1
|
Lai X, Wu J, Kou X, Zhang Y, Shen M, Yu M, Zhai Y, Yan J. Exogenous α-Synuclein Induces Oxidative Damage to Dopaminergic Neurons Through p-NMDAR2B/Nur77. Mol Neurobiol 2025; 62:5664-5678. [PMID: 39592556 DOI: 10.1007/s12035-024-04625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Alpha-synuclein (α-syn) is a major pathological marker of Parkinson's disease (PD), and its abnormal expression and aggregation lead to dopaminergic neuron degeneration, in which oxidative stress plays an important role. However, the exact molecular mechanism by which α-syn causes PD remains unclear. In this study, exogenous α-syn, also known as α-syn preformed fibrils (α-syn PFFs), was used to construct in vivo and in vitro models of PD. Behavioral, Western blotting, biochemical, immunofluorescence, flow cytometry, electron microscopy, etc. were used to investigate the pathological mechanism of PD induced by α-syn. We found that 6 months after striatum injection of α-syn PFFs, mice exhibited motor deficits. Meanwhile, the protein expression of pS129-α-syn (p-α-syn) and α-syn oligomer significantly increased, while the expression of TH significantly decreased, and the oxidative stress in the substantia nigra was aggravated. In addition, we found an increase in the protein expression of NMDAR2B and p-Tyr1472-NMDAR2B (p-NMDAR2B) and a decrease in the protein expression of Nur77. However, in α-syn PFFs-induced SH-SY5Y cells, we found that inhibiting p-NMDAR2B increased the protein expression of Nur77, while overexpression of Nur77 did not affect the expression of p-NMDAR2B. Inhibition of p-NMDAR2B and overexpression of Nur77 reversed α-syn PFF-induced oxidative stress, thus reducing mitochondrial damage and cytotoxicity. Therefore, we speculate that α-syn PFF-induced oxidative stress in dopaminergic neurons may be mediated by p-NMDAR2B/Nur77. Our study provides novel insights into the pathology mechanism underlying α-syn-induced PD.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jiannan Wu
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xuanfen Kou
- Department of Electrocardiogram, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yongjiang Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Mengmeng Shen
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Miao Yu
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yibo Zhai
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Junqiang Yan
- Key Laboratory of Neuromolecular Biology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
2
|
Cui LY, Duan JY, Yan JZ, Wang JY, Ren P, Zhang LM, Guo WZ, Dai W, Li YF. The impact and mechanisms of YL-IPA08, a potent ligand for the translocator protein (18 kDa) on protection against LPS-induced depression and cognitive dysfunction in rodents. Metab Brain Dis 2025; 40:137. [PMID: 40047959 DOI: 10.1007/s11011-025-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025]
Abstract
Translocator protein (18 kDa) (TSPO) has been implicated in the development of depression and cognitive dysfunction. This study aimed to investigate the anti-depression/anti-anxiety and cognitive enhancing impacts and potential mechanisms of TSPO ligand YL-IPA08 in lipopolysaccharide (LPS)-induced inflammatory model. The effects of YL-IPA08 in LPS induced mice were identified by behavioral tests, and the target of YL-IPA08 was validated using the TSPO antagonist PK11195. The microglia in PFC were analyzed by immunofluorescence, and the inflammatory cytokines (IL-6, IL-1β and TNF-α) and anti-inflammatory factors (IL-4, IL-10, TGF-β1) in PFC was detected by ELISA or WB. Effect of TGF-β1 inhibitor Repsox on the actions of YL-IPA08 in LPS-treated mice was further verified. We found that YL-IPA08 administration ameliorated LPS-induced depression/anxiety-like behaviors and cognitive impairment, which were blocked by PK11195. YL-IPA08 reversed the increased number and inflammatory morphological changes of microglia in PFC of LPS mice by targeting TSPO. YL-IPA08 reversed the increased inflammatory cytokines (IL-6, IL-1β and TNF-α) and decreased anti-inflammatory factors (IL-4, IL-10) in the PFC of LPS mice by TSPO activation. In addition, YL-IPA08 elevated the suppressed levels of TGF-β1 and smad3 (member of TGF-β1 pathway) in PFC of LPS mice by TSPO activation. TGF-β1 inhibitor Repsox blocked the anti-depression/anxiety and cognition enhancing effects of YL-IPA08 in LPS mice. Our data implicated that central inflammation regulation and TSPO-TGF-β1/Smad pathway activation contributed to the anti-depressant/anxiety and cognitive promoting impacts of YL-IPA08.
Collapse
Affiliation(s)
- Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100013, China
- College of Anaesthesia, Shanxi Medical University, 86 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiao-Zhao Yan
- Lingang Laboratory, ShanghaiTech University, 555 Qiangye Road, Shanghai, 201210, China
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Peng Ren
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, Seventh Medical Center of PLA General Hospital, 5 Nanmencang Road, Dongcheng, Beijing, 100070, China.
| | - Wei Dai
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
3
|
Tahiri E, Corti E, Duarte CB. Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications. Neurochem Res 2025; 50:110. [PMID: 40029461 PMCID: PMC11876243 DOI: 10.1007/s11064-025-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
NMDA receptors for the neurotransmitter glutamate are widely distributed in the central nervous system, playing important roles in brain development, function and plasticity. Alterations in their activity are also important mediators in neuropsychiatric and neurodegenerative disorders. The different NMDA receptor subunits (GluN1, GluN2A-D and GluN3A, B) share a similar structure and membrane topology, with an intracellular C-terminus tail responsible for the interaction with proteins important for the trafficking of the receptors, and to control their surface distribution and signalling activity. The latter sequence varies among subunits but consistently contains the majority of post-translational modification sites on NMDA receptors. These modifications, including phosphorylation, ubiquitination, and palmitoylation, regulate interactions with intracellular proteins. Differences in the amino acid sequence between NMDA receptor subunits lead to a differential regulation by post-translational modifications. Since NMDA receptors are formed by oligomerization of different subunits, and each subunit is regulated in a specific manner, this creates multiple possibilities for regulation of these receptors, with impact in synaptic function and plasticity. This review addresses the diversity of mechanisms involved in the post-translational modification of NMDA receptor subunits, and their impact on the activity and distribution of the receptors, as well as their function in nerve cells.
Collapse
Affiliation(s)
- Emanuel Tahiri
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisa Corti
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.
| |
Collapse
|
4
|
Bian W, Chen Y, Ni Y, Lv B, Gong B, Zhu K, Gao W, Zeng L, Lu W, Zhang B. Efficacy of GluN2B-Containing NMDA receptor antagonist for antitumor and antidepressant therapy in non-small cell lung cancer. Eur J Pharmacol 2024; 980:176860. [PMID: 39067562 DOI: 10.1016/j.ejphar.2024.176860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the predominant subtype of lung cancer. Evidence suggests that the ionotropic glutamate receptor N-methyl-D-aspartate (NMDA) receptor, a critical molecule in the central nervous system, is expressed in NSCLC. However, the specific expression patterns, subcellular localization, functional modulation, and pathological implications of NMDA receptor subtypes in NSCLC have not been fully elucidated. In this study, we employed a multi-disciplinary approach, combining biochemical and molecular biology with electrophysiological recordings and behavioral assays, to investigate these aspects. We reveal the expression of GluN2B-containing NMDA receptors in A549 and H460 NSCLC cell lines and the induction of NMDA receptor-mediated currents by glutamate in A549 cells. Furthermore, the GluN2B-specific inhibitors ifenprodil and Ro 25-6981 significantly reduced cell viability and migration, while promoting apoptosis. Importantly, intraperitoneal administration of ifenprodil in nude mice inhibited the growth of subcutaneous tumors derived from A549 and H460 cells and ameliorated depression-like behaviors. These findings underscore the potential antiproliferative effects of ifenprodil and Ro 25-6981 and suggest that GluN2B-containing NMDA receptors may represent novel therapeutic targets for NSCLC, with the added benefit of potential antidepressant action.
Collapse
Affiliation(s)
- Weiming Bian
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ye Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Yanjie Ni
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Bihua Lv
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Bo Gong
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kaiyuan Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
| | - Wen Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Bin Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
5
|
Lu C, Gao ZW, Xing S, Wang HH, Huang YK, Zhou H, Wu L. Rapid Antidepressant-Like Potential of Chaihu Shugan San Depends on Suppressing Glutamate Neurotransmission and Activating Synaptic Proteins in Hippocampus of Female Mice. Chin J Integr Med 2024; 30:692-700. [PMID: 38733455 DOI: 10.1007/s11655-024-3906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To explore the rapid antidepressant potential and the underlying mechanism of Chaihu Shugan San (CSS) in female mice. METHODS Liquid chromatography mass spectrometry (LC-MS)/MS was used to determine the content of main components in CSS to determine its stability. Female C57BL/6J mice were randomly divided into 4 groups, including control (saline), vehicle (saline), CSS (4 g/kg) and ketamine (30 mg/kg) groups. Mice were subjected to irregular stress stimulation for 4 weeks to establish the chronic mild stress (CMS) model, then received a single administration of drugs. Two hours later, the behavioral tests were performed, including open field test, tail suspension test (TST), forced swimming test (FST), novelty suppression feeding test (NSF), and sucrose preference test (SPT). Western blot analysis was used to detect the expression levels of N-methyl-D-aspartate receptor (NMDA) subtypes [N-methyl-D-aspartate receptor 1 (NR1), NR2A, NR2B], synaptic proteins [synapsin1 and post synaptic density protein 95 (PSD95)], and brain-derived neurotrophic factor (BDNF). Moreover, the rapid antidepressant effect of CSS was tested by pharmacological technologies and optogenetic interventions that activated glutamate receptors, NMDA. RESULTS Compared with the vehicle group, a single administration of CSS (4 g/kg) reversed all behavioral defects in TST, FST, SPT and NSF caused by CMS (P<0.05 or P<0.01). CSS also significantly decreased the expressions of NMDA subtypes (NR1, NR2A, NR2B) at 2 h in hippocampus of mice (all P<0.01). In addition, similar to ketamine, CSS increased levels of synaptic proteins and BDNF (P<0.05 or P<0.01). Furthermore, the rapid antidepressant effects of CSS were blocked by transient activation of NMDA receptors in the hippocampus (all P<0.01). CONCLUSION Rapid antidepressant effects of CSS by improving behavioral deficits in female CMS mice depended on rapid suppression of NMDA receptors and activation of synaptic proteins.
Collapse
Affiliation(s)
- Chao Lu
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zi-Wei Gao
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Shan Xing
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hui-Hui Wang
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yun-Ke Huang
- Department of Chinese Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Hang Zhou
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Lei Wu
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
6
|
Wang K, Tan X, Ding KM, Feng XZ, Zhao YY, Zhu WL, Li GH, Li SX. Dynamic regulation of phosphorylation of NMDA receptor GluN2B subunit tyrosine residues mediates ketamine rapid antidepressant effects. Pharmacol Res 2024; 205:107236. [PMID: 38797358 DOI: 10.1016/j.phrs.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.
Collapse
Affiliation(s)
- Ke Wang
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Pharmacology, Peking University Health Science Center, Beijing 100191, China
| | - Xuan Tan
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Kai-Mo Ding
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Xue-Zhu Feng
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Yu Zhao
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Li Zhu
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Guo-Hai Li
- Zhenjiang Mental Health Center, Jiangsu 212000, China
| | - Su-Xia Li
- National Institute on Drug Dependence and Beijing Key laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Zhang H, Sun Y, Huang Z, Wu Z, Ying Y, Liu R, Lin J, Li C, Chen G. Jiawei-Xiaoyao pill elicits a rapid antidepressant effect, dependent on activating CaMKII/mTOR/BDNF signaling pathway in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117016. [PMID: 37567427 DOI: 10.1016/j.jep.2023.117016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei-Xiaoyao pill (JWX), a traditional Chinese medicine, was recorded in ancient Chinese medicine pharmacopoeia using for treatment of various diseases, including mood disorders. Current mainstream antidepressants have a disadvantage in delayed onset of action. The rapid antidepressant potential of JWX and the underlying mechanisms remain unclear. AIM OF THE STUDY We aimed to assess the rapid antidepressant potential of JWX, within the prescription dose range, and the distinct underlying neuroplasticity signaling mechanism. MATERIALS AND METHODS The rapid antidepressant response of JWX were determined using various behavioral paradigms, and in a corticosterone (CORT)-induced depression model in mice. The molecular neuroplasticity signaling and the expression of BDNF in the hippocampus was evaluated using immunoblotting and immunostaining. The contribution of specific signaling was investigated using pharmacological interventions. RESULTS A single dose of JWX induced rapid and persistent antidepressant effects in both the normal and chronic CORT-exposed mice. The phosphorylation of CaMKII, mTOR, ERK and the expressions of BDNF, synapsin1 and PSD95 increased at 30 min post JWX. JWX restored the expression of BDNF in the hippocampal dentate gyrus reduced by CORT-exposure. The rapid antidepressant effect and upregulation of BDNF expression by JWX was blunted by a mTOR antagonist, rapamycin, or a CaMKII antagonist, KN-93. CaMKII signaling blockade blunted mTOR signaling activated by JWX, but not vice versa. CONCLUSION JWX elicits a rapid antidepressant effect, via quickly stimulating CaMKII signaling, subsequently activating mTOR-BDNF signaling pathway, and thus enhancing hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zihao Huang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhangjie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yin Ying
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Juan Lin
- Guangzhou Pharmaceutical Holdings Limited., Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, 510515, China
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holdings Limited., Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd., Guangzhou, 510515, China.
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China; Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Chen JY, Wu K, Guo MM, Song W, Huang ST, Zhang YM. The PrL Glu→avBNST GABA circuit rapidly modulates depression-like behaviors in male mice. iScience 2023; 26:107878. [PMID: 37810240 PMCID: PMC10551841 DOI: 10.1016/j.isci.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Depression is a global disease with a high prevalence. Here, we examine the role of the circuit from prelimbic mPFC (PrL) to the anterior ventral bed nucleus of the stria terminalis (avBNST) in depression-like mice through behavioral tests, immunofluorescence, chemogenetics, optogenetics, pharmacology, and fiber photometry. Mice exposed to chronic restraint stress with individual housing displayed depression-like behaviors. Optogenetic or chemogenetic activation of the avBNST-projecting glutamatergic neurons in the PrL had an antidepressant effect. Moreover, we found that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptors (AMPARs) play a dominant role in this circuit. Systemic administration of ketamine profoundly alleviated depression-like behaviors in the mice and rapidly rescued the decreased activity in the PrLGlu→avBNSTGABA circuit. Furthermore, the fast-acting effect of ketamine on depressive behaviors was diminished when the circuit was inhibited. To summarize, activating the PrLGlu→avBNSTGABA circuit quickly ameliorated depression-like behaviors. Thus, we propose the PrLGlu→avBNSTGABA circuit as a target for fast regulation of depression.
Collapse
Affiliation(s)
- Jie-ying Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Ke Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Miao-miao Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Si-ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Yong-mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
9
|
Wood CR, Xi Y, Yang WJ, Wang H. Insight into Neuroethical Considerations of the Newly Emerging Technologies and Techniques of the Global Brain Initiatives. Neurosci Bull 2023; 39:685-689. [PMID: 36441469 PMCID: PMC10073353 DOI: 10.1007/s12264-022-00984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Christopher R Wood
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yongmei Xi
- Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wang
- Department of Neurobiology and Department of Neurosurgery of Second Affiliated Hospital, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, MOE Frontier Science Centre for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Li JF, Hu WY, Chang HX, Bao JH, Kong XX, Ma H, Li YF. Astrocytes underlie a faster-onset antidepressant effect of hypidone hydrochloride (YL-0919). Front Pharmacol 2023; 14:1175938. [PMID: 37063256 PMCID: PMC10090319 DOI: 10.3389/fphar.2023.1175938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Major depression disorder (MDD) is a common and potentially life-threatening mental illness; however, data on its pathogenesis and effective therapeutic measures are lacking. Pathological changes in astrocytes play a pivotal role in MDD. While hypidone hydrochloride (YL-0919), an independently developed antidepressant, has shown rapid action with low side effects, its underlying astrocyte-specific mechanisms remain unclear.Methods: In our study, mice were exposed to chronic restraint stress (CRS) for 14 days or concomitantly administered YL-0919/fluoxetine. Behavioral tests were applied to evaluate the depression model; immunofluorescence and immunohistochemistry staining were used to explore morphological changes in astrocytes; astrocyte-specific RNA sequencing (RNA-Seq) analysis was performed to capture transcriptome wide alterations; and ATP and oxygen consumption rate (OCR) levels of primary astrocytes were measured, followed by YL-0919 incubation to appraise the alteration of energy metabolism and mitochondrial oxidative phosphorylation (OXPHOS).Results: YL-0919 alleviated CRS-induced depressive-like behaviors faster than fluoxetine and attenuated the number and morphologic deficits in the astrocytes of depressed mice. The changes of gene expression profile in astrocytes after CRS were partially reversed by YL-0919. Moreover, YL-0919 improved astrocyte energy metabolism and mitochondrial OXPHOS in astrocytes.Conclusion: Our results provide evidence that YL-0919 exerted a faster-onset antidepressant effect on CRS-mice possibly via astrocyte structural remodeling and mitochondria functional restoration.
Collapse
Affiliation(s)
- Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wen-Yu Hu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jin-Hao Bao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiang-Xi Kong
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| |
Collapse
|
11
|
Doyle MA, Brown JA, Winder DG. GluN2D expression is regulated by restraint stress and supports active stress coping bouts. Neuropharmacology 2023; 225:109377. [PMID: 36528117 PMCID: PMC9839594 DOI: 10.1016/j.neuropharm.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Stress coping strategies represent critical responses to environmental challenges, and active coping has been linked to stress resilience in humans. Understanding the neuroadaptations that support these strategies may provide insights into adaptive and maladaptive stress responses. NMDA receptors (NMDARs) play key roles in neuroadaptation, and NMDARs have been specifically implicated in stress responsiveness. Constitutive knockout mice have been used to implicate the GluN2D NMDAR subunit in regulation of stress-sensitive and affective behavior, but the brain regions in which GluN2D expression changes drive these effects remain unknown. Here we report that following an acute restraint stressor, GluN2D subunit expression is specifically decreased in the bed nucleus of the stria terminalis (BNST), a key region involved in stress processing, in male but not female mice, with no differences found in the thalamus or ventral hippocampus in either sex. Rodents engage in active struggling events during restraint stress that may represent active coping strategies to stress. Thus, we assessed active coping bouts during acute and chronic restraint stress sessions in GluN2D knockout mice. During the first restraint session, GluN2D knockout mice exhibited a pronounced decrease in struggling bouts during restraint stress relative to wild-type littermates, consistent with a role of GluN2D in active coping responses to stress. Repeated, daily restraint sessions revealed a sex-specific role of GluN2D expression on certain aspects of active coping behaviors, with male GluN2D KO mice exhibiting a decrease in total coping bouts measured across five sessions. However, BNST-specific knockdown of GluN2D in male mice did not alter active coping bouts, suggesting either a multi-synaptic role of GluN2D and/or a developmental role of GluN2D in this behavior. Altogether, these data are consistent with a growing literature suggesting that exploration of GluN2D control of stress circuit actions may lead to a novel therapeutic target to consider for stress-related mood disorders.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, USA
| | - Jordan A Brown
- Vanderbilt Center for Addiction Research, Vanderbilt University, USA; Department of Pharmacology, Vanderbilt University, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, USA; Department of Pharmacology, Vanderbilt University, USA; Department of Psychiatry, Vanderbilt University Medical Center, USA.
| |
Collapse
|
12
|
Jiang L, Zhang H, He Y, Liu H, Li S, Chen R, Han S, Zhou Y, Zhang J, Wan X, Xu R, Wang S, Gu H, Wei Q, Qin F, Zhao Y, Chen Y, Li H, Wang L, Wang X, Wang Y, Dai Y, Li M, Chen Y, Zhang H, Hu Y, Bu Q, Zhao Y, Cen X. Synapse differentiation-induced gene 1 regulates stress-induced depression through interaction with the AMPA receptor GluA2 subunit of nucleus accumbens in male mice. Neuropharmacology 2022; 213:109076. [DOI: 10.1016/j.neuropharm.2022.109076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
|