1
|
Li J, Liu MJ, Du WJ, Peng XL, Deng H, Zi HX, Shang HB, Du JL. Neural-activity-regulated and glia-mediated control of brain lymphatic development. Cell 2025:S0092-8674(25)00410-6. [PMID: 40311620 DOI: 10.1016/j.cell.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/28/2025] [Accepted: 04/03/2025] [Indexed: 05/03/2025]
Abstract
The nervous system regulates peripheral immune responses under physiological and pathological conditions, but the brain's impact on immune system development remains unknown. Meningeal mural lymphatic endothelial cells (muLECs), embedded in the leptomeninges, form an immune niche surrounding the brain that contributes to brain immunosurveillance. Here, we report that the brain controls the development of muLECs via a specialized glial subpopulation, slc6a11b+ radial astrocytes (RAs), a process modulated by neural activity in zebrafish. slc6a11b+ RAs, with processes extending to the meninges, govern muLEC formation by expressing vascular endothelial growth factor C (vegfc). Moreover, neural activity regulates muLEC development, and this regulation requires Vegfc in slc6a11b+ RAs. Intriguingly, slc6a11b+ RAs cooperate with calcium-binding EGF domain 1 (ccbe1)+ fibroblasts to restrict muLEC growth on the brain surface via controlling mature Vegfc distribution. Thus, our study uncovers a glia-mediated and neural-activity-regulated control of brain lymphatic development and highlights the importance of inter-tissue cellular cooperation in development.
Collapse
Affiliation(s)
- Jia Li
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ming-Jian Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wen-Jie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiao-Lan Peng
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Deng
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Xing Zi
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Bing Shang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Emergency Medicine Center, Shanghai Institute of Aviation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jiu-Lin Du
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
2
|
Kuonqui KG, Campbell AC, Pollack BL, Shin J, Sarker A, Brown S, Park HJ, Mehrara BJ, Kataru RP. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front Cell Dev Biol 2025; 13:1527971. [PMID: 40046235 PMCID: PMC11880633 DOI: 10.3389/fcell.2025.1527971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is the principal transmembrane receptor responsible for sensing and coordinating cellular responses to environmental lymphangiogenic stimuli in lymphatic endothelial cells (LECs). VEGFC and D (VEGFC/D) function as the cognate ligands to VEGFR3 by stimulating autophosphorylation of intracellular VEGFR3 tyrosine kinase domains that activate signal cascades involved in lymphatic growth and survival. VEGFR3 primarily promotes downstream signaling through the phosphoinositide 3-kinase (PI3K) and Ras signaling cascades that promote functions including cell proliferation and migration. The importance of VEGFR3 cascades in lymphatic physiology is underscored by identification of dysfunctional VEGFR3 signaling across several lymphatic-related diseases. Recently, our group has shown that intracellular modification of VEGFR3 signaling is a potent means of inducing lymphangiogenesis independent of VEGFC. This is important because long-term treatment with recombinant VEGFC may have deleterious consequences due to off-target effects. A more complete understanding of VEGFR3 signaling pathways may lead to novel drug development strategies. The purpose of this review is to 1) characterize molecular mediators of VEGFC/VEGFR3 downstream signaling activation and their functional roles in LEC physiology and 2) explore molecular regulation of overall VEGFR3 expression and activity within LECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Carlantoni C, Liekfeld LMH, Beerens M, Frye M. Same same but different? How blood and lymphatic vessels induce cell contact inhibition. Biochem Soc Trans 2025; 53:BST20240573. [PMID: 39912714 DOI: 10.1042/bst20240573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Endothelial cells (ECs) migrate, sprout, and proliferate in response to (lymph)angiogenic mitogens, such as vascular endothelial growth factors. When ECs reach high confluency and encounter spatial confinement, they establish mature cell-cell junctions, reduce proliferation, and enter a quiescent state through a process known as contact inhibition. However, EC quiescence is modulated not only by spatial confinement but also by other mechano-environmental factors, including blood or lymph flow and extracellular matrix properties. Changes in physical forces and intracellular signaling can disrupt contact inhibition, resulting in aberrant proliferation and vascular dysfunction. Therefore, it is critical to understand the mechanisms by which endothelial cells regulate contact inhibition. While contact inhibition has been well studied in blood endothelial cells (BECs), its regulation in lymphatic endothelial cells (LECs) remains largely unexplored. Here, we review the current knowledge on extrinsic stimuli and intrinsic molecular pathways that govern endothelial contact inhibition and highlight nuanced differences between BECs and LECs. Furthermore, we provide perspectives for future research on lymphatic contact inhibition. A deeper understanding of the BEC and LEC-specific pathways underlying contact inhibition may enable targeted modulation of this process in blood or lymphatic vessels with relevance to lymphatic or blood vascular-specific disorders.
Collapse
Affiliation(s)
- Claudia Carlantoni
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Leon M H Liekfeld
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Manu Beerens
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| |
Collapse
|
4
|
Liu Q, Xia LX, Yi WZ, Wu YN, Gu SS, Chen JY, Liu TT, Lu YH, Cui YH, Meng J, Pan HW. Inhibition of Retinal Neovascularization by BEZ235: Targeting the Akt/4EBP1/Cyclin D1 Pathway in Endothelial Cells. Invest Ophthalmol Vis Sci 2025; 66:66. [PMID: 39888634 PMCID: PMC11784786 DOI: 10.1167/iovs.66.1.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Purpose To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation. Methods Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation. In the OIR mouse model, retinal neovascularization was evaluated by retinal flatmount immunofluorescence staining, hematoxylin and eosin (H&E) staining, quantitative reverse-transcription polymerase chain reaction (RT-qPCR), and western blot analyses. The in vivo toxicity of BEZ235 was evaluated by electroretinography (ERG) and histological examination of the heart, liver, spleen, lungs, and kidneys. Results In vitro, BEZ235 significantly inhibited cell cycle progression by downregulating cyclin D1 at both mRNA and protein levels, inducing G0/G1 phase arrest. This led to significant reductions in cell viability, proliferation, migration, and tube formation. In the OIR model, BEZ235 substantially decreased neovascularization and improved vascular organization. BEZ235 mediates its effects by inhibiting the PI3K/Akt/mTOR pathway, reducing Akt and 4E-binding protein 1 (4EBP1) phosphorylation levels, thus downregulating cyclin D1 expression. ERG and histological examination suggested that BEZ235 did not induce evident retinal or systemic toxicity at the dosage used to inhibit retinal neovascularization. Conclusions BEZ235 effectively inhibits retinal neovascularization by downregulating cyclin D1 via 4EBP1 phosphorylation inhibition, highlighting its potential as a promising therapeutic agent for retinal neovascularization diseases.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ling-Xiao Xia
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ya-Ni Wu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuo-Shuo Gu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian-Ying Chen
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ting-Ting Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ying-Hui Lu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- The Affiliated Shunde Hospital of Jinan University, Foshan, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024; 99:2108-2133. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
6
|
Wang Z, Wang C, Zhai Y, Bai Y, Wang H, Rong X. Loss of Brcc3 in Zebrafish Embryos Increases Their Susceptibility to DNA Damage Stress. Int J Mol Sci 2024; 25:12108. [PMID: 39596176 PMCID: PMC11594080 DOI: 10.3390/ijms252212108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe forms of genetic damage in organisms, yet vertebrate models capable of monitoring DSBs in real-time remain scarce. BRCA1/BRCA2-containing complex subunit 3 (BRCC3), also known as BRCC36, functions within various multiprotein complexes to mediate diverse biological processes. However, the physiological role of BRCC3 in vertebrates, as well as the underlying mechanisms that govern its activity, are not well understood. To explore these questions, we generated brcc3-knockout zebrafish using CRISPR/Cas9 gene-editing technology. While brcc3 mutant zebrafish appear phenotypically normal and remain fertile, they exhibit significantly increased rates of mortality and deformity following exposure to DNA damage. Furthermore, embryos lacking Brcc3 display heightened p53 signaling, elevated γ-H2AX levels, and increased apoptosis in response to DNA-damaging agents such as ultraviolet (UV) light and Etoposide (ETO). Notably, genetic inactivation of p53 or pharmacological inhibition of Ataxia-telangiectasia mutated (ATM) activity rescues the hypersensitivity to UV and ETO observed in Brcc3-deficient embryos. These findings suggest that Brcc3 plays a critical role in DNA damage response (DDR), promoting cell survival during embryogenesis. Additionally, brcc3-null mutant zebrafish offer a promising vertebrate model for real-time monitoring of DSBs.
Collapse
Affiliation(s)
- Zhengyang Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yanpeng Zhai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yan Bai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hongying Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
7
|
Liu Z, Tanke NT, Neal A, Yu T, Branch T, Sharma A, Cook JG, Bautch VL. Differential endothelial cell cycle status in postnatal retinal vessels revealed using a novel PIP-FUCCI reporter and zonation analysis. Angiogenesis 2024; 27:681-689. [PMID: 38795286 PMCID: PMC11564245 DOI: 10.1007/s10456-024-09920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/27/2024]
Abstract
Cell cycle regulation is critical to blood vessel formation and function, but how the endothelial cell cycle integrates with vascular regulation is not well-understood, and available dynamic cell cycle reporters do not precisely distinguish all cell cycle stage transitions in vivo. Here we characterized a recently developed improved cell cycle reporter (PIP-FUCCI) that precisely delineates S phase and the S/G2 transition. Live image analysis of primary endothelial cells revealed predicted temporal changes and well-defined stage transitions. A new inducible mouse cell cycle reporter allele was selectively expressed in postnatal retinal endothelial cells upon Cre-mediated activation and predicted endothelial cell cycle status. We developed a semi-automated zonation program to define endothelial cell cycle status in spatially defined and developmentally distinct retinal areas and found predicted cell cycle stage differences in arteries, veins, and remodeled and angiogenic capillaries. Surprisingly, the predicted dearth of S-phase proliferative tip cells relative to stalk cells at the vascular front was accompanied by an unexpected enrichment for endothelial tip and stalk cells in G2, suggesting G2 stalling as a contribution to tip-cell arrest and dynamics at the front. Thus, this improved reporter precisely defines endothelial cell cycle status in vivo and reveals novel G2 regulation that may contribute to unique aspects of blood vessel network expansion.
Collapse
Affiliation(s)
- Ziqing Liu
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| | - Alexandra Neal
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianji Yu
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tershona Branch
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Arya Sharma
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jean G Cook
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bautch
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA.
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Bassi I, Grunspan M, Hen G, Ravichandran KA, Moshe N, Gutierrez-Miranda L, Safriel SR, Kostina D, Shen A, Ruiz de Almodovar C, Yaniv K. Endolysosomal dysfunction in radial glia progenitor cells leads to defective cerebral angiogenesis and compromised blood-brain barrier integrity. Nat Commun 2024; 15:8158. [PMID: 39289367 PMCID: PMC11408700 DOI: 10.1038/s41467-024-52365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The neurovascular unit (NVU) is a complex multicellular structure that helps maintain cerebral homeostasis and blood-brain barrier (BBB) integrity. While extensive evidence links NVU alterations to cerebrovascular diseases and neurodegeneration, the underlying molecular mechanisms remain unclear. Here, we use zebrafish embryos carrying a mutation in Scavenger Receptor B2, a highly conserved endolysosomal protein expressed predominantly in Radial Glia Cells (RGCs), to investigate the interplay among different NVU components. Through live imaging and genetic manipulations, we demonstrate that compromised acidification of the endolysosomal compartment in mutant RGCs leads to impaired Notch3 signaling, thereby inducing excessive neurogenesis and reduced glial differentiation. We further demonstrate that alterations to the neuron/glia balance result in impaired VEGF and Wnt signaling, leading to severe vascular defects, hemorrhages, and a leaky BBB. Altogether, our findings provide insights into NVU formation and function and offer avenues for investigating diseases involving white matter defects and vascular abnormalities.
Collapse
Affiliation(s)
- Ivan Bassi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Grunspan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gideon Hen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kishore A Ravichandran
- Institute for Neurovascular Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Noga Moshe
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Gutierrez-Miranda
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav R Safriel
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Kostina
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amitay Shen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Carmen Ruiz de Almodovar
- Institute for Neurovascular Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Bonn, Germany
| | - Karina Yaniv
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
10
|
Garlisi Torales LD, Sempowski BA, Krikorian GL, Woodis KM, Paulissen SM, Smith CL, Sheppard SE. Central conducting lymphatic anomaly: from bench to bedside. J Clin Invest 2024; 134:e172839. [PMID: 38618951 PMCID: PMC11014661 DOI: 10.1172/jci172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.
Collapse
Affiliation(s)
- Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Benjamin A. Sempowski
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Georgia L. Krikorian
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kristina M. Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Scott M. Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher L. Smith
- Division of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Li R, Xiao X, Yan Y, Yu L, Lv C, Zhang Y, Hong T, Zhang H, Wang Y. GPRASP1 loss-of-function links to arteriovenous malformations by endothelial activating GPR4 signals. Brain 2024; 147:1571-1586. [PMID: 37787182 DOI: 10.1093/brain/awad335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023] Open
Abstract
Arteriovenous malformations (AVMs) are fast-flow vascular malformations and refer to important causes of intracerebral haemorrhage in young adults. Getting deep insight into the genetic pathogenesis of AVMs is necessary. Herein, we identified two vital missense variants of G protein-coupled receptor (GPCR) associated sorting protein 1 (GPRASP1) in AVM patients for the first time and congruously determined to be loss-of-function variants in endothelial cells. GPRASP1 loss-of-function caused endothelial dysfunction in vitro and in vivo. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral haemorrhage, AVMs and exhibited vascular anomalies in multiple organs. GPR4 was identified to be an effective GPCR binding with GPRASP1 to develop endothelial disorders. GPRASP1 deletion activated GPR4/cAMP/MAPK signalling to disturb endothelial functions, thus contributing to vascular anomalies. Mechanistically, GPRASP1 promoted GPR4 degradation. GPRASP1 enabled GPR4 K63-linked ubiquitination, enhancing the binding of GPR4 and RABGEF1 to activate RAB5 for conversions from endocytic vesicles to endosomes, and subsequently increasing the interactions of GPR4 and ESCRT members to package GPR4 into multivesicular bodies or late endosomes for lysosome degradation. Notably, the GPR4 antagonist NE 52-QQ57 and JNK inhibitor SP600125 effectively rescued the vascular phenotype caused by endothelial Gprasp1 deletion. Our findings provided novel insights into the roles of GPRASP1 in AVMs and hinted at new therapeutic strategies.
Collapse
Affiliation(s)
- Ruofei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing 100053, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing 100053, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
12
|
Veloso A, Bleuart A, Conrard L, Orban T, Bruyr J, Cabochette P, Germano RFV, Schevenels G, Bernard A, Zindy E, Demeyer S, Vanhollebeke B, Dequiedt F, Martin M. The cytoskeleton adaptor protein Sorbs1 controls the development of lymphatic and venous vessels in zebrafish. BMC Biol 2024; 22:51. [PMID: 38414014 PMCID: PMC10900589 DOI: 10.1186/s12915-024-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.
Collapse
Affiliation(s)
- Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Anouk Bleuart
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Louise Conrard
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Tanguy Orban
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Jonathan Bruyr
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Pauline Cabochette
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
- Present Address: Laboratory of Developmental Genetics, ULB Neuroscience Institute, Université Libre de Bruxelles, B-6041, Gosselies, Belgium
| | - Raoul F V Germano
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Giel Schevenels
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Alice Bernard
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory for Molecular Biology and Genetic Engineering, GIGA-R, University of Liège (ULiège), Liège, Belgium
| | - Egor Zindy
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Benoit Vanhollebeke
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium
| | - Franck Dequiedt
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium
| | - Maud Martin
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège (ULiège), Liège, Belgium.
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège (ULiège), Liège, Belgium.
- Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- Department of Molecular Biology, Laboratory of Neurovascular Signaling, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), B-6041, Gosselies, Belgium.
- WEL Research Institute (WELBIO Department), Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
13
|
Michki SN, Singer BD, Perez JV, Thomas AJ, Natale V, Helmin KA, Wright J, Cheng L, Young LR, Lederman HM, McGrath-Morrow SA. Transcriptional profiling of peripheral blood mononuclear cells identifies inflammatory phenotypes in Ataxia Telangiectasia. Orphanet J Rare Dis 2024; 19:67. [PMID: 38360726 PMCID: PMC10870445 DOI: 10.1186/s13023-024-03073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.
Collapse
Affiliation(s)
- Sylvia N Michki
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Javier V Perez
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron J Thomas
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Natale
- Forgotten Diseases Research Foundation, Santa Clara, CA, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jennifer Wright
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leon Cheng
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard M Lederman
- Department of Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon A McGrath-Morrow
- Division of Pulmonary and Sleep Medicine, Perelman School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Liu Z, Tanke NT, Neal A, Yu T, Branch T, Cook JG, Bautch VL. Differential endothelial cell cycle status in postnatal retinal vessels revealed using a novel PIP-FUCCI reporter and zonation analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574239. [PMID: 38249517 PMCID: PMC10798646 DOI: 10.1101/2024.01.04.574239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cell cycle regulation is critical to blood vessel formation and function, but how the endothelial cell cycle integrates with vascular regulation is not well-understood, and available dynamic cell cycle reporters do not precisely distinguish all cell cycle stage transitions in vivo. Here we characterized a recently developed improved cell cycle reporter (PIP-FUCCI) that precisely delineates S phase and the S/G2 transition. Live image analysis of primary endothelial cells revealed predicted temporal changes and well-defined stage transitions. A new inducible mouse cell cycle reporter allele was selectively expressed in postnatal retinal endothelial cells upon Cre-mediated activation and predicted endothelial cell cycle status. We developed a semi-automated zonation program to define endothelial cell cycle status in spatially defined and developmentally distinct retinal areas and found predicted cell cycle stage differences in arteries, veins, and remodeled and angiogenic capillaries. Surprisingly, the predicted dearth of proliferative tip cells at the vascular front was accompanied by an unexpected enrichment for endothelial tip cells in G2, suggesting G2 stalling as a contribution to tip-cell arrest. Thus, this improved reporter precisely defines endothelial cell cycle status in vivo and reveals novel G2 regulation that may contribute to unique aspects of blood vessel network expansion.
Collapse
Affiliation(s)
- Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC USA
| | - Alexandra Neal
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Tershona Branch
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Jean G Cook
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
15
|
Kuonqui K, Campbell AC, Sarker A, Roberts A, Pollack BL, Park HJ, Shin J, Brown S, Mehrara BJ, Kataru RP. Dysregulation of Lymphatic Endothelial VEGFR3 Signaling in Disease. Cells 2023; 13:68. [PMID: 38201272 PMCID: PMC10778007 DOI: 10.3390/cells13010068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation, migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways. Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3 signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states, including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome, (4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the development of novel strategies to treat these chronic and often debilitating illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
16
|
Kim M, Hong T, An G, Lim W, Song G. Toxic effects of benfluralin on zebrafish embryogenesis via the accumulation of reactive oxygen species and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109722. [PMID: 37597713 DOI: 10.1016/j.cbpc.2023.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The dinitroaniline herbicide benfluralin is used weed control in conventional systems and poses a high risk of accumulation in aquatic systems. Previous studies have shown the toxic effects of benfluralin on non-target organisms; however, its developmental toxicity in vertebrates has not yet been reported. This study demonstrated the developmental toxicity of benfluralin and its mechanism of action, using zebrafish as an aquatic vertebrate model. Benfluralin induces morphological and physiological alterations in body length, yolk sac, and heart edema. We also demonstrated a reactive oxygen species (ROS) increase of approximately 325.53 % compared with the control group after 20 μM benfluralin-treatment. In addition, the malformation of the heart and vascular structures was identified using transgenic flk1:eGFP zebrafish models at 20 μM concentration benfluralin exposure. Moreover, benfluralin induced small livers, approximately 59.81 % of normal liver size, via abnormal development of the liver as observed in the transgenic L-fabp:dsRed zebrafish. Benfluralin also inhibits normal growth via abnormal expression of cell cycle regulatory genes and increases oxidative stress, inflammation, and apoptosis. Collectively, we elucidated the mechanisms associated with benfluralin toxicity, which lead to various abnormalities and developmental toxicities in zebrafish. Therefore, this study provides information on the parameters used to assess developmental toxicity in other aquatic organisms, such as herbicides, pesticides, and environmental contaminants.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Fernández-Chacón M, Mühleder S, Regano A, Garcia-Ortega L, Rocha SF, Torroja C, Sanchez-Muñoz MS, Lytvyn M, Casquero-Garcia V, De Andrés-Laguillo M, Muhl L, Orlich MM, Gaengel K, Camafeita E, Vázquez J, Benguría A, Iruela-Arispe ML, Dopazo A, Sánchez-Cabo F, Carter H, Benedito R. Incongruence between transcriptional and vascular pathophysiological cell states. NATURE CARDIOVASCULAR RESEARCH 2023; 2:2023530-549. [PMID: 37745941 PMCID: PMC7615119 DOI: 10.1038/s44161-023-00272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/19/2023] [Indexed: 09/26/2023]
Abstract
The Notch pathway is a major regulator of endothelial transcriptional specification. Targeting the Notch receptors or Delta-like ligand 4 (Dll4) dysregulates angiogenesis. Here, by analyzing single and compound genetic mutants for all Notch signaling members, we find significant differences in the way ligands and receptors regulate liver vascular homeostasis. Loss of Notch receptors caused endothelial hypermitogenic cell-cycle arrest and senescence. Conversely, Dll4 loss triggered a strong Myc-driven transcriptional switch inducing endothelial proliferation and the tip-cell state. Myc loss suppressed the induction of angiogenesis in the absence of Dll4, without preventing the vascular enlargement and organ pathology. Similarly, inhibition of other pro-angiogenic pathways, including MAPK/ERK and mTOR, had no effect on the vascular expansion induced by Dll4 loss; however, anti-VEGFA treatment prevented it without fully suppressing the transcriptional and metabolic programs. This study shows incongruence between single-cell transcriptional states, vascular phenotypes and related pathophysiology. Our findings also suggest that the vascular structure abnormalization, rather than neoplasms, causes the reported anti-Dll4 antibody toxicity.
Collapse
Affiliation(s)
- Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alvaro Regano
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lourdes Garcia-Ortega
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana F. Rocha
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Maria S. Sanchez-Muñoz
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Verónica Casquero-Garcia
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Macarena De Andrés-Laguillo
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Michael M. Orlich
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala, Sweden
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ana Dopazo
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
18
|
Kim M, An G, Park J, Song G, Lim W. Bensulide-induced oxidative stress causes developmental defects of cardiovascular system and liver in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131577. [PMID: 37156044 DOI: 10.1016/j.jhazmat.2023.131577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bensulide is an organophosphate herbicide commonly used in agricultural crops; however, no studies have reported on its toxic effects in the embryonic development of vertebrates, particularly gene expression level and cellular response. Therefore, to identify developmental toxicity, zebrafish eggs 8 h post-fertilization (hpf) were exposed to bensulide concentrations of up to 3 mg/L. The results indicated that exposure to 3 mg/L bensulide inhibited the hatching of all eggs and decreased the size of the body, eyes, and inner ear. There were demonstrated effects observed in the cardiovascular system and liver caused by bensulide in fli1:eGFP and L-fabp:dsRed transgenic zebrafish models, respectively. Following exposure to 3 mg/L bensulide, normal heart development, including cardiac looping, was disrupted and the heart rate of 96 hpf zebrafish larvae decreased to 16.37%. Development of the liver, the main detoxification organ, was also inhibited by bensulide, and after exposure to 3 mg/L bensulide its size reduced to 41.98%. Additionally, exposure to bensulide resulted in inhibition of antioxidant enzyme expression and an increase in ROS levels by up to 238.29%. Collectively, we identified various biological responses associated with the toxicity of bensulide, which led to various organ malformations and cytotoxic effects in zebrafish.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
19
|
The Impact of Stem/Progenitor Cells on Lymphangiogenesis in Vascular Disease. Cells 2022; 11:cells11244056. [PMID: 36552820 PMCID: PMC9776475 DOI: 10.3390/cells11244056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Lymphatic vessels, as the main tube network of fluid drainage and leukocyte transfer, are responsible for the maintenance of homeostasis and pathological repairment. Recently, by using genetic lineage tracing and single-cell RNA sequencing techniques, significant cognitive progress has been made about the impact of stem/progenitor cells during lymphangiogenesis. In the embryonic stage, the lymphatic network is primarily formed through self-proliferation and polarized-sprouting from the lymph sacs. However, the assembly of lymphatic stem/progenitor cells also guarantees the sustained growth of lymphvasculogenesis to obtain the entire function. In addition, there are abundant sources of stem/progenitor cells in postnatal tissues, including circulating progenitors, mesenchymal stem cells, and adipose tissue stem cells, which can directly differentiate into lymphatic endothelial cells and participate in lymphangiogenesis. Specifically, recent reports indicated a novel function of lymphangiogenesis in transplant arteriosclerosis and atherosclerosis. In the present review, we summarized the latest evidence about the diversity and incorporation of stem/progenitor cells in lymphatic vasculature during both the embryonic and postnatal stages, with emphasis on the impact of lymphangiogenesis in the development of vascular diseases to provide a rational guidance for future research.
Collapse
|
20
|
Chang TM, Chu PY, Lin HY, Huang KW, Hung WC, Shan YS, Chen LT, Tsai HJ. PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation. J Biomed Sci 2022; 29:92. [PMID: 36336681 PMCID: PMC9639322 DOI: 10.1186/s12929-022-00875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) is a tumor suppressor. Low PTEN expression has been observed in pancreatic neuroendocrine tumors (pNETs) and is associated with increased liver metastasis and poor survival. Vascular endothelial growth factor receptor 3 (VEGFR3) is a receptor tyrosine kinase and is usually activated by binding with vascular endothelial growth factor C (VEGFC). VEGFR3 has been demonstrated with lymphangiogenesis and cancer invasiveness. PTEN is also a phosphatase to dephosphorylate both lipid and protein substrates and VEGFR3 is hypothesized to be a substrate of PTEN. Dual-specificity phosphatase 19 (DUSP19) is an atypical DUSP and can interact with VEGFR3. In this study, we investigated the function of PTEN on regulation of pNET invasiveness and its association with VEGFR3 and DUSP19. Methods PTEN was knocked down or overexpressed in pNET cells to evaluate its effect on invasiveness and its association with VEGFR3 phosphorylation. In vitro phosphatase assay was performed to identify the regulatory molecule on the regulation of VEGFR3 phosphorylation. In addition, immunoprecipitation, and immunofluorescence staining were performed to evaluate the molecule with direct interaction on VEGFR3 phosphorylation. The animal study was performed to validate the results of the in vitro study. Results The invasion and migration capabilities of pNETs were enhanced by PTEN knockdown accompanied with increased VEGFR3 phosphorylation, ERK phosphorylation, and increased expression of epithelial–mesenchymal transition molecules in the cells. The enhanced invasion and migration abilities of pNET cells with PTEN knockdown were suppressed by addition of the VEGFR3 inhibitor MAZ51, but not by the VEGFR3-Fc chimeric protein to neutralize VEGFC. VEGFR3 phosphorylation is responsible for pNET cell invasiveness and is VEGFC-independent. However, an in vitro phosphatase assay failed to show VEGFR3 as a substrate of PTEN. In contrast, DUSP19 was transcriptionally upregulated by PTEN and was shown to dephosphorylate VEGFR3 via direct interaction with VEGFR3 by an in vitro phosphatase assay, immunoprecipitation, and immunofluorescence staining. Increased tumor invasion into peripheral tissues was validated in xenograft mouse model. Tumor invasion was suppressed by treatment with VEGFR3 or MEK inhibitors. Conclusions PTEN regulates pNET invasiveness via DUSP19-mediated VEGFR3 dephosphorylation. VEGFR3 and DUSP19 are potential therapeutic targets for pNET treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00875-2.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.411447.30000 0004 0637 1806Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Pei-Yi Chu
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.452796.b0000 0004 0634 3637Department of Pathology, Show Chwan Memorial Hospital, Changhua, Taiwan ,grid.256105.50000 0004 1937 1063School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan ,grid.260542.70000 0004 0532 3749Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-You Lin
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Kuo-Wei Huang
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Wen-Chun Hung
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan
| | - Yan-Shen Shan
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Tzong Chen
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Jen Tsai
- grid.59784.370000000406229172National Institute of Cancer Research, National Health Research Institutes, 1F No 367, Sheng-Li Road, Tainan, 70456 Taiwan ,grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Chavkin NW, Genet G, Poulet M, Jeffery ED, Marziano C, Genet N, Vasavada H, Nelson EA, Acharya BR, Kour A, Aragon J, McDonnell SP, Huba M, Sheynkman GM, Walsh K, Hirschi KK. Endothelial cell cycle state determines propensity for arterial-venous fate. Nat Commun 2022; 13:5891. [PMID: 36202789 PMCID: PMC9537338 DOI: 10.1038/s41467-022-33324-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/09/2022] [Indexed: 12/15/2022] Open
Abstract
During blood vessel development, endothelial cells become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Arterial-venous specification occurs in conjunction with suppression of endothelial cell cycle progression; however, the mechanistic role of cell cycle state is unknown. Herein, using Cdh5-CreERT2;R26FUCCI2aR reporter mice, we find that venous endothelial cells are enriched for the FUCCI-Negative state (early G1) and BMP signaling, while arterial endothelial cells are enriched for the FUCCI-Red state (late G1) and TGF-β signaling. Furthermore, early G1 state is essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-β1-induced arterial gene expression. Pharmacologically induced cell cycle arrest prevents arterial-venous specification defects in mice with endothelial hyperproliferation. Collectively, our results show that distinct endothelial cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous fate.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mathilde Poulet
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hema Vasavada
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bipul R Acharya
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Anupreet Kour
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jordon Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Hematovascular Biology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
22
|
Chan GHH, Chan E, Kwok CTK, Leung GPH, Lee SMY, Seto SW. The role of p53 in the alternation of vascular functions. Front Pharmacol 2022; 13:981152. [PMID: 36147350 PMCID: PMC9485942 DOI: 10.3389/fphar.2022.981152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ageing is a risk factor for many degenerative diseases. Cardiovascular diseases (CVDs) are usually big burdens for elderly, caregivers and the health system. During the aging process, normal functions of vascular cells and tissue progressively lost and eventually develop vascular diseases. Endothelial dysfunction, reduced bioavailability of endothelium-derived nitric oxide are usual phenomena observed in patients with cardiovascular diseases. Myriad of studies have been done to investigate to delay the vascular dysfunction or improve the vascular function to prolong the aging process. Tumor suppressor gene p53, also a transcription factor, act as a gatekeeper to regulate a number of genes to maintain normal cell function including but not limited to cell proliferation, cell apoptosis. p53 also crosstalk with other key transcription factors like hypoxia-inducible factor 1 alpha that contribute to the progression of cardiovascular diseases. Therefore, in recent three decades, p53 has drawn scientists’ attention on its effects in vascular function. Though the role of tumor suppressor gene p53 is still not clear in vascular function, it is found to play regulatory roles and may involve in vascular remodeling, atherosclerosis or pulmonary hypertension. p53 may have a divergent role in endothelial and vascular muscle cells in those conditions. In this review, we describe the different effects of p53 in cardiovascular physiology. Further studies on the effects of endothelial cell-specific p53 deficiency on atherosclerotic plaque formation in common animal models are required before the therapeutic potential can be realized.
Collapse
Affiliation(s)
- Gabriel Hoi-Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Enoch Chan
- School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Carsten Tsun-Ka Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - Sai-Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Sai-Wang Seto,
| |
Collapse
|
23
|
Das RN, Tevet Y, Safriel S, Han Y, Moshe N, Lambiase G, Bassi I, Nicenboim J, Brückner M, Hirsch D, Eilam-Altstadter R, Herzog W, Avraham R, Poss KD, Yaniv K. Generation of specialized blood vessels via lymphatic transdifferentiation. Nature 2022; 606:570-575. [PMID: 35614218 PMCID: PMC9875863 DOI: 10.1038/s41586-022-04766-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/14/2022] [Indexed: 01/27/2023]
Abstract
The lineage and developmental trajectory of a cell are key determinants of cellular identity. In the vascular system, endothelial cells (ECs) of blood and lymphatic vessels differentiate and specialize to cater to the unique physiological demands of each organ1,2. Although lymphatic vessels were shown to derive from multiple cellular origins, lymphatic ECs (LECs) are not known to generate other cell types3,4. Here we use recurrent imaging and lineage-tracing of ECs in zebrafish anal fins, from early development to adulthood, to uncover a mechanism of specialized blood vessel formation through the transdifferentiation of LECs. Moreover, we demonstrate that deriving anal-fin vessels from lymphatic versus blood ECs results in functional differences in the adult organism, uncovering a link between cell ontogeny and functionality. We further use single-cell RNA-sequencing analysis to characterize the different cellular populations and transition states involved in the transdifferentiation process. Finally, we show that, similar to normal development, the vasculature is rederived from lymphatics during anal-fin regeneration, demonstrating that LECs in adult fish retain both potency and plasticity for generating blood ECs. Overall, our research highlights an innate mechanism of blood vessel formation through LEC transdifferentiation, and provides in vivo evidence for a link between cell ontogeny and functionality in ECs.
Collapse
Affiliation(s)
- Rudra N. Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel, Corresponding Authors Karina Yaniv Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel, , Rudra N. Das Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel,
| | - Yaara Tevet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Safriel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yanchao Han
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, United States, Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Noga Moshe
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Giuseppina Lambiase
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ivan Bassi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Julian Nicenboim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias Brückner
- University of Muenster and Max Plank Institute for Molecular Biomedicine, Muenster, Germany
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wiebke Herzog
- University of Muenster and Max Plank Institute for Molecular Biomedicine, Muenster, Germany
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel, Corresponding Authors Karina Yaniv Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel, , Rudra N. Das Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel,
| |
Collapse
|
24
|
Zhou J, Hu Y, Zhu W, Nie C, Zhao W, Faje AT, Labelle KE, Swearingen B, Lee H, Hedley-Whyte ET, Zhang X, Jones PS, Miller KK, Klibanski A, Zhou Y, Soberman RJ. Sprouting Angiogenesis in Human Pituitary Adenomas. Front Oncol 2022; 12:875219. [PMID: 35600354 PMCID: PMC9117625 DOI: 10.3389/fonc.2022.875219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Angiogenesis in pituitary tumors is not fully understood, and a better understanding could help inform new pharmacologic therapies, particularly for aggressive pituitary tumors. Materials and Methods 219 human pituitary tumors and 12 normal pituitary glands were studied. Angiogenic genes were quantified by an angiogenesis qPCR array and a TaqMan probe-based absolute qPCR. Angiogenesis inhibition in pituitary tumors was evaluated in vitro with the endothelial tube formation assay and in vivo in RbΔ19 mice. Results 71 angiogenic genes, 40 of which are known to be involved in sprouting angiogenesis, were differentially expressed in pituitary tumors. Expression of endothelial markers CD31, CD34, and ENG was significantly higher in pituitary tumors, by 5.6, 22.3, and 8.2-fold, respectively, compared to in normal pituitary tissue. There was no significant difference in levels of the lymphatic endothelial marker LYVE1 in pituitary tumors compared with normal pituitary gland tissue. Pituitary tumors also expressed significantly higher levels of angiogenesis growth factors, including VEGFA (4.2-fold), VEGFB (2.2), VEGFC (19.3), PGF (13.4), ANGPT2 (9.2), PDGFA (2.7), PDGFB (10.5) and TGFB1 (3.8) compared to normal pituitary tissue. Expression of VEGFC and PGF was highly correlated with the expression of endothelial markers in tumor samples, including CD31, CD34, and ENG (endoglin, a co-receptor for TGFβ). Furthermore, VEGFR inhibitors inhibited angiogenesis induced by human pituitary tumors and prolonged survival of RbΔ19 mice. Conclusion Human pituitary tumors are characterized by more active angiogenesis than normal pituitary gland tissue in a manner consistent with sprouting angiogenesis. Angiogenesis in pituitary tumors is regulated mainly by PGF and VEGFC, not VEGFA and VEGFB. Angiogenesis inhibitors, such as the VEGFR2 inhibitor cabozantinib, may merit further investigation as therapies for aggressive human pituitary tumors.
Collapse
Affiliation(s)
- Jie Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yaomin Hu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wende Zhu
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Chuansheng Nie
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander T. Faje
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kay E. Labelle
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brooke Swearingen
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - E. Tessa Hedley-Whyte
- Department of Pathology (Neuropathology), Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pamela S. Jones
- Neurosurgery Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Yunli Zhou,
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
El-Sammak H, Yang B, Guenther S, Chen W, Marín-Juez R, Stainier DY. A Vegfc-Emilin2a-Cxcl8a Signaling Axis Required for Zebrafish Cardiac Regeneration. Circ Res 2022; 130:1014-1029. [PMID: 35264012 PMCID: PMC8976759 DOI: 10.1161/circresaha.121.319929] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ischemic heart disease following the obstruction of coronary vessels leads to the death of cardiac tissue and the formation of a fibrotic scar. In contrast to adult mammals, zebrafish can regenerate their heart after injury, enabling the study of the underlying mechanisms. One of the earliest responses following cardiac injury in adult zebrafish is coronary revascularization. Defects in this process lead to impaired cardiomyocyte repopulation and scarring. Hence, identifying and investigating factors that promote coronary revascularization holds great therapeutic potential. METHODS We used wholemount imaging, immunohistochemistry and histology to assess various aspects of zebrafish cardiac regeneration. Deep transcriptomic analysis allowed us to identify targets and potential effectors of Vegfc (vascular endothelial growth factor C) signaling. We used newly generated loss- and gain-of-function genetic tools to investigate the role of Emilin2a (elastin microfibril interfacer 2a) and Cxcl8a (chemokine (C-X-C) motif ligand 8a)-Cxcr1 (chemokine (C-X-C) motif receptor 1) signaling in cardiac regeneration. RESULTS We first show that regenerating coronary endothelial cells upregulate vegfc upon cardiac injury in adult zebrafish and that Vegfc signaling is required for their proliferation during regeneration. Notably, blocking Vegfc signaling also significantly reduces cardiomyocyte dedifferentiation and proliferation. Using transcriptomic analyses, we identified emilin2a as a target of Vegfc signaling and found that manipulation of emilin2a expression can modulate coronary revascularization as well as cardiomyocyte proliferation. Mechanistically, Emilin2a induces the expression of the chemokine gene cxcl8a in epicardium-derived cells, while cxcr1, the Cxcl8a receptor gene, is expressed in coronary endothelial cells. We further show that Cxcl8a-Cxcr1 signaling is also required for coronary endothelial cell proliferation during cardiac regeneration. CONCLUSIONS These data show that after cardiac injury, coronary endothelial cells upregulate vegfc to promote coronary network reestablishment and cardiac regeneration. Mechanistically, Vegfc signaling upregulates epicardial emilin2a and cxcl8a expression to promote cardiac regeneration. These studies aid in understanding the mechanisms underlying coronary revascularization in zebrafish, with potential therapeutic implications to enhance revascularization and regeneration in injured human hearts.
Collapse
Affiliation(s)
- Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Bingyuan Yang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Stefan Guenther
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Current address: Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5 Montréal, QC, Canada, Department of Pathology and Cell Biology, University of Montreal, Montréal, QC H3T 1J4, Canada
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| |
Collapse
|
26
|
An RNA helicase swirls in lymphangiogenesis. Nat Cell Biol 2021; 23:1109-1110. [PMID: 34750580 DOI: 10.1038/s41556-021-00789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Koltowska K, Okuda KS, Gloger M, Rondon-Galeano M, Mason E, Xuan J, Dudczig S, Chen H, Arnold H, Skoczylas R, Bower NI, Paterson S, Lagendijk AK, Baillie GJ, Leshchiner I, Simons C, Smith KA, Goessling W, Heath JK, Pearson RB, Sanij E, Schulte-Merker S, Hogan BM. The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nat Cell Biol 2021; 23:1136-1147. [PMID: 34750583 DOI: 10.1038/s41556-021-00784-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Mason
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Dudczig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hannah Arnold
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne Karine Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ignaty Leshchiner
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Wolfram Goessling
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Joan K Heath
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Medical Faculty, WWU Münster, Münster, Germany.,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia. .,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Molecular and Cellular Mechanisms of Vascular Development in Zebrafish. Life (Basel) 2021; 11:life11101088. [PMID: 34685459 PMCID: PMC8539546 DOI: 10.3390/life11101088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The establishment of a functional cardiovascular system is crucial for the development of all vertebrates. Defects in the development of the cardiovascular system lead to cardiovascular diseases, which are among the top 10 causes of death worldwide. However, we are just beginning to understand which signaling pathways guide blood vessel growth in different tissues and organs. The advantages of the model organism zebrafish (Danio rerio) helped to identify novel cellular and molecular mechanisms of vascular growth. In this review we will discuss the current knowledge of vasculogenesis and angiogenesis in the zebrafish embryo. In particular, we describe the molecular mechanisms that contribute to the formation of blood vessels in different vascular beds within the embryo.
Collapse
|
29
|
Blei F. Update October 2021. Lymphat Res Biol 2021; 19:488-512. [PMID: 34610248 DOI: 10.1089/lrb.2021.29111.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
|