1
|
Begum-Ali J, Mason L, Charman T, Johnson MH, Green J, Garg S, Jones EJH. Disrupted visual attention relates to cognitive development in infants with Neurofibromatosis Type 1. J Neurodev Disord 2025; 17:12. [PMID: 40087579 PMCID: PMC11907931 DOI: 10.1186/s11689-025-09599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/13/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Neurofibromatosis Type 1 is a genetic condition diagnosed in infancy that substantially increases the likelihood of a child experiencing cognitive and developmental difficulties, including Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). Children with NF1 show clear differences in attention, but whether these differences emerge in early development and how they relate to broader difficulties with cognitive and learning skills is unclear. To address this question requires longitudinal prospective studies from infancy, where the relation between domains of visual attention (including exogenous and endogenous shifting) and cognitive development can be mapped over time. METHODS We report data from 28 infants with NF1 tested longitudinally at 5, 10 and 14 months compared to cohorts of 29 typical likelihood infants (with no history of NF1 or ASD and/or ADHD), and 123 infants with a family history of ASD and/or ADHD. We used an eyetracking battery to measure both exogenous and endogenous control of visual attention. RESULTS Infants with NF1 demonstrated intact social orienting, but slower development of endogenous visual foraging. This slower development presented as prolonged engagement with a salient stimulus in a static display relative to typically developing infants. In terms of exogenous attention shifting, NF1 infants showed faster saccadic reaction times than typical likelihood infants. However, the NF1 group demonstrated a slower developmental improvement from 5 to 14 months of age. Individual differences in foraging and saccade times were concurrently related to visual reception abilities within the full infant cohort (NF1, typical likelihood and those with a family history of ASD/ADHD). CONCLUSIONS Our results provide preliminary evidence that alterations in saccadic reaction time and visual foraging may contribute to learning difficulties in infants with NF1.
Collapse
Affiliation(s)
- Jannath Begum-Ali
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK.
| | - Luke Mason
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK
| | - Mark H Johnson
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jonathan Green
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Faculty of Science, Henry Wellcome Building, Birkbeck, University of London, Malet Street, London, UK.
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King'S College London, London, UK.
| |
Collapse
|
2
|
Amir A, Headley DB, Herzallah MM, Karki A, Kim IT, Paré D. Studying decision making in rats using a contextual visual discrimination task: Detection and prevention of alternative behavioral strategies. J Neurosci Methods 2025; 415:110346. [PMID: 39667672 DOI: 10.1016/j.jneumeth.2024.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The neural bases of decision-making and contextual sensory discriminations have traditionally been studied in primates, highlighting the role of the prefrontal cortex in cognitive control and flexibility. With the advent of molecular tools to manipulate and monitor neuronal activity, these processes have increasingly been studied in rodents. However, rodent tasks typically consist of two-alternative forced choice paradigms that usually feature coarse sensory discriminations and no contextual dependence, limiting prefrontal involvement in task performance. NEW METHOD To circumvent these limitations, we developed a novel contextual visual discrimination task that lends itself to rigorous psychophysical analyses. In this task, rats learn to detect left-right differences in one dimension (e.g. luminance or speed) depending on context while ignoring another (e.g. speed or luminance, respectively). Depending on trials, speed and luminance can be greater on the same side (congruent trials) or on opposite sides (incongruent trials). RESULTS Rats learned the task in four phases: nose-poking and lever-pressing (∼7 days), discriminating left-right differences in one dimension (∼20 days), discriminating left-right differences in a second dimension (∼10 days), and discriminating left-right differences in one of the two dimensions depending on context (∼2.5 months). A 20:80 ratio of congruent to incongruent trials is used to prevent rats from adopting alternative strategies. COMPARISON WITH EXISTING METHODS This task is comparable to contextual sensory discrimination tasks used in monkeys. Few equivalent tasks exist in rodents. CONCLUSIONS This task will allow investigators to use the full neuroscientific armamentarium to study contextual neural coding in the rat prefrontal cortex.
Collapse
Affiliation(s)
- Alon Amir
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA; Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem, Palestine
| | - Asriya Karki
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Ian T Kim
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University - Newark, 197 University Ave, Newark, NJ 07102, USA.
| |
Collapse
|
3
|
Corbo J, Erkat OB, McClure J, Khdour H, Polack PO. Discretized representations in V1 predict suboptimal orientation discrimination. Nat Commun 2025; 16:41. [PMID: 39746991 PMCID: PMC11696038 DOI: 10.1038/s41467-024-55409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Neuronal population activity in sensory cortices is the substrate for perceptual decisions. Yet, we still do not understand how neuronal information content in sensory cortices relates to behavioral reports. To reconcile neurometric and psychometric performance, we recorded the activity of V1 neurons in mice performing a Go/NoGo orientation discrimination task. We found that, around the discrimination threshold, V1 does not represent the orientation of the stimuli as canonically expected. Instead, it forms categorical representations characterized by a relocation of activity at task-relevant domains of the orientation representational space. The relative neuronal activity at those discrete domains accurately predicted the probabilities of the animals' decisions. Our results thus suggest that the categorical integration of discretized feature representations from sensory cortices explains perceptual decisions.
Collapse
Affiliation(s)
- Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - O Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - John McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Hussein Khdour
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| |
Collapse
|
4
|
Lyamzin DR, Alamia A, Abdolrahmani M, Aoki R, Benucci A. Regularizing hyperparameters of interacting neural signals in the mouse cortex reflect states of arousal. PLoS Comput Biol 2024; 20:e1012478. [PMID: 39405361 PMCID: PMC11527387 DOI: 10.1371/journal.pcbi.1012478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/31/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024] Open
Abstract
In natural behaviors, multiple neural signals simultaneously drive activation across overlapping brain networks. Due to limitations in the amount of data that can be acquired in common experimental designs, the determination of these interactions is commonly inferred via modeling approaches, which reduce overfitting by finding appropriate regularizing hyperparameters. However, it is unclear whether these hyperparameters can also be related to any aspect of the underlying biological phenomena and help interpret them. We applied a state-of-the-art regularization procedure-automatic locality determination-to interacting neural activations in the mouse posterior cortex associated with movements of the body and eyes. As expected, regularization significantly improved the determination and interpretability of the response interactions. However, regularizing hyperparameters also changed considerably, and seemingly unpredictably, from animal to animal. We found that these variations were not random; rather, they correlated with the variability in visually evoked responses and with the variability in the state of arousal of the animals measured by pupillometry-both pieces of information that were not included in the modeling framework. These observations could be generalized to another commonly used-but potentially less informative-regularization method, ridge regression. Our findings demonstrate that optimal model hyperparameters can be discovery tools that are informative of factors not a priori included in the model's design.
Collapse
Affiliation(s)
| | - Andrea Alamia
- Centre de Recherche Cerveau et Cognition, CNRS, Université de Toulouse, Toulouse, France
| | | | - Ryo Aoki
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Andrea Benucci
- Queen Mary University of London, School of Biological and Behavioural Sciences, London, United Kingdom
| |
Collapse
|
5
|
Dai J, Sun QQ. Modulation of cortical representations of sensory and contextual information underlies aversive associative learning. Cell Rep 2024; 43:114672. [PMID: 39196779 PMCID: PMC11472654 DOI: 10.1016/j.celrep.2024.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 08/30/2024] Open
Abstract
Cortical neurons encode both sensory and contextual information, yet it remains unclear how experiences modulate these cortical representations. Here, we demonstrate that trace eyeblink conditioning (TEC), an aversive associative-learning paradigm linking conditioned (CS) with unconditioned stimuli (US), finely tunes cortical coding at both population and single-neuron levels. Initially, we show that the primary somatosensory cortex (S1) is necessary for TEC acquisition, as evidenced by local muscimol administration. At the population level, TEC enhances activity in a small subset (∼20%) of CS- or US-responsive primary neurons (rPNs) while diminishing activity in non-rPNs, including locomotion-tuned or unresponsive PNs. Crucially, TEC learning modulates the encoding of sensory versus contextual information in single rPNs: CS-responsive neurons become less responsive, while US-responsive neurons gain responses to CS. Moreover, we find that the cholinergic pathway, via nicotinic receptors, underlies TEC-induced modulations. These findings suggest that experiences dynamically tune cortical representations through cholinergic pathways.
Collapse
Affiliation(s)
- Jiaman Dai
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
6
|
Ambrad Giovannetti E, Rancz E. Behind mouse eyes: The function and control of eye movements in mice. Neurosci Biobehav Rev 2024; 161:105671. [PMID: 38604571 DOI: 10.1016/j.neubiorev.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The mouse visual system has become the most popular model to study the cellular and circuit mechanisms of sensory processing. However, the importance of eye movements only started to be appreciated recently. Eye movements provide a basis for predictive sensing and deliver insights into various brain functions and dysfunctions. A plethora of knowledge on the central control of eye movements and their role in perception and behaviour arose from work on primates. However, an overview of various eye movements in mice and a comparison to primates is missing. Here, we review the eye movement types described to date in mice and compare them to those observed in primates. We discuss the central neuronal mechanisms for their generation and control. Furthermore, we review the mounting literature on eye movements in mice during head-fixed and freely moving behaviours. Finally, we highlight gaps in our understanding and suggest future directions for research.
Collapse
Affiliation(s)
| | - Ede Rancz
- INMED, INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
7
|
Bolaños F, Orlandi JG, Aoki R, Jagadeesh AV, Gardner JL, Benucci A. Efficient coding of natural images in the mouse visual cortex. Nat Commun 2024; 15:2466. [PMID: 38503746 PMCID: PMC10951403 DOI: 10.1038/s41467-024-45919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/06/2024] [Indexed: 03/21/2024] Open
Abstract
How the activity of neurons gives rise to natural vision remains a matter of intense investigation. The mid-level visual areas along the ventral stream are selective to a common class of natural images-textures-but a circuit-level understanding of this selectivity and its link to perception remains unclear. We addressed these questions in mice, first showing that they can perceptually discriminate between textures and statistically simpler spectrally matched stimuli, and between texture types. Then, at the neural level, we found that the secondary visual area (LM) exhibited a higher degree of selectivity for textures compared to the primary visual area (V1). Furthermore, textures were represented in distinct neural activity subspaces whose relative distances were found to correlate with the statistical similarity of the images and the mice's ability to discriminate between them. Notably, these dependencies were more pronounced in LM, where the texture-related subspaces were smaller than in V1, resulting in superior stimulus decoding capabilities. Together, our results demonstrate texture vision in mice, finding a linking framework between stimulus statistics, neural representations, and perceptual sensitivity-a distinct hallmark of efficient coding computations.
Collapse
Affiliation(s)
- Federico Bolaños
- University of British Columbia, Neuroimaging and NeuroComputation Centre, Vancouver, BC, V6T, Canada
| | - Javier G Orlandi
- University of Calgary, Department of Physics and Astronomy, Calgary, AB, T2N 1N4, Canada.
| | - Ryo Aoki
- RIKEN Center for Brain Science, Laboratory for Neural Circuits and Behavior, Wakoshi, Japan
| | | | - Justin L Gardner
- Stanford University, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Andrea Benucci
- RIKEN Center for Brain Science, Laboratory for Neural Circuits and Behavior, Wakoshi, Japan.
- Queen Mary, University of London, School of Biological and Behavioral Science, London, E1 4NS, UK.
| |
Collapse
|
8
|
Baruchin LJ, Alleman M, Schröder S. Reward Modulates Visual Responses in the Superficial Superior Colliculus of Mice. J Neurosci 2023; 43:8663-8680. [PMID: 37879894 PMCID: PMC7615379 DOI: 10.1523/jneurosci.0089-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The processing of sensory input is constantly adapting to behavioral demands and internal states. The drive to obtain reward, e.g., searching for water when thirsty, is a strong behavioral demand and associating the reward with its source, a certain environment or action, is paramount for survival. Here, we show that water reward increases subsequent visual activity in the superficial layers of the superior colliculus (SC), which receive direct input from the retina and belong to the earliest stages of visual processing. We trained mice of either sex to perform a visual decision task and recorded the activity of neurons in the SC using two-photon calcium imaging and high-density electrophysiological recordings. Responses to visual stimuli in around 20% of visually responsive neurons in the superficial SC were affected by reward delivered in the previous trial. Reward mostly increased visual responses independent from modulations due to pupil size changes. The modulation of visual responses by reward could not be explained by movements like licking. It was specific to responses to the following visual stimulus, independent of slow fluctuations in neural activity and independent of how often the stimulus was previously rewarded. Electrophysiological recordings confirmed these results and revealed that reward affected the early phase of the visual response around 80 ms after stimulus onset. Modulation of visual responses by reward, but not pupil size, significantly improved the performance of a population decoder to detect visual stimuli, indicating the relevance of reward modulation for the visual performance of the animal.SIGNIFICANCE STATEMENT To learn which actions lead to food, water, or safety, it is necessary to integrate the receiving of reward with sensory stimuli related to the reward. Cortical stages of sensory processing have been shown to represent stimulus-reward associations. Here, we show, however, that reward influences neurons at a much earlier stage of sensory processing, the superior colliculus (SC), receiving direct input from the retina. Visual responses were increased shortly after the animal received the water reward, which led to an improved stimulus signal in the population of these visual neurons. Reward modulation of early visual responses may thus improve perception of visual environments predictive of reward.
Collapse
Affiliation(s)
- Liad J Baruchin
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Matteo Alleman
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| | - Sylvia Schröder
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
9
|
Young TR, Yamamoto M, Kikuchi SS, Yoshida AC, Abe T, Inoue K, Johansen JP, Benucci A, Yoshimura Y, Shimogori T. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat Commun 2023; 14:6077. [PMID: 37770450 PMCID: PMC10539368 DOI: 10.1038/s41467-023-41749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.
Collapse
Affiliation(s)
- Timothy R Young
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
10
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Cao S, Wu Y, Gao Z, Tang J, Xiong L, Hu J, Li C. Automated phenotyping of postoperative delirium-like behaviour in mice reveals the therapeutic efficacy of dexmedetomidine. Commun Biol 2023; 6:807. [PMID: 37532767 PMCID: PMC10397202 DOI: 10.1038/s42003-023-05149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Postoperative delirium (POD) is a complicated and harmful clinical syndrome. Traditional behaviour analysis mostly focuses on static parameters. However, animal behaviour is a bottom-up and hierarchical organizational structure composed of time-varying posture dynamics. Spontaneous and task-driven behaviours are used to conduct comprehensive profiling of behavioural data of various aspects of model animals. A machine-learning based method is used to assess the effect of dexmedetomidine. Fourteen statistically different spontaneous behaviours are used to distinguish the non-POD group from the POD group. In the task-driven behaviour, the non-POD group has greater deep versus shallow investigation preference, with no significant preference in the POD group. Hyperactive and hypoactive subtypes can be distinguished through pose evaluation. Dexmedetomidine at a dose of 25 μg kg-1 reduces the severity and incidence of POD. Here we propose a multi-scaled clustering analysis framework that includes pose, behaviour and action sequence evaluation. This may represent the hierarchical dynamics of delirium-like behaviours.
Collapse
Affiliation(s)
- Silu Cao
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, China
| | - Yiling Wu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zilong Gao
- School of Life Sciences and Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake University, Hangzhou, 310024, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Jinxuan Tang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, China
| | - Ji Hu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Li
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, China.
| |
Collapse
|
12
|
Orlandi JG, Abdolrahmani M, Aoki R, Lyamzin DR, Benucci A. Distributed context-dependent choice information in mouse posterior cortex. Nat Commun 2023; 14:192. [PMID: 36635318 PMCID: PMC9837177 DOI: 10.1038/s41467-023-35824-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Choice information appears in multi-area brain networks mixed with sensory, motor, and cognitive variables. In the posterior cortex-traditionally implicated in decision computations-the presence, strength, and area specificity of choice signals are highly variable, limiting a cohesive understanding of their computational significance. Examining the mesoscale activity in the mouse posterior cortex during a visual task, we found that choice signals defined a decision variable in a low-dimensional embedding space with a prominent contribution along the ventral visual stream. Their subspace was near-orthogonal to concurrently represented sensory and motor-related activations, with modulations by task difficulty and by the animals' attention state. A recurrent neural network trained with animals' choices revealed an equivalent decision variable whose context-dependent dynamics agreed with that of the neural data. Our results demonstrated an independent, multi-area decision variable in the posterior cortex, controlled by task features and cognitive demands, possibly linked to contextual inference computations in dynamic animal-environment interactions.
Collapse
Affiliation(s)
- Javier G Orlandi
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | - Ryo Aoki
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Dmitry R Lyamzin
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Andrea Benucci
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan. .,University of Tokyo, Graduate School of Information Science and Technology, Department of Mathematical Informatics, 1-1-1 Yayoi, Bunkyo City, Tokyo, 113-0032, Japan.
| |
Collapse
|
13
|
Avitan L, Stringer C. Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas. Neuron 2022; 110:3064-3075. [PMID: 35863344 DOI: 10.1016/j.neuron.2022.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Sensory areas are spontaneously active in the absence of sensory stimuli. This spontaneous activity has long been studied; however, its functional role remains largely unknown. Recent advances in technology, allowing large-scale neural recordings in the awake and behaving animal, have transformed our understanding of spontaneous activity. Studies using these recordings have discovered high-dimensional spontaneous activity patterns, correlation between spontaneous activity and behavior, and dissimilarity between spontaneous and sensory-driven activity patterns. These findings are supported by evidence from developing animals, where a transition toward these characteristics is observed as the circuit matures, as well as by evidence from mature animals across species. These newly revealed characteristics call for the formulation of a new role for spontaneous activity in neural sensory computation.
Collapse
Affiliation(s)
- Lilach Avitan
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | |
Collapse
|
14
|
Benucci A. Motor-related signals support localization invariance for stable visual perception. PLoS Comput Biol 2022; 18:e1009928. [PMID: 35286305 PMCID: PMC8947590 DOI: 10.1371/journal.pcbi.1009928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/24/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Our ability to perceive a stable visual world in the presence of continuous movements of the body, head, and eyes has puzzled researchers in the neuroscience field for a long time. We reformulated this problem in the context of hierarchical convolutional neural networks (CNNs)-whose architectures have been inspired by the hierarchical signal processing of the mammalian visual system-and examined perceptual stability as an optimization process that identifies image-defining features for accurate image classification in the presence of movements. Movement signals, multiplexed with visual inputs along overlapping convolutional layers, aided classification invariance of shifted images by making the classification faster to learn and more robust relative to input noise. Classification invariance was reflected in activity manifolds associated with image categories emerging in late CNN layers and with network units acquiring movement-associated activity modulations as observed experimentally during saccadic eye movements. Our findings provide a computational framework that unifies a multitude of biological observations on perceptual stability under optimality principles for image classification in artificial neural networks.
Collapse
Affiliation(s)
- Andrea Benucci
- RIKEN Center for Brain Science, Wako-shi, Japan
- University of Tokyo, Graduate School of Information Science and Technology, Department of Mathematical Informatics, Tokyo, Japan
| |
Collapse
|