induced metabolic hypertension rats were used as hypertension models to detect the regulation effect of JQ-R on hypertension. The effects of JQ-R on blood glucose, blood lipids, serum insulin levels and other metabolic indicators of rats were also measured. The effects of JQ-R on FGF21/FGFR1 signaling pathway in model animals were detected by Real-time quantitative PCR and Western blotting. The results showed that JQ-R significantly reduce the blood pressure of model rats in a dose-dependent manner. Meanwhile, fasting insulin, fasting blood glucose, insulin resistance index, total cholesterol and triglyceride levels were significantly decreased, and glucose and lipid metabolism abnormalities were also significantly improved. JQ-R induces these changes along with FGFR1 phosphorylation, which was also detected in JQ-R treated FGF21 knockout mice. These results suggest that JQ-R can reduce blood pressure and improve glucose and lipid metabolism in fructose-induced hypertension rats. Activation of FGF21/FGFR1 signaling pathway to regulate downstream blood pressure and glucolipid metabolism-related pathways may be one of the important mechanisms of JQ-R in regulating blood pressure.
Collapse
|
17
|
Sostre-Colón J, Gavin MJ, Santoleri D, Titchenell PM. Acute Deletion of the FOXO1-dependent Hepatokine FGF21 Does not Alter Basal Glucose Homeostasis or Lipolysis in Mice. Endocrinology 2022; 163:6550639. [PMID: 35303074 PMCID: PMC8995092 DOI: 10.1210/endocr/bqac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
The hepatic transcription factor forkhead box O1 (FOXO1) is a critical regulator of hepatic and systemic insulin sensitivity. Previous work by our group and others demonstrated that genetic inhibition of FOXO1 improves insulin sensitivity both in genetic and dietary mouse models of metabolic disease. Mechanistically, this is due in part to cell nonautonomous control of adipose tissue insulin sensitivity. However, the mechanisms mediating this liver-adipose tissue crosstalk remain ill defined. One candidate hepatokine controlled by hepatic FOXO1 is fibroblast growth factor 21 (FGF21). Preclinical and clinical studies have explored the potential of pharmacological FGF21 as an antiobesity and antidiabetic therapy. In this manuscript, we performed acute loss-of-function experiments to determine the role of hepatocyte-derived FGF21 in glucose homeostasis and insulin tolerance both in control and mice lacking hepatic insulin signaling. Surprisingly, acute deletion of FGF21 did not alter glucose tolerance, insulin tolerance, or adipocyte lipolysis in either liver-specific FGF21KO mice or mice lacking hepatic AKT-FOXO1-FGF21, suggesting a permissive role for endogenous FGF21 in the regulation of systemic glucose homeostasis and insulin tolerance in mice. In addition, these data indicate that liver FOXO1 controls glucose homeostasis independently of liver-derived FGF21.
Collapse
Affiliation(s)
- Jaimarie Sostre-Colón
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew J Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dominic Santoleri
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Correspondence: Paul M. Titchenell, PhD, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Rm. 12-104, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Ma X, Ye Y, Sun J, Ji J, Wang JS, Sun X. Coexposure of Cyclopiazonic Acid with Aflatoxin B1 Involved in Disrupting Amino Acid Metabolism and Redox Homeostasis Causing Synergistic Toxic Effects in Hepatocyte Spheroids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5166-5176. [PMID: 35427130 DOI: 10.1021/acs.jafc.2c01608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclopiazonic acid (CPA), an emerging toxin, has been found in various foods such as corn, peanuts, and figs. Aspergillus flavus can produce CPA, leading to coexposure with highly toxic aflatoxin B1 (AFB1), but the mechanism of their combined action is not clear. In this study, cocultured hepatocyte spheroids were used as the evaluation model, and two concentration settings of isotoxicity and different toxicity ratios were used to investigate the combined toxic effects. Metabolomics was subsequently used to analyze the potential mechanisms underlying the effects of their exposure. AFB1 and CPA might exhibit stronger cytotoxicity, with significant combined effects on mitochondrial morphology, activity, and reactive oxygen levels. The gene expression analysis revealed that the overexpression of AKT genes could mitigate the combined effects of AFB1 and CPA to some extent. Metabolomics analysis indicated that AFB1 and CPA significantly downregulated the metabolism of l-aspartate and antioxidant substances (e.g., penicillamine, myricetin, and ethanolamine). The pathway enrichment analysis also revealed a large impact on amino acid metabolism, likely affecting intracellular redox homeostasis. In addition, the presence of CPA affects intracellular glucose metabolism and lipid metabolism pathways. This study suggested a direction for future research on relevant toxic pathways and provided possible ideas for inhibiting or mitigating toxicity.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection & Quarantine, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection & Quarantine, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection & Quarantine, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection & Quarantine, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jia-Sheng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection & Quarantine, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Department of Environmental Health Science, University of Georgia, Athens, Georgia 30602, United States
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection & Quarantine, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|