1
|
Li X, Liu Y, Liu N, Wu H, Cong K, Duan L, Chen T, Zhang J. Health benefits of medicinal plant natural products via microbiota-mediated different gut axes. Pharmacol Res 2025; 215:107730. [PMID: 40216049 DOI: 10.1016/j.phrs.2025.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
This review examines the multifaceted roles of medicinal plant natural products in influencing gut microbiota and their subsequent impact on various organ systems through established gut axes, including the gut-brain, gut-liver, gut-heart, gut-lung, and gut-kidney axes. Medicinal plant natural products have exhibited diverse pharmacological activities, including modulation of microbiota composition, enhancement of metabolic processes, and alleviation of inflammation and oxidative stress. Evidence suggests that these components can ameliorate conditions such as neurological disorders, metabolic syndrome, and chronic kidney disease by restoring microbial balance and improving gut barrier integrity. Furthermore, the review highlights the potential of medicinal plant natural products to foster beneficial microbial communities and improve gut health, which may lead to reduced disease severity and inflammation. By comprehensively analyzing current literature, this review provides a foundation for future research aim at exploring the therapeutic applications of medicinal plant natural products in disease prevention and treatment. The findings underscore the need for further studies to elucidate the underlying mechanisms of action and validate the clinical efficacy of medicinal plant natural products in managing chronic conditions through gut microbiota modulation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yufan Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ning Liu
- Department of The Second Section Office of Breast Tumor, Jilin Cancer Hospital, Changchun 130000, China
| | - Hanning Wu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kexin Cong
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Linnan Duan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tianli Chen
- Changchun University of Chinese Medicine, Changchun 130000, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Kaur D, Qadri OS. Anthocyanin and phenolic landscape of Syzygium cumini extracts via green extraction. Food Chem 2025; 472:142916. [PMID: 39824078 DOI: 10.1016/j.foodchem.2025.142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
This study determined the anthocyanin and phenolic profile of Syzygium cumini bioactive compounds, including anthocyanins and other flavonoids, alongside diverse phenolic compounds. The study optimized a green extraction technique (ultrasound-assisted enzymatic extraction (UAEE)) to obtain anthocyanin-rich extract from the fruit pulp of S. cumini using the pectinase enzyme. UHPLC-LC/MS, FTIR, and SEM were used to profile the secondary metabolites, functional groups, and surface morphology. Two major anthocyanins, cyanidin and malvidin, and twenty-three non-anthocyanins, including gallic acid, naringenin, myricetin, and kaempferol, were identified in the enzymatic extract of S. cumini. A central-composite design was used to optimize the extraction, analyzing the effects of enzyme concentration (0.01-0.03 %), pH (1-3), and ultrasonication time (5-15 min) on total anthocyanin content (438.75 ± 29.81 mg C3G/100 g db), determining the optimal points (0.01 %, 2 pH and 10 mins). The optimized extract was further investigated for total phenolic content and antioxidant activities. The study utilized an economical approach to effectively extract maximum anthocyanins from S. cumini fruit for their potential applications as a biocolorant in food products, simultaneously establishing promising health potential through available literature.
Collapse
Affiliation(s)
- Darshanjot Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Ovais Shafiq Qadri
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| |
Collapse
|
3
|
Chen M, Zhang S, Huang X, Zhang D, Zhu D, Ouyang C, Li Y. The protective effects and mechanism of myricetin in liver diseases (Review). Mol Med Rep 2025; 31:87. [PMID: 39917997 PMCID: PMC11811602 DOI: 10.3892/mmr.2025.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Liver diseases have become one of the significant threats to global health. However, there is a lack of effective targeted therapeutic drugs in this field and the existing drugs used for liver disease treatment usually have side‑effects. Traditional Chinese medicine (TCM) has the distinctive advantages of multi‑target and low side‑effects. As a flavonoid with various pharmacological activities such as anti‑tumour, anti‑oxidant, anti‑inflammatory and anti‑bacterial, the TCM myricetin has been widely used in liver disease research. The present work focuses on the role and molecular mechanism of myricetin in liver diseases such as acute liver injury, fatty liver, liver fibrosis and hepatocellular carcinoma. It is a promising reference for further research and application of myricetin in the treatment of liver diseases.
Collapse
Affiliation(s)
- Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yankun Li
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
4
|
Liu Y, Wang R, Zhou J, Lyu Q, Zhao X, Yang X, Chen K, Gao Z, Li X. Myricetin alleviates high-fat diet-induced atherosclerosis in ApoE -/- mice by regulating bile acid metabolism involved in gut microbiota remodeling. Food Funct 2025; 16:2737-2749. [PMID: 40059779 DOI: 10.1039/d5fo00374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Atherosclerosis poses a significant threat to global health. This study aimed to investigate the effects of myricetin (MYR) on high-fat diet (HFD)-induced atherosclerosis in ApoE-/- mice. Our findings demonstrated that MYR treatment significantly reduced the formation of atherosclerotic plaques, particularly at a high dose of 100 mg kg-1 day-1. Additionally, MYR markedly attenuated lipid metabolism disorders in ApoE-/- mice by decreasing body weight, improving serum lipid profiles, and reducing lipid deposition. Analysis of 16S rRNA sequencing revealed that MYR treatment enhanced the abundance of probiotic g_Lachnospiraceae_NK4A136, while it reduced that of obesity-associated genera, including Rikenellaceae_RC9_gut_group and Alistipes. Metabolomic analysis and RT-qPCR tests indicated that MYR upregulated hepatic bile acid biosynthesis, evidenced by increased total bile acid levels and enhanced expression of key enzymes CYP7A1 and CYP8B1, particularly through the classical biosynthetic pathway. Spearman's correlation analysis revealed strong associations between the regulated bile acids and these aforementioned bacteria. Therefore, our results demonstrated that MYR exerts an anti-atherosclerotic effect by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Yilong Liu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Ruoqi Wang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Jinren Zhou
- Department of Vascular Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Xiaoyong Zhao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Zhiwei Gao
- Department of Vascular Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou 310058, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
5
|
Sun W, Jia J, Liu G, Liang S, Huang Y, Xin M, Chang Z, Liu X, Ma C, Song X, He F, Song Y, Wu M. Polysaccharides Extracted from Old Stalks of Asparagus officinalis L. Improve Nonalcoholic Fatty Liver by Increasing the Gut Butyric Acid Content and Improving Gut Barrier Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6632-6645. [PMID: 40042965 DOI: 10.1021/acs.jafc.4c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD) ranks among the most prevalent chronic liver diseases worldwide, yet effective treatments remain scarce. Old stalks of Asparagus officinalis L. are rich in polysaccharides. The anti-NAFLD mechanism of polysaccharides from old stalks of A. officinalis (AP) requires further study. Here, we studied the effects of AP on NAFLD mice and its impact on the gut microbiota. AP intervention reduces blood lipids and liver lipids and reduces liver injury and inflammation in mice with NAFLD. Moreover, AP intervention changed gut microbiota composition and increased the abundances of butyric acid-producing bacteria, thereby increasing plasma concentration of butyric acid. Furthermore, AP intervention regulated the AMPK/SREBPs signaling pathway, thereby affecting hepatic lipid synthesis. Additionally, AP intervention improved gut barrier function and reduced plasma LPS levels, which subsequently inhibited the LPS/TLR4/NF-κB signaling pathway, thereby alleviating inflammation in NAFLD model mice. Importantly, fecal microbiota transplant (FMT) outcomes demonstrated that AP-induced changes in the gut microbiota impact the AMPK/SREBPs and LPS/TLR4/NF-κB pathways. These data suggest that AP intervention ameliorates NAFLD by regulating the gut microbiota. These research provides a scientific foundation for the use of the stalks of A. officinalis in the treatment of NAFLD.
Collapse
Affiliation(s)
- Wenlong Sun
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Jinghan Jia
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Guangpeng Liu
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yuhong Huang
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
| | - Meiling Xin
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
| | - Zukang Chang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xingxing Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Chao Ma
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Fatao He
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
| | - Yuanda Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Maoyu Wu
- All China Federation of Supply and Marketing Cooperatives Jinan Fruit Research Institute, Jinan 250014, China
| |
Collapse
|
6
|
Li L, Li T, Liang X, Zhu L, Fang Y, Dong L, Zheng Y, Xu X, Li M, Cai T, Zhao F, Xin M, Shao M, Guan Y, Liu M, Li F, Zhang C, Wang Q, Sun W, Zheng Y. A decrease in Flavonifractor plautii and its product, phytosphingosine, predisposes individuals with phlegm-dampness constitution to metabolic disorders. Cell Discov 2025; 11:25. [PMID: 40097405 PMCID: PMC11914097 DOI: 10.1038/s41421-025-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
According to traditional Chinese medicine (TCM) constitutional theory, individuals with phlegm-dampness constitution (PDC) are at increased risk for metabolic disorders. Previous studies have indicated that PDC individuals exhibit gene expression changes associated with metabolic disorders, even individuals with normal metabolic indices. However, the biological mechanisms underlying these changes remain unclear. The gut microbiota has recently emerged as a promising avenue for elucidating TCM principles. Here, we revealed that individuals with PDC have distinct gut microbiota and serum metabolite profiles. A decrease in phytosphingosine was associated with increased PDC scores and metabolic disorder severity. Subsequent experiments demonstrated that Flavonifractor plautii can biosynthesize phytosphingosine, which was also negatively correlated with the PDC score. Interestingly, both F. plautii and phytosphingosine levels decreased in PDC subjects with normal metabolic indices. Fecal transplantation from these individuals accelerated the development of metabolic disorders in mice. However, supplementation with F. plautii and phytosphingosine ameliorated metabolic disorders by increasing phytosphingosine levels in the gut‒hepatic axis. Mechanistic investigations confirmed that phytosphingosine can directly bind to hepatic peroxisome proliferator-activated receptor α (PPARα) and activate its nuclear transcription activity, thereby regulating downstream gene expression related to glucose‒lipid metabolism. Our research indicates that the decrease in F. plautii and its product, phytosphingosine, contributes to gene expression changes related to metabolic disorders in PDC individuals and increases their susceptibility to metabolic disorders. These findings suggest that diagnosing PDC may be beneficial for identifying at-risk populations among apparently healthy individuals, thereby advancing the broader field of metabolic disorder prevention and TCM integration.
Collapse
Affiliation(s)
- Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yi Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Xin
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Guan
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyi Liu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Fangli Li
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China.
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Ren M, Xia Y, Pan H, Zhou X, Yu M, Ji F. Duodenal-jejunal bypass ameliorates MASLD in rats by regulating gut microbiota and bile acid metabolism through FXR pathways. Hepatol Commun 2025; 9:e0615. [PMID: 39813598 PMCID: PMC11737483 DOI: 10.1097/hc9.0000000000000615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Although bariatric and metabolic surgical methods, including duodenal-jejunal bypass (DJB), were shown to improve metabolic dysfunction-associated steatotic liver disease (MASLD) in clinical trials and experimental rodent models, their underlying mechanisms remain unclear. The present study therefore evaluated the therapeutic effects and mechanisms of action of DJB in rats with MASLD. METHODS Rats with MASLD were randomly assigned to undergo DJB or sham surgery. Rats were orally administered a broad-spectrum antibiotic cocktail (Abx) or underwent fecal microbiota transplantation to assess the role of gut microbiota in DJB-induced improvement of MASLD. Gut microbiota were profiled by 16S rRNA gene sequencing and metagenomic sequencing, and bile acids (BAs) were analyzed by BA-targeted metabolomics. RESULTS DJB alleviated hepatic steatosis and insulin resistance in rats with diet-induced MASLD. Abx depletion of bacteria abrogated the ameliorating effects of DJB on MASLD. Fecal microbiota transplantation from rats that underwent DJB improved MASLD in high-fat diet-fed recipients by reshaping the gut microbiota, especially by significantly reducing the abundance of Clostridium. This, in turn, suppressed secondary BA biosynthesis and activated the hepatic BA receptor, farnesoid X receptor. Inhibition of farnesoid X receptor attenuated the ameliorative effects of post-DJB microbiota on MASLD. CONCLUSIONS DJB ameliorates MASLD by regulating gut microbiota and BA metabolism through hepatic farnesoid X receptor pathways.
Collapse
Affiliation(s)
- Mengting Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Xia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hanghai Pan
- Department of Gastroenterology, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mosang Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Xu X, Wang Y, Wu X, Cai T, Dong L, Liang S, Zhu L, Song X, Dong Y, Zheng Y, Li L, Sun W. Administration of Alistipes indistinctus prevented the progression from nonalcoholic fatty liver disease to nonalcoholic steatohepatitis by enhancing the gut barrier and increasing Lactobacillus spp. Biochem Biophys Res Commun 2024; 741:151033. [PMID: 39579531 DOI: 10.1016/j.bbrc.2024.151033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is an important public health problem, and the gut microbiota has become a new treatment target for MAFLD. Previously, A. indistinctus, a core gut bacterium, was shown to potentially contribute to the prevention of MAFLD. However, the effect and mechanism of A. indistinctus on MAFLD are still unclear and need to be investigated. This study primarily evaluated whether A. indistinctus can improve gut microbiota disorders and prevent the progression from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) in mice fed a high-fat diet (HFD). First, we observed that A. indistinctus significantly improved lipid metabolism disorders and reduced hepatic inflammation induced by HFD consumption in mice. We found that A. indistinctus improved gut barrier function and inhibited the LPS/TLR4/NF-κB pathway, thereby reducing hepatic inflammation. Moreover, 16S rRNA V3-V4 analyses revealed that A. indistinctus could significantly change the structure of the gut microbiota and increase the abundance of L. johnsonii by promoting its growth. Finally, we showed that L. johnsonii administration significantly improved lipid metabolism disorders and reduced hepatic lipid accumulation induced by HFD consumption in mice. In summary, A. indistinctus administration significantly reduces hepatic inflammation by improving gut barrier function and improves lipid metabolism disorders by promoting the growth of L. johnsonii. Our research improves the understanding of the gut microbiota and provides a basis for future therapeutic use of A. indistinctus.
Collapse
Affiliation(s)
- Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Yanrong Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Xiaofei Wu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Linghui Zhu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Yang Dong
- Monitoring and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing, 100021, People's Republic of China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China.
| |
Collapse
|
9
|
Wang L, Tang Z, Li B, Peng Y, Yang X, Xiao Y, Ni R, Qi XL. Myricetin ameliorates cognitive impairment in 3×Tg Alzheimer's disease mice by regulating oxidative stress and tau hyperphosphorylation. Biomed Pharmacother 2024; 177:116963. [PMID: 38889642 DOI: 10.1016/j.biopha.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease is characterized by abnormal β-amyloid (Aβ) plaque accumulation, tau hyperphosphorylation, reactive oxidative stress, mitochondrial dysfunction and synaptic loss. Myricetin, a dietary flavonoid, has been shown to exert neuroprotective effects in vitro and in vivo. Here, we aimed to elucidate the mechanism and pathways involved in the protective effect of myricetin. METHODS The effect of myricetin was assessed on Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. Behavioral tests were performed to assess the cognitive effects of myricetin (14 days, ip) in 3×Tg mice. The levels of beta-amyloid precursor protein (APP), synaptic and mitochondrial proteins, glycogen synthase kinase3β (GSK3β) and extracellular regulated kinase (ERK) 2 were assessed via Western blotting. Flow cytometry assays, immunofluorescence staining, and transmission electron microscopy were used to assess mitochondrial dysfunction and reactive oxidative stress. RESULTS We found that, compared with control treatment, myricetin treatment improved spatial cognition and learning and memory in 3×Tg mice. Myricetin ameliorated tau phosphorylation and the reduction in pre- and postsynaptic proteins in Aβ42 oligomer-treated neuronal SH-SY5Y cells and in 3×Tg mice. In addition, myricetin reduced reactive oxygen species generation, lipid peroxidation, and DNA oxidation, and rescued mitochondrial dysfunction via the associated GSK3β and ERK 2 signalling pathways. CONCLUSIONS This study provides new insight into the neuroprotective mechanism of myricetin in vitro in cell culture and in vivo in a mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Bo Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Xi Yang
- Guiyang Healthcare Vocational University, Guizhou ERC for Medical Resources & Healthcare Products (Guizhou Engineering Research Center for Medical Resources and Healthcare Products), Guiyang, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Key Laboratory of Molecular Biology of Guizhou Medical University, Guiyang, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Constructed by the Province and Ministry, Guiyang, China.
| |
Collapse
|
10
|
Chen J, Xu W, Liu Y, Liang X, Chen Y, Liang J, Cao J, Lu B, Sun C, Wang Y. Lonicera japonica Thunb. and its characteristic component chlorogenic acid alleviated experimental colitis by promoting Lactobacillus and fecal short‐chain fatty acids production. FOOD FRONTIERS 2024; 5:1583-1602. [DOI: 10.1002/fft2.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractUlcerative colitis is intricately linked to intestinal oxidative stress and dysbiosis of the gut microbiota. Lonicera japonica Thunb. (LJ) is a traditional edible and medical flower in China, and chlorogenic acid (CGA) is one of its characteristic components. However, it remains unclear whether gut microbiota plays a role in the therapeutic effects of LJ and GCA on colitis. Here, we first observed that oral administration of LJ and CGA for 3 weeks dramatically promoted the growth of Lactobacillus and fecal short‐chain fatty acids (SCFAs) production in healthy mice. Subsequently, the alleviating effects of LJ and CGA on colitis were explored with a dextran sulfate sodium‐induced colitis mice model. The intervention of LJ and CGA notably alleviated inflammation, intestinal barrier impairment, and oxidative stress in colitis and led to a significant elevation in Lactobacillus and fecal SCFAs. Eventually, the key role of gut microbiota and their metabolites on the therapeutic effects was validated by performing fecal microbiota transplantation and sterile fecal suspensions transplantation from LJ and CGA‐treated healthy mice to colitis mice. Our findings demonstrated that consumption of LJ and CGA could benefit the host both in healthy condition and colitis. The beneficial effects were attributed to the improvement of the endogenous antioxidant system and promotion of the probiotic Lactobacillus and SCFAs production. Our study highlighted the great potential of LJ and CGA to be consumed as functional foods and provided novel mechanisms by which they alleviated colitis.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Wanhua Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture Zhejiang University Linyi Shandong People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Yunyi Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Jiaojiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Hainan Institute of Zhejiang University, Zhejiang University Sanya Hainan People's Republic of China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro‐Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro‐Products Storage and Preservation of Ministry of Agriculture and Rural Affairs Zhejiang University Hangzhou People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Hainan Institute of Zhejiang University, Zhejiang University Sanya Hainan People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement Zhejiang University, Zijingang Campus Hangzhou People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture Zhejiang University Linyi Shandong People's Republic of China
| |
Collapse
|
11
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
12
|
Ghani I, An Y, Qiao Q, He S, Li Z. Polyphenols from Foxtail Millet Improve Non-Alcoholic Fatty Liver Disease by Regulating Intestinal Microbiome in Mice. Foods 2024; 13:1683. [PMID: 38890912 PMCID: PMC11172357 DOI: 10.3390/foods13111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic manifestation of metabolic dysfunction for which effective interventions are lacking. The burden of NAFLD is increasing at an alarming rate. NAFLD is frequently associated with morbidities such as dyslipidemia, type 2 diabetes mellitus and obesity, etc. The current study explored the potential role of bound polyphenols from foxtail millet (BPIS) in treating mice with NAFLD induced by a high-fat diet (HFD). The results indicated the critical role of BPIS in treating NAFLD by effectively restoring the gut microbiota in C57BL/6 mice that received a high-fat diet (HFD) for 12 weeks. At the same time, 16S rRNA analysis demonstrated that BPIS remodeled the overall structure of the gut microbiota from fatty liver diseases towards that of normal counterparts, including ten phylum and twenty genus levels. Further study found that the expression of tight junction proteins was upregulated in the BPIS-treated group. This study provides new insights into the potential NAFLD protective effects induced by polyphenols of foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (I.G.); (Y.A.); (Q.Q.); (S.H.)
| |
Collapse
|
13
|
Zhou M, Ma J, Kang M, Tang W, Xia S, Yin J, Yin Y. Flavonoids, gut microbiota, and host lipid metabolism. Eng Life Sci 2024; 24:2300065. [PMID: 38708419 PMCID: PMC11065335 DOI: 10.1002/elsc.202300065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 05/07/2024] Open
Abstract
Flavonoids are widely distributed in nature and have a variety of beneficial biological effects, including antioxidant, anti-inflammatory, and anti-obesity effects. All of these are related to gut microbiota, and flavonoids also serve as a bridge between the host and gut microbiota. Flavonoids are commonly used to modify the composition of the gut microbiota by promoting or inhibiting specific microbial species within the gut, as well as modifying their metabolites. In turn, the gut microbiota extensively metabolizes flavonoids. Hence, this reciprocal relationship between flavonoids and the gut microbiota may play a crucial role in maintaining the balance and functionality of the metabolism system. In this review, we mainly highlighted the biological effects of antioxidant, anti-inflammatory and antiobesity, and discussed the interaction between flavonoids, gut microbiota and lipid metabolism, and elaborated the potential mechanisms on host lipid metabolism.
Collapse
Affiliation(s)
- Miao Zhou
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jie Ma
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Meng Kang
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Wenjie Tang
- Sichuan Animal Science AcademyLivestock and Poultry Biological Products Key Laboratory of Sichuan ProvinceSichuan Animtech Feed Co., LtdChengduSichuanChina
| | - Siting Xia
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Jie Yin
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| | - Yulong Yin
- College of Animal Science and TechnologyHunan Agricultural UniversityChangshaChina
| |
Collapse
|
14
|
Pirvu LC, Rusu N, Bazdoaca C, Androne E, Neagu G, Albulescu A. A View on the Chemical and Biological Attributes of Five Edible Fruits after Finishing Their Shelf Life: Studies on Caco-2 Cells. Int J Mol Sci 2024; 25:4848. [PMID: 38732066 PMCID: PMC11084482 DOI: 10.3390/ijms25094848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 μg GAE/μL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.
Collapse
Affiliation(s)
- Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania
| | - Nicoleta Rusu
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Cristina Bazdoaca
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Elena Androne
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Georgeta Neagu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
| | - Adrian Albulescu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Av., 030304 Bucharest, Romania
| |
Collapse
|
15
|
Zhu J, Bao Z, Hu Z, Wu S, Tian C, Zhou Y, Ding Z, Tan X. Myricetin alleviates diabetic cardiomyopathy by regulating gut microbiota and their metabolites. Nutr Diabetes 2024; 14:10. [PMID: 38472186 PMCID: PMC10933338 DOI: 10.1038/s41387-024-00268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The gut microbiota is involved in the pathogenesis of diabetic cardiomyopathy (DCM). Myricetin protects cardiac function in DCM. However, the low bioavailability of myricetin fails to explain its pharmacological mechanisms thoroughly. Research has shown that myricetin has a positive effect on the gut microbiota. We hypothesize that myricetin improves the development of DCM via regulating gut microbiota. METHODS DCM mice were induced with streptozotocin and fed a high-fat diet, and then treated with myricetin by gavage and high-fat diet for 16 weeks. Indexes related to gut microbiota composition, cardiac structure, cardiac function, intestinal barrier function, and inflammation were detected. Moreover, the gut contents were transplanted to DCM mice, and the effect of fecal microbiota transplantation (FMT) on DCM mice was assessed. RESULTS Myricetin could improve cardiac function in DCM mice by decreasing cardiomyocyte hypertrophy and interstitial fibrosis. The composition of gut microbiota, especially for short-chain fatty acid-producing bacteria involving Roseburia, Faecalibaculum, and Bifidobacterium, was more abundant by myricetin treatment in DCM mice. Myricetin increased occludin expression and the number of goblet cells in DCM mice. Compared with DCM mice unfed with gut content, the cardiac function, number of goblet cells, and expression of occludin in DCM mice fed by gut contents were elevated, while cardiomyocyte hypertrophy and TLR4/MyD88 pathway-related proteins were decreased. CONCLUSIONS Myricetin can prevent DCM development by increasing the abundance of beneficial gut microbiota and restoring the gut barrier function.
Collapse
Affiliation(s)
- Jinxiu Zhu
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), 518172, Shenzhen, Guangdong, China
| | - Zhijun Bao
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Zuoqi Hu
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Shenglin Wu
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Cuihong Tian
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Yueran Zhou
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Zipeng Ding
- Institute of Clinical Electrocardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xuerui Tan
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China.
- Clinical Research Center, the First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, Guangdong, China.
| |
Collapse
|
16
|
Yu C, Guo X, Cui X, Su G, Wang H. Functional Food Chemical Ingredient Strategies for Non-alcoholic Fatty Liver Disease (NAFLD) and Hepatic Fibrosis: Chemical Properties, Health Benefits, Action, and Application. Curr Nutr Rep 2024; 13:1-14. [PMID: 38172459 DOI: 10.1007/s13668-023-00514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW The liver is an important digestive gland in the body. Lifestyle and dietary habits are increasingly damaging our liver, leading to various diseases and health problems. Non-alcoholic fatty liver disease (NAFLD) has become one of the most serious liver disease problems in the world. Diet is one of the important factors in maintaining liver health. Functional foods and their components have been identified as novel sources of potential preventive agents in the prevention and treatment of liver disease in daily life. However, the effects of functional components derived from small molecules in food on different types of liver diseases have not been systematically summarized. RECENT FINDINGS The components and related mechanisms in functional foods play a significant role in the development and progression of NAFLD and liver fibrosis. A variety of structural components are found to treat and prevent NAFLD and liver fibrosis through different mechanisms, including flavonoids, alkaloids, polyphenols, polysaccharides, unsaturated fatty acids, and peptides. On the other hand, the relevant mechanisms include oxidative stress, inflammation, and immune regulation, and a large number of literature studies have confirmed a close relationship between the mechanisms. The purpose of this article is to examine the current literature related to functional foods and functional components used for the treatment and protection against NAFLD and hepatic fibrosis, focusing on chemical properties, health benefits, mechanisms of action, and application in vitro and in vivo. The roles of different components in the biological processes of NAFLD and liver fibrosis were also discussed.
Collapse
Affiliation(s)
- Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaohe Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaohang Cui
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
17
|
Baranowska-Wójcik E, Winiarska-Mieczan A, Olcha P, Kwiecień M, Jachimowicz-Rogowska K, Nowakowski Ł, Miturski A, Gałczyński K. Polyphenols Influence the Development of Endometrial Cancer by Modulating the Gut Microbiota. Nutrients 2024; 16:681. [PMID: 38474808 DOI: 10.3390/nu16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Dysbiosis of the microbiota in the gastrointestinal tract can induce the development of gynaecological tumours, particularly in postmenopausal women, by causing DNA damage and alterations in metabolite metabolism. Dysbiosis also complicates cancer treatment by influencing the body's immune response and disrupting the sensitivity to chemotherapy drugs. Therefore, it is crucial to maintain homeostasis in the gut microbiota through the effective use of food components that affect its structure. Recent studies have shown that polyphenols, which are likely to be the most important secondary metabolites produced by plants, exhibit prebiotic properties. They affect the structure of the gut microbiota and the synthesis of metabolites. In this review, we summarise the current state of knowledge, focusing on the impact of polyphenols on the development of gynaecological tumours, particularly endometrial cancer, and emphasising that polyphenol consumption leads to beneficial modifications in the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Piotr Olcha
- Department of Gynecology and Gynecological Endocrinology, Medical University of Lublin, Aleje Racławickie 23, 20-049 Lublin, Poland
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Nutrition Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Łukasz Nowakowski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Andrzej Miturski
- Department of Gynecology, 1st Clinical Military Hospital in Lublin, Al. Raclawickie 23, 20-049 Lublin, Poland
| | - Krzysztof Gałczyński
- Faculty of Medical Sciences and Health Sciences, Siedlce University of Natural Sciences and Humanities, Konarskiego 2, 08-110 Siedlce, Poland
| |
Collapse
|
18
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Wang J, Liu QT, Shen DY, Bai JP, Hu Y, Huang Q, Yu HJ, He NN, Qin XY, Lan R. Network pharmacology analysis of the active ingredients of Corydalis hendersonii Hemsl. and their effects on eliminating neuroinflammation and improving motor functions in MPTP-intoxicated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117009. [PMID: 37557936 DOI: 10.1016/j.jep.2023.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis hendersonii Hemsl. (CH), is a traditional Tibetan medicine used in highland areas for the treatment of alpine polycythemia, ulcers and various inflammatory diseases. Its antioxidant and anti-inflammatory effects have been demonstrated in experimental mice. Loss of dopaminergic neurons due to oxidative damage is thought to be an important factor in the development of PD, the potential antioxidant, anti-inflammatory effects of CH could potentially be used for PD treatment. AIM OF THE STUDY To identify potential targets of CH using network pharmacology and to investigate the neuroprotective effects in cultured cell models and in MPTP-intoxicated mice. MATERIALS AND METHODS The main chemical components of CH were analyzed by UPLC-MS/MS and their potential targets of action or signaling pathways were analyzed using network pharmacology. MPP + or LPS was added to SH-SY5Y or BV2 cells, respectively, to establish cellular models. MPTP was administered to C57BL/6J mice to induce inflammation and dopaminergic neuron loss as well as dyskinesia, followed by behavioral analysis to determine the role of CH in eliminating inflammation, avoiding neuron loss, and improving dyskinesia. RESULTS CH contains 241 alkaloids, 213 flavonoids, 177 terpenoids and 114 phenolic compounds. The targets crossover between CH and PD yielded 210 potential therapeutic targets, especially growth factors and inflammatory pathway-related genes, such as BDNF, NF-κB, as potential key targets. In cultured cells, CHE eliminated MPP + -induced impairment of cell viability as well as LPS-induced inflammation, respectively. In mice, CHE ameliorated MPTP-induced dyskinesia and rescued the loss of dopaminergic neurons in the substantia nigra and striatum. Mechanistically, CHE effectively maintained the activity of the BDNF-TrkB/Akt signaling pathway, accordingly, inhibited inflammatory signaling pathways such as HIF-1α/PKM2 and Notch/NF-kB. CONCLUSIONS CH performed well in eliminating inflammation and improving locomotor deficits in mice, and its potent active ingredients are worthy of subsequent research and development.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qiu-Tong Liu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Dan-Yang Shen
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jin-Peng Bai
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yang Hu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qin Huang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Hui-Jing Yu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Ning-Ning He
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Rongfeng Lan
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Wang X, Zhao J, Lin Z, Li J, Li X, Xu X, Wang Y, Lv G, Lin H, Lin Z. Analysis of Polyphenol Extract from Hazel Leaf and Ameliorative Efficacy and Mechanism against Hyperuricemia Zebrafish Model via Network Pharmacology and Molecular Docking. Molecules 2024; 29:317. [PMID: 38257230 PMCID: PMC10820926 DOI: 10.3390/molecules29020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Hazel leaf, a by-product of hazelnuts, is commonly used in traditional folk medicine in Portugal, Sweden, Iran and other regions for properties such as vascular protection, anti-bleeding, anti-edema, anti-infection, and pain relief. Based on our previous studies, the polyphenol extract from hazel leaf was identified and quantified via HPLC fingerprint. The contents of nine compounds including kaempferol, chlorogenic acid, myricetin, caffeic acid, p-coumaric acid, resveratrol, luteolin, gallic acid and ellagic acid in hazel leaf polyphenol extract (ZP) were preliminary calculated, among which kaempferol was the highest with 221.99 mg/g, followed by chlorogenic acid with 8.23 mg/g. The inhibition of ZP on α-glucosidase and xanthine oxidase activities was determined via the chemical method, and the inhibition on xanthine oxidase was better. Then, the effect of ZP on hyperuricemia zebrafish was investigated. It was found that ZP obviously reduced the levels of uric acid, xanthine oxidase, urea nitrogen and creatinine, and up-regulated the expression ofOAT1 and HPRT genes in hyperuricemia zebrafish. Finally, the targeted network pharmacological analysis and molecular docking of nine polyphenol compounds were performed to search for relevant mechanisms for alleviating hyperuricemia. These results will provide a valuable basis for the development and application of hazel leaf polyphenols as functional ingredients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.W.); (J.Z.); (Z.L.); (J.L.); (X.L.); (X.X.); (Y.W.); (G.L.)
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.W.); (J.Z.); (Z.L.); (J.L.); (X.L.); (X.X.); (Y.W.); (G.L.)
| |
Collapse
|
21
|
Hu Q, Zhang W, Wei F, Huang M, Shu M, Song D, Wen J, Wang J, Nian Q, Ma X, Zeng J, Zhao Y. Human diet-derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother Res 2024; 38:280-304. [PMID: 37871899 DOI: 10.1002/ptr.8043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-β, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilan Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyao Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
23
|
Datta S, Aggarwal D, Sehrawat N, Yadav M, Sharma V, Sharma A, Zghair AN, Dhama K, Sharma A, Kumar V, Sharma AK, Wang H. Hepatoprotective effects of natural drugs: Current trends, scope, relevance and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155100. [PMID: 37801892 DOI: 10.1016/j.phymed.2023.155100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The liver is a well-known player in the metabolism and removal of drugs. Drug metabolizing enzymes in the liver detoxify drugs and xenobiotics, ultimately leading to the acquisition of homeostasis. However, liver toxicity and cell damage are not only related to the nature and dosage of a particular drug but are also influenced by other factors such as aging, immune status, environmental contaminants, microbial metabolites, gender, obesity, and expression of individual genes Furthermore, factors such as drugs, alcohol, and environmental contaminants could induce oxidative stress, thereby impairing the regenerative potential of the liver and causing several diseases. Persons suffering from other ailments and those with comorbidities are found to be more prone to drug-induced toxicities. Moreover, drug composition and drug-drug interactions could further aggravate the risk of drug-induced hepatotoxicity. A plethora of mechanisms are responsible for initiating liver cell damage and further aggravating liver cell injury, followed by impairment of homeostasis, ultimately leading to the generation of reactive oxygen species, immune-suppression, and oxidative stress. OBJECTIVE To summarize the potential of phytochemicals and natural bioactive compounds to treat hepatotoxicity and other liver diseases. STUDY DESIGN A deductive qualitative content analysis approach was employed to assess the overall outcomes of the research and review articles pertaining to hepatoprotection induced by natural drugs, along with analysis of the interventions. METHODS An extensive literature search of bibliographic databases, including Web of Science, PUBMED, SCOPUS, GOOGLE SCHOLAR, etc., was carried out to understand the role of hepatoprotective effects of natural drugs. RESULTS Bioactive natural products, including curcumin, resveratrol, etc., have been seen as neutralizing agents against the side effects induced by the drugs. Moreover, these natural products are dietary and are readily available; thus, could be supplemented along with drugs to reduce toxicity to cells. Probiotics, prebiotics, and synbiotics have shown promise of improving overall liver functioning, and these should be evaluated more extensively for their hepatoprotective potential. Therefore, selecting an appropriate natural product or a bioactive compound that is free of toxicity and offers a reliable solution for drug-induced liver toxicity is quintessential. CONCLUSIONS The current review highlights the role of natural bioactive products in neutralizing drug-induced hepatotoxicity. Efforts have been made to delineate the possible underlying mechanism associated with the neutralization process.
Collapse
Affiliation(s)
- Sonal Datta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Nirmala Sehrawat
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Abdulrazzaq N Zghair
- College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Aanchal Sharma
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Vikas Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector-82-A, IT City Road, Mohali, Punjab 140306, India.
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
24
|
Feng J, Ma H, Yue Y, Wang L, Hao K, Zhang Y, Li J, Xiang Y, Min Y. Saikosaponin a ameliorates diet-induced fatty liver via regulating intestinal microbiota and bile acid profile in laying hens. Poult Sci 2023; 102:103155. [PMID: 37871490 PMCID: PMC10598744 DOI: 10.1016/j.psj.2023.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Fatty liver hemorrhagic syndrome is a widespread metabolic disease in laying hens that decreases egg production and even causes death in severe cases. Many traditional Chinese medicine ingredients, such as saikosaponin a (SSa), have been shown to alleviate fatty liver, but the underlying mechanisms remain unclear. In this study, we aimed to explore the alleviation of dietary SSa on excessive hepatic lipid deposition and the interactions between intestinal microbiota and bile acid (BA) in laying hens. Fifty-four 35-wk-old laying hens were randomly allocated into 3 treatment groups with 6 replicates (3 birds per replicate) and fed with a basal diet (CON), high-energy and low-protein diet (HELP), and HELP diet with 30 mg/kg SSa (HELP + SSa). SSa reversed diet-induced egg production rate decrease (P < 0.05). SSa could potently ameliorate HELP-induced accumulation of hepatic cholesterol and liver injury via the increase (P < 0.05) of mRNA expression of BA synthesis gene, such as cholesterol 7 alpha-hydroxylase 1. SSa treatment alleviated gut dysbiosis, especially reducing (P < 0.05) the relative abundance of bile salt hydrolase (BSH)-producing bacteria such as Lactobacillus, Bifidobacterium, and Turicibacter. Ileal BA metabolomic analysis revealed that SSa increased (P < 0.05) the content of tauro-conjugated BAs, mainly taurochenodeoxycholic acid and tauro-α-muricholic acid. The mRNA expression of farnesoid X receptor (FXR) and fibroblast growth factor 19 were decreased (P < 0.05) in intestine, which was associated with increased gene expression of enzymes in the BA synthesis that reduced the levels of cholesterol. Moreover, SSa treatment inhibited intestinal BA reabsorption via decreasing (P < 0.05) the mRNA expression of apical sodium-dependent bile acid transporter. Our findings indicated that SSa reduced liver cholesterol accumulation and alleviated fatty liver in laying hens through microbiota-BA-intestinal FXR crosstalk.
Collapse
Affiliation(s)
- Jia Feng
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lijun Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Keyang Hao
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yanan Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - Jinghe Li
- Tongchuan City Health Supervision Institute, Tongchuan 629000, Shaanxi, China
| | - Yujun Xiang
- Tongchuan City Health Supervision Institute, Tongchuan 629000, Shaanxi, China
| | - Yuna Min
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
25
|
Mihal M, Roychoudhury S, Sirotkin AV, Kolesarova A. Sea buckthorn, its bioactive constituents, and mechanism of action: potential application in female reproduction. Front Endocrinol (Lausanne) 2023; 14:1244300. [PMID: 38027169 PMCID: PMC10662087 DOI: 10.3389/fendo.2023.1244300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a flowering shrub, and its berries have been utilized for decades as a raw ingredient in cuisines and herbal remedies. This evidence-based study focuses on its key bioactive constituents, and mechanism of protective effects with a focus on female reproductive processes. Parts of the plant contain phenols, carotenoids (lycopene, carotene, lutein, and zeaxanthin), flavonoids (isorhamnetin, quercetin, glycosides, and kaempferol), tocopherols, sterols, polyunsaturated fatty acids, minerals, vitamins, omega 3, 6, 9 and rare omega 7 fatty acids etc. Key polyphenolic flavonoids such as isorhamnetin and quercetin are believed to be mainly responsible behind its health benefits (against cardiovascular diseases, metabolic syndrome, obesity etc.) through properties including anti-cancer, antioxidant, and anti-inflammatory activities. These sea buckthorn constituents appear to mediate healthy ovarian cell proliferation, death, and hormone release, as well as decrease ovarian cancer possibly through apoptosis, and hormonal (estrogen) release. Thus, sea buckthorn and its bioactive ingredients may have potential in the management of gynecological problems such as uterine inflammation, endometriosis, and easing symptoms of vulvovaginal atrophy in postmenopausal women (by targeting inflammatory cytokines and vascular endothelial growth factor - VEGF). Apigenin, myricetin, and luteolin have also been recommended as prospective ovarian cancer preventative and adjuvant therapy options as they can inhibit ovarian cancerogenesis by triggering apoptosis and halting the cell cycle in ovarian tumors. Furthermore, its oil (containing carotenoid, sterol, and hypericin) has been speculated as an alternative to estrogen replacement therapy for postmenopausal women particularly to improve vaginal epithelial integrity. However, it is uncertain whether steroid hormone receptors, reactive oxygen species (ROS), and inflammatory regulators are actually behind sea buckhorn's actions. Sea buckthorn, and its compounds' health promoting potential warrants further validation not just in vitro and in animal research, but also in clinical trials to identify and/or standardize optimal methods of delivery of biologically active molecules.
Collapse
Affiliation(s)
- Michal Mihal
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | | | - Alexander V. Sirotkin
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Adriana Kolesarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
26
|
Ma MH, Gao LL, Chen CB, Gu FL, Wu SQ, Li F, Han BX. Dendrobium huoshanense Polysaccharide Improves High-Fat Diet Induced Liver Injury by Regulating the Gut-Liver Axis. Chem Biodivers 2023; 20:e202300980. [PMID: 37831331 DOI: 10.1002/cbdv.202300980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Dendrobium huoshanense is an important Traditional Chinese medicine that thickens the stomach and intestines. Its active ingredient Dendrobium huoshanense polysaccharide (DHP), was revealed to relieve the symptoms of liver injury. However, its mechanism of action remains poorly understood. This study aimed to investigate the mechanism of DHP in protecting the liver. The effects of DHP on lipid levels, liver function, and intestinal barrier function were investigated in mice with high-fat diet-induced liver damage. Changes in the gut flora and their metabolites were analyzed using 16S rRNA sequencing and metabolomics. The results showed that DHP reduced lipid levels, liver injury, and intestinal permeability. DHP altered the intestinal flora structure and increased the relative abundance of Bifidobacterium animalis and Clostridium disporicum. Furthermore, fecal metabolomics revealed that DHP altered fecal metabolites and significantly increased levels of gut-derived metabolites, spermidine, and indole, which have been reported to inhibit liver injury and improve lipid metabolism and the intestinal barrier. Correlation analysis showed that spermidine and indole levels were significantly negatively correlated with liver injury-related parameters and positively correlated with the intestinal species B. animalis enriched by DHP. Overall, this study confirmed that DHP prevented liver injury by regulating intestinal microbiota dysbiosis and fecal metabolites.
Collapse
Affiliation(s)
- Meng-Hua Ma
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| | - Lei-Lei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Chuang-Bo Chen
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang-Li Gu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
| | - Si-Qi Wu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang Li
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Bang-Xing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| |
Collapse
|
27
|
Kumar S, Swamy N, Tuli HS, Rani S, Garg A, Mishra D, Abdulabbas HS, Sandhu SS. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2179-2196. [PMID: 37083713 DOI: 10.1007/s00210-023-02479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promising results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancreatic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Botany, Government Girls College Khargone, 451001, Khargone, Madhya Pradesh, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, Haryana, India
| | - Seema Rani
- Department of Chemistry, Government M. H. College of Home Science & Science for Women, Autonomous, Jabalpur, 482002, Madhya Pradesh, India
| | - Abhijeet Garg
- Fungal Biotechnology and Invertebrate Pathology Laboratory, Department of Biological Sciences, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India
| | - Deepa Mishra
- Department of Biotechnology, Mata Gujri Mahila Mahavidyalaya Jabalpur, 482001, Jabalpur, Madhya Pradesh, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Sardul Singh Sandhu
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, 482001, Madhya Pradesh, India.
| |
Collapse
|
28
|
Porto FG, Tanaka LY, de Bessa TC, Oliveira PVS, Souza JMFD, Kajihara D, Fernandes CG, Santos PN, Laurindo FRM. Evidence for a protective role of Protein Disulfide Isomerase-A1 against aortic dissection. Atherosclerosis 2023; 382:117283. [PMID: 37774430 DOI: 10.1016/j.atherosclerosis.2023.117283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND AND AIMS Redox signaling is involved in the pathophysiology of aortic aneurysm/dissection. Protein Disulfide Isomerases and its prototype PDIA1 are thiol redox chaperones mainly from endoplasmic reticulum (ER), while PDIA1 cell surface pool redox-regulates thrombosis, cytoskeleton remodeling and integrin activation, which are mechanisms involved in aortic disease. Here we investigate the roles of PDIA1 in aortic dissection. METHODS Initially, we assessed the outcome of aortic aneurysm/dissection in transgenic PDIA1-overexpressing FVB mice using a model of 28-day exposure to lysyl oxidase inhibitor BAPN plus angiotensin-II infusion. In a second protocol, we assessed the effects of PDIA1 inhibitor isoquercetin (IQ) against aortic dissection in C57BL/6 mice exposed to BAPN for 28 days. RESULTS Transgenic PDIA1 overexpression associated with ca. 50% (p = 0.022) decrease (vs.wild-type) in mortality due to abdominal aortic rupture and protected against elastic fiber breaks in thoracic aorta. Conversely, exposure of mice to IQ increased thoracic aorta dissection-related mortality rates, from ca. 18%-50% within 28-days (p = 0.019); elastic fiber disruption and collagen deposition were also enhanced. The structurally-related compound diosmetin, which does not inhibit PDI, had negligible effects. In parallel, stretch-tension curves indicated that IQ amplified a ductile-type of biomechanical failure vs. control or BAPN-exposed mice aortas. IQ-induced effects seemed unassociated with nonspecific antioxidant effects or ER stress. In both models, echocardiographic analysis of surviving mice suggested that aortic rupture was dissociated from progressive dilatation. CONCLUSIONS Our data indicate a protective role of PDIA1 against aortic dissection/rupture and potentially uncovers a novel integrative mechanism coupling redox and biomechanical homeostasis in vascular remodeling.
Collapse
Affiliation(s)
- Fernando Garcez Porto
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leonardo Yuji Tanaka
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie de Bessa
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Júlia Martins Felipe de Souza
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Kajihara
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Gonçalves Fernandes
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia Nolasco Santos
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular (LVascBio), LIM-64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
29
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
30
|
Zhang K, Yang J, Chen L, He J, Qu D, Zhang Z, Liu Y, Li X, Liu J, Li J, Xie X, Wang Q. Gut Microbiota Participates in Polystyrene Microplastics-Induced Hepatic Injuries by Modulating the Gut-Liver Axis. ACS NANO 2023; 17:15125-15145. [PMID: 37486121 DOI: 10.1021/acsnano.3c04449] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dietary pollution by polystyrene microplastics (MPs) can cause hepatic injuries and microbial dysbiosis. Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, exerts beneficial effects on the liver by modulating the gut microbiota. However, the role of microbiota in MPs-induced hepatic injuries and the protective effect of EGCG have not been clarified. Here, 5 μm MPs were orally administered to mice to induce hepatic injuries. Subsequently, antibiotic cocktail (ABX) and fecal microbial transplant (FMT) experiments were performed to investigate the underlying microbial mechanisms. Additionally, EGCG was orally administered to mice to explore its protection against MPs-induced hepatic injuries. Our results showed that MPs activated systemic and hepatic inflammation, promoted fibrosis, and altered the liver metabolome; meanwhile, MPs damaged the gut homeostasis by disturbing the gut microbiome, promoting colonic inflammation, and impairing the intestinal barrier. Notably, MPs reduced the abundance of the probiotics Akkermansia, Mucispirillum, and Faecalibaculum while increasing the pathogenic Tuzzerella. Interestingly, the elimination of gut microbiota mitigated MPs-induced colonic inflammation and intestinal barrier impairment. Moreover, ABX ameliorated MPs-induced systemic and hepatic inflammation but not fibrosis. Correspondingly, microbiota from MPs-administered mice induced colonic, systemic, and hepatic inflammation, while their profibrosis effect on the liver was not observed. Finally, EGCG elevated the abundance of probiotics and effectively repressed MPs-induced colonic inflammation. MPs-induced systemic and hepatic inflammation, fibrosis, and remodeling of the liver metabolome were also attenuated by EGCG. These findings illustrated that gut microbiota contributed to MPs-induced colonic and hepatic injuries, while EGCG could serve as a potential prevention strategy for these adverse consequences.
Collapse
Affiliation(s)
- Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jietao He
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong 528225, China
| | - Dong Qu
- Institute of Legal Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Zheng Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
31
|
Li Y, Pu LY, Li Y, Zhu G, Wu Z. Design, synthesis and evaluation of a myricetin and nobiletin hybrid compound for alleviating hyperuricemia based on metabolomics and gut microbiota. RSC Adv 2023; 13:21448-21458. [PMID: 37465570 PMCID: PMC10351364 DOI: 10.1039/d3ra03188h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023] Open
Abstract
Hyperuricemia (HUA) is the fourth most common basic metabolic disease that can cause damage to multiple organs throughout the body. In this study, a hybrid compound consisting of myricetin and nobiletin was synthesized and its biological activity was evaluated. We named the hybrid compound MNH, and its structure was confirmed by spectroscopy. This study used serum metabolomics profiling with LC/MS and 16S rRNA gene sequencing analysis to explore the anti-HUA efficacy of MNH on a yeast paste-induced mouse model. The results showed that serum uric acid (UA), creatinine (CRE) and urea nitrogen (BUN) levels were significantly decreased after the intervention of MNH. The efficacy of MNH in lowering UA was somewhat greater than that of myricetin and nobiletin. In addition, MNH could repair the renal histopathological damage. Moreover, serum metabolomics demonstrated that MNH regulated the metabolic pathways involved in glycerophospholipid metabolism, arachidonic acid metabolism and alanine etc. Furthermore, MNH supplementation restored the composition of gut microbiota with remarkable reductions in Lactobacillus and Limosilactobacillus and significant elevations in norank_f_Muribaculaceae and Bacteroides at the genus level. Taken together, these results indicated that MNH might represent a protective effect against HUA via modulating gut microbiota and metabolomics.
Collapse
Affiliation(s)
- Yan Li
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen 518035 China
- Wu Zhengzhi Academician Workstation, NingBo College of Health Sciences Ningbo 315800 China
- Shenzhen Institute of Geriatrics Shenzhen 518035 China
| | - Liu-Yang Pu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen 518035 China
- Shenzhen Institute of Geriatrics Shenzhen 518035 China
| | - Yayun Li
- Hunan University of Chinese Medicine Changsha 410208 China
| | - Guanbao Zhu
- Guangxi University of Chinese Medicine Nanning 530200 China
| | - Zhengzhi Wu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital Shenzhen 518035 China
- Wu Zhengzhi Academician Workstation, NingBo College of Health Sciences Ningbo 315800 China
- Shenzhen Institute of Geriatrics Shenzhen 518035 China
| |
Collapse
|
32
|
Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int 2023; 169:112749. [PMID: 37254375 DOI: 10.1016/j.foodres.2023.112749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023]
Abstract
Vitamin C (VC), vitamin E (VE) and β-carotene (βC) are representative dietary antioxidants, which exist in daily diet and can increase the antioxidant capacity of body fluids, cells and tissues. The health benefits of vitamins like VC, VE and βC are widely demonstrated. Given that the strong associations between the gut microbiota and host health or a range of diseases has been extensively reported, it is important to explore the modulatory effects of known vitamins on the gut microbiota. Herein, this article reviews the effects of VC, VE and βC on the gut microbiota. Totally, 19 studies were included, of which eight were related to VC, nine to VE, and six to βC. Overall, VC, VE and βC can provide health benefits to the host by modulating the composition and metabolic activity of the gut microbiota, improving intestinal barrier function and maintaining the normal function of the immune system. Two perspectives are proposed for future studies: i) roles of known antioxidant activity of vitamins in regulating the gut microbiota and its molecular mechanism need to be further studied; ii) causal relationships between the regulatory effects of vitamins on gut microbiota and host health still remains to be further verified.
Collapse
Affiliation(s)
- Xin-Yu Li
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Lei Meng
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China; School of Life Sciences, Ludong University, Yantai, People's Republic of China.
| |
Collapse
|
33
|
Zhang W, Dong X, Huang R. Antiparkinsonian Effects of Polyphenols: A Narrative Review with a Focus on the Modulation of the Gut-brain Axis. Pharmacol Res 2023:106787. [PMID: 37224894 DOI: 10.1016/j.phrs.2023.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Polyphenols, which are naturally occurring bioactive compounds in fruits and vegetables, are emerging as potential therapeutics for neurological disorders such as Parkinson's disease (PD). Polyphenols have diverse biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, and α-synuclein aggregation inhibitory effects, which could ameliorate PD pathogenesis. Studies have shown that polyphenols are capable of regulating the gut microbiota (GM) and its metabolites; in turn, polyphenols are extensively metabolized by the GM, resulting in the generation of bioactive secondary metabolites. These metabolites may regulate various physiological processes, including inflammatory responses, energy metabolism, intercellular communication, and host immunity. With increasing recognition of the importance of the microbiota-gut-brain axis (MGBA) in PD etiology, polyphenols have attracted growing attention as MGBA regulators. In order to address the potential therapeutic role of polyphenolic compounds in PD, we focused on MGBA. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR, China.
| |
Collapse
|
34
|
Huang Y, Wang C, Wang M, Xiong T, Song X, Sun W, Li J. Oroxin B improves metabolic-associated fatty liver disease by alleviating gut microbiota dysbiosis in a high-fat diet-induced rat model. Eur J Pharmacol 2023; 951:175788. [PMID: 37179040 DOI: 10.1016/j.ejphar.2023.175788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become a common chronic liver disease, but there is no FDA-approved drug for MAFLD treatment. Numerous studies have revealed that gut microbiota dysbiosis exerts a crucial effect on MAFLD progression. Oroxin B is a constituent of the traditional Chinese medicine Oroxylum indicum (L.) Kurz. (O. indicum), which has the characteristics of low oral bioavailability but high bioactivity. However, the mechanism through which oroxin B improves MAFLD by restoring the gut microbiota balance remains unclear. To this end, we assessed the anti-MAFLD effect of oroxin B in HFD-fed rats and investigated the underlying mechanism. Our results indicated that oroxin B administration reduced the lipid levels in the plasma and liver and lowered the lipopolysaccharide (LPS), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels in the plasma. Moreover, oroxin B alleviated hepatic inflammation and fibrosis. Mechanistically, oroxin B modulated the gut microbiota structure in HFD-fed rats by increasing the levels of Lactobacillus, Staphylococcus, and Eubacterium and decreasing the levels of Tomitella, Bilophila, Acetanaerobacterium, and Faecalibaculum. Furthermore, oroxin B not only suppressed Toll-like receptor 4-inhibitor kappa B-nuclear factor kappa-B-interleukin 6/tumor necrosis factor-α (TLR4-IκB-NF-κB-IL-6/TNF-α) signal transduction but also strengthened the intestinal barrier by elevating the expression of zonula occludens 1 (ZO-1) and zonula occludens 2 (ZO-2). In summary, these results demonstrate that oroxin B could alleviate hepatic inflammation and MAFLD progression by regulating the gut microbiota balance and strengthening the intestinal barrier. Hence, our study suggests that oroxin B is a promising effective compound for MAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
35
|
Chen J, Liu Y, Wang H, Liang X, Ji S, Wang Y, Li X, Sun C. Polymethoxyflavone-Enriched Fraction from Ougan ( Citrus reticulata cv. Suavissima) Attenuated Diabetes and Modulated Gut Microbiota in Diabetic KK-A y Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6944-6955. [PMID: 37127840 DOI: 10.1021/acs.jafc.2c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diabetes mellitus is a serious, chronic disease worldwide; yet it is largely preventable through physical activity and healthy diets. Ougan (Citrus reticulata cv. Suavissima) is a characteristic citrus variety rich in polymethoxyflavones. In the present study, the anti-diabetic effects of the polymethoxyflavone-enriched fraction from Ougan (OG-PMFs) were investigated. Diabetic KK-Ay mice were supplemented with different doses of OG-PMFs for 5 weeks. Our results demonstrated that OG-PMFs exhibited robust protective effects against diabetes symptoms in KK-Ay mice. The potential mechanisms may partially be attributed to the restoration of hepatic GLUT2 and catalase expression. Notably, OG-PMF administration significantly altered the gut microbiota composition in diabetic KK-Ay, indicated by the suppression of metabolic disease-associated genera Desulfovibrio, Lachnoclostridium, Enterorhabdus, and Ralstonia, implying that the gut microbiota might be another target for OG-PMFs to show effects. Taken together, our results provided a supplementation for the metabolic-protective effects of PMFs and highlighted that OG-PMFs hold great potential to be developed as a functional food ingredient.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Huixin Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Shiyu Ji
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| |
Collapse
|
36
|
Li SZ, Zhang NN, Yang X, Huang TQ, Lin Y, Jiang ZM, Yi Y, Liu EH. Nobiletin Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Gut Microbiota and Myristoleic Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7312-7323. [PMID: 37139957 DOI: 10.1021/acs.jafc.2c08637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Disturbance of the gut microbiota plays a critical role in the development of nonalcoholic fatty liver disease (NAFLD). Increasing evidence supports that natural products may serve as prebiotics to regulate the gut microbiota in the treatment of NAFLD. In the present study, the effect of nobiletin, a naturally occurring polymethoxyflavone, on NAFLD was evaluated, and metabolomics, 16S rRNA gene sequencing, and transcriptomics analysis were performed to determine the underlying mechanism of nobiletin, and the key bacteria and metabolites screened were confirmed by in vivo experiment. Nobiletin treatment could significantly reduce lipid accumulation in high-fat/high-sucrose diet-fed mice. 16S rRNA analysis demonstrated that nobiletin could reverse the dysbiosis of gut microbiota in NAFLD mice and nobiletin could regulate myristoleic acid metabolism, as revealed by untargeted metabolomics analysis. Treatment with the bacteria Allobaculum stercoricanis, Lactobacillus casei, or the metabolite myristoleic acid displayed a protective effect on liver lipid accumulation under metabolic stress. These results indicated that nobiletin might target gut microbiota and myristoleic acid metabolism to ameliorate NAFLD.
Collapse
Affiliation(s)
- Shang-Zhen Li
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing 210003, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ning-Ning Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xing Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Tian-Qing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yongxiang Yi
- The Second Hospital of Nanjing, Affiliated Hospital to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
37
|
Oh KK, Yoon SJ, Lee SB, Lee SY, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Kim DJ, Suk KT. The convergent application of metabolites from Avena sativa and gut microbiota to ameliorate non-alcoholic fatty liver disease: a network pharmacology study. J Transl Med 2023; 21:263. [PMID: 37069607 PMCID: PMC10111676 DOI: 10.1186/s12967-023-04122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang-Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Su-Been Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang Youn Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea.
| |
Collapse
|
38
|
Wang Y, Jia Y, Li S, Li N, Zhou J, Liu J, Yang S, Zhang M, Panichayupakaranant P, Chen H. Gut microbiome-mediated glucose and lipid metabolism mechanism of star apple leaf polyphenol-enriched fraction on metabolic syndrome in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154820. [PMID: 37094426 DOI: 10.1016/j.phymed.2023.154820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Diabetes is a kind of metabolic syndrome (MetS) that seriously threatens human health globally. The leaf of star apple (Chrysophyllum cainito L.) is an incompletely explored folk medicine on diabetes. And, the effects and mechanisms on diabetes complicated glycolipid metabolism disorders are unknown till now. PURPOSE This study aimed to investigate the constituents of star apple leaf polyphenol enriched-fraction (SAP), and elucidate their treatment effects and mechanism on diabetes and accompanied other MetS. METHODS The components of SAP were tentatively identified by HPLC-Q-TOF-MS/MS. The antioxidant activity was determined by the scavenging of free radicals and hypoglycemic activities by inhibition of α-glucosidase in vitro. HepG2 cells were used for evaluating the alleviation effects of SAP on lipid accumulation. Streptozotocin and high-fat diet induced diabetic mice were grouped to evaluate the effects of different dosages of SAP. 16S rRNA was conducted to analysis gut microbiome-mediated glucose and lipid metabolism mechanism. RESULTS It showed that myricitrin was one of the main active constituents of SAP. SAP not only showed low IC50 on -glucosidase (24.427± 0.626 μg/mL), OH·(3.680± 0.054 μg/mL) and ABTS· (9.155±0.234 μg/mL), but significantly induced the lipid accumulation in HepG2 cells (p < 0.05). SAP at 200 mg/kg·day significantly decreased the blood glucose, insulin and oral glucose tolerance test value (p < 0.05). The insulin resistance indexes and oxidative stress were alleviated after administration. SAP not only attenuated hepatic lipid deposition, but also reversed the hepatic glycogen storage. 16S rRNA sequencing results revealed that the interaction between SAP and gut microbiota led to the positive regulation of beneficial bacteria including Akkermansia, Unspecified S24_7, Alistipes and Unspecified_Ruminococcaceae, which might be one of the mechanisms of SAP on MetS. CONCLUSION For the first time, this study explored the regulation effect of star apple leaf polyphenols on the hepatic glycolipid metabolism and studied the underlying mechanism from the view of gut microbiota. These findings indicated that SAP possesses great potential to serve as a complementary medicine for diabetes and associated MetS. It provided scientific evidence for folk complementary medicine on the treatment of diabetes-complicated multiple metabolic disorders.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuyu Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
39
|
A Comprehensive Review on Extraction, Structure, Detection, Bioactivity, and Metabolism of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.). J Food Biochem 2023. [DOI: 10.1155/2023/4839124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is an important plant with homology of medicine and food. It has rich nutritional and medicinal properties. It is used as a traditional Chinese medicine with therapeutic functions of invigorating spleen, relieving cough, eliminating food, eliminating phlegm, dispersing blood stasis, and promoting blood circulation. This review comprehensively summarized flavonoids from sea buckthorn (Hippophae rhamnoides L.), including extraction methods (solvent extraction, ultrasound-assisted extraction, microwave-assisted extraction, enzyme-assisted extraction, and collaborative extraction), two structure types (18 flavone aglycones and 81 flavone glycosides), detection methods (UV, HPLC, and NMR), bioactivities (antiviral, anti-inflammatory, hepatoprotective, weight-reducing, and hypoglycemic activities), and physiological metabolisms (most of flavonoids are converted into small molecule monophenolic acids through intestinal microbial catabolism). It will supply an important theoretical basis and valuable reference for researching and exploiting sea buckthorn (Hippophae rhamnoides L.) in the future. Practical Applications. Sea buckthorn (Hippophae rhamnoides L.) is an edible and medical plant with many functional properties. A comprehensive review on extraction, structure, detection, bioactivity, and metabolism of flavonoids from sea buckthorn (Hippophae rhamnoides L.) was made in this paper. This review will provide an important foundation for further studies of sea buckthorn (Hippophae rhamnoides L.) focusing on its development and utilization.
Collapse
|
40
|
Sharma R, Singh S, Tewari N, Dey P. A toxic shrub turned therapeutic: The dichotomy of Nerium oleander bioactivities. Toxicon 2023; 224:107047. [PMID: 36706925 DOI: 10.1016/j.toxicon.2023.107047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Nerium oleander L. is a medicinal plant, used for the treatment of cancers and hyperglycemia across the world, especially in Indian sub-continent, Turkey, Morocco, and China. Although clinical studies supporting its pharmacological effects remain critically underexplored, accidental and intentional consumption of any part of the plant causes fatal toxicity in animals and humans. While the polyphenolic fraction of oleander leaves has been attributed to its pre-clinical pharmacological activities, the presence of diverse cardiac glycosides (especially oleandrin) causes apoptosis to cancer cells in vitro and results in clinical signs of oleander poisoning. Thus, the dual pharmacological and toxicological role of oleander is a perplexing dichotomy in phytotherapy. The current investigative review, therefore, intended to analyze the intrinsic and extrinsic factors that likely contribute to this conundrum. Especially by focusing on gut microbial diversity, abundance, and metabolic functions, oleander-associated pharmacological and toxicological studies have been critically analyzed to define the dual effects of oleander. Electronic databases were extensively screened for relevant research articles (including pre-clinical and clinical) related to oleander bioactivities and toxicity. Taxonomic preference was given to the plant N. oleander L. and synonymous plants as per 'The World Flora Online' database (WCSP record #135196). Discussion on yellow oleander (Cascabela thevetia (L.) Lippold) has intentionally been avoided since it is a different plant. The review indicates that the gut microbiota likely plays a key role in differentially modulating the pharmacological and toxicological effects of oleander. Other factors identified influencing the oleander bioactivities include dose and mode of treatment, cardiac glycoside pharmacokinetics, host-endogenous glycosides, plant material processing and phytochemical extraction methods, plant genotypic variations, environmental effects on the phytochemical quality and quantity, gene expression variations, host dietary patterns and co-morbidity, etc. The arguments proposed are also relevant to other medicinal plants containing toxic cardiac glycosides.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Swati Singh
- Department of Zoology, University of North Bengal, Siliguri, West Bengal, India.
| | - Nisha Tewari
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
41
|
Parnell LD, Magadmi R, Zwanger S, Shukitt-Hale B, Lai CQ, Ordovás JM. Dietary Responses of Dementia-Related Genes Encoding Metabolic Enzymes. Nutrients 2023; 15:644. [PMID: 36771351 PMCID: PMC9921944 DOI: 10.3390/nu15030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The age-related loss of the cognitive function is a growing concern for global populations. Many factors that determine cognitive resilience or dementia also have metabolic functions. However, this duality is not universally appreciated when the action of that factor occurs in tissues external to the brain. Thus, we examined a set of genes involved in dementia, i.e., those related to vascular dementia, Alzheimer's disease, Parkinson's disease, and the human metabolism for activity in 12 metabolically active tissues. Mining the Genotype-Tissue Expression (GTEx) data showed that most of these metabolism-dementia (MD) genes (62 of 93, 67%) exhibit a higher median expression in any of the metabolically active tissues than in the brain. After identifying that several MD genes served as blood-based biomarkers of longevity in other studies, we examined the impact of the intake of food, nutrients, and other dietary factors on the expression of MD genes in whole blood in the Framingham Offspring Study (n = 2134). We observed positive correlations between flavonoids and HMOX1, taurine and UQCRC1, broccoli and SLC10A2, and myricetin and SLC9A8 (p < 2.09 × 10-4). In contrast, dairy protein, palmitic acid, and pie were negatively correlated, respectively, with the expression of IGF1R, CSF1R, and SLC9A8, among others (p < 2.92 × 10-4). The results of this investigation underscore the potential contributions of metabolic enzyme activity in non-brain tissues to the risk of dementia. Specific epidemiological or intervention studies could be designed using specific foods and nutrients or even dietary patterns focused on these foods and nutrients that influence the expression of some MD genes to verify the findings presented here.
Collapse
Affiliation(s)
- Laurence D Parnell
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Agricultural Research Service, US Department of Agriculture, Boston, MA 02111, USA
| | - Rozana Magadmi
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | | | - Barbara Shukitt-Hale
- Neuroscience and Aging Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Agricultural Research Service, US Department of Agriculture, Boston, MA 02111, USA
| | - Chao-Qiang Lai
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Agricultural Research Service, US Department of Agriculture, Boston, MA 02111, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| |
Collapse
|
42
|
Ying X, Rongjiong Z, Kahaer M, Chunhui J, Wulasihan M. Therapeutic efficacy of liraglutide versus metformin in modulating the gut microbiota for treating type 2 diabetes mellitus complicated with nonalcoholic fatty liver disease. Front Microbiol 2023; 14:1088187. [PMID: 36778868 PMCID: PMC9909237 DOI: 10.3389/fmicb.2023.1088187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Metformin and liraglutide are used in the treatment of type 2 diabetes mellitus (T2DM) complicated with nonalcoholic fatty liver disease (NAFLD). Although these drugs can alter the intestinal microbiome, clinical data are required to explore their mechanisms of action. Using 16S sequencing technology, we analyzed and compared the intestinal bacterial community structure and function between patients before and after treatment (12 weeks) with the two drugs (metformin or liraglutide, n = 15) and healthy controls (n = 15). Moreover, combined with 19 clinical indices, the potential therapeutic mechanisms of the two drugs were compared. The studied clinical indices included those associated with islet β-cell function (FPG, FINS, HbA1c, and HOMA-IR), inflammation (TNF-α, IL-6, and APN), lipid metabolism (TC, TG, and LDL-C), and liver function (ALT, AST, and GGT); the values of all indices changed significantly after treatment (p < 0.01). In addition, the effect of the two drugs on the intestinal bacterial community varied. Liraglutide treatment significantly increased the diversity and richness of the intestinal bacterial community (p < 0.05); it significantly increased the relative abundances of Bacteroidetes, Proteobacteria, and Bacilli, whereas metformin treatment significantly increased the relative abundance of Fusobacteria and Actinobacteria (p < 0.05). Metformin treatment increased the complexity and stability of the intestinal bacterial network. However, liraglutide treatment had a weaker effect on the intestinal bacterial network, and the network after treatment was similar to that in healthy controls. Correlation matrix analysis between dominant genera and clinical indicators showed that the correlation between the bacterial community and islet β-cell function was stronger after liraglutide treatment, whereas the correlation between the bacterial community and inflammation-related factors was stronger after metformin treatment. Functional prediction showed that liraglutide could significantly affect the abundance of functional genes related to T2DM and NAFLD (p < 0.05), but the effect of metformin was not significant. This study is the first to report the changes in the intestinal bacterial community in patients treated with metformin or liraglutide and the differences between the mechanisms of action of metformin and liraglutide. Metformin or liraglutide has a therapeutic value in T2DM complicated with NAFLD, with liraglutide having a weaker effect on the intestinal bacterial community but a better therapeutic efficacy.
Collapse
Affiliation(s)
- Xing Ying
- Department of Comprehensive Internal Medicine Department 4, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zheng Rongjiong
- Department of Infectious Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mayila Kahaer
- Department of Comprehensive Internal Medicine Department 4, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Chunhui
- Department of Comprehensive Internal Medicine Department 4, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Muhuyati Wulasihan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China,*Correspondence: Muhuyati Wulasihan, ✉
| |
Collapse
|
43
|
Qi X, Wang J, Fei F, Gao X, Wu X, Shi D, Guo C. Myricetin-Loaded Nanomicelles Protect against Cisplatin-Induced Acute Kidney Injury by Inhibiting the DNA Damage-cGAS-STING Signaling Pathway. Mol Pharm 2023; 20:136-146. [PMID: 36326450 DOI: 10.1021/acs.molpharmaceut.2c00520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute kidney injury (AKI) is the most common side effect of the anti-cancer drug cisplatin, and currently, no effective preventive measures are available in clinical practice. Oxidative stress and DNA damage mechanisms may be involved in cisplatin-induced AKI. In this study, we prepared Kolliphor HS15-based myricetin-loaded (HS15-Myr) nanomicelles and explored the mechanism of protection against cisplatin-induced AKI. In vitro results showed that the HS15-Myr nanomicelles enhanced the antioxidant activity of myricetin (Myr) and inhibited cisplatin-induced proliferation inhibition of HK-2 cells. Moreover, the HS15-Myr nanomicelles inhibited cisplatin-induced reactive oxygen species accumulation, mitochondrial membrane potential reduction, and DNA damage, which might be related to the inhibition of the cyclic GMP-AMP synthase (cGAS)─stimulating interferon gene (STING) signaling pathway. In vivo results in mice showed that the significant reductions in body weight and renal indices and the increased blood urea nitrogen and serum creatinine levels induced by cisplatin could be significantly reversed by pretreating with the HS15-Myr nanomicelles. Furthermore, nanomicelle pretreatment significantly altered the activities of antioxidant enzymes (e.g., GSH, MDA, and SOD) induced by cisplatin. In addition, cisplatin-induced inflammatory responses in mouse kidney tissue were found to be inhibited by pretreatment with HS15-Myr nanomicelles, such as IL-1β and TNF-α expression. The nanomicelles also significantly inhibited cisplatin-induced activation of the DNA damage-cGAS-STING pathway in kidney tissues. Together, our findings suggest that Myr-loaded nanomicelles are potential nephroprotective drugs.
Collapse
Affiliation(s)
- Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Fengshu Fei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273 Shandong, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273 Shandong, China
| |
Collapse
|
44
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Chen B, Bai Y, Tong F, Yan J, Zhang R, Zhong Y, Tan H, Ma X. Glycoursodeoxycholic acid regulates bile acids level and alters gut microbiota and glycolipid metabolism to attenuate diabetes. Gut Microbes 2023; 15:2192155. [PMID: 36967529 PMCID: PMC10054359 DOI: 10.1080/19490976.2023.2192155] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Accumulating evidence suggests that the bile acid regulates type 2 diabetes mellitus (T2DM) through gut microbiota-host interactions. However, the mechanisms underlying such interactions have been unclear. Here, we found that glycoursodeoxycholic acid (GUDCA) positively regulates gut microbiota by altering bile acid metabolism. GUDCA in mice resulted in higher taurolithocholic acid (TLCA) level and Bacteroides vulgatus abundance. Together, these changes resulted in the activation of the adipose G-protein-coupled bile acid receptor, GPBAR1 (TGR5) and upregulated expression of uncoupling protein UCP-1, resulting in elevation of white adipose tissue thermogenesis. The anti-T2DM effects of GUDCA are linked with the regulation of the bile acid and gut microbiota composition. This study suggests that altering bile acid metabolism, modifying the gut microbiota may be of value for the treatment of T2DM.
Collapse
Affiliation(s)
- Bingting Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
- Nanshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine (Shenzhen Nanshan Hospital of Chinese Medicine), Shenzhen, China
| | - Yu Bai
- The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fenglian Tong
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Junlin Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Rui Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Yewei Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Huiwen Tan
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Xiaoli Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
46
|
Isolation of melanoidins from heat-moisture treated ginseng and its inhibitory effect on choline metabolism. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
47
|
Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem 2023; 399:133959. [DOI: 10.1016/j.foodchem.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
|
48
|
Wen Y, Kong Y, Peng Y, Cui X. Uptake, distribution, and depuration of emerging per- and polyfluoroalkyl substances in mice: Role of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158372. [PMID: 36041619 DOI: 10.1016/j.scitotenv.2022.158372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation and fate in mammals of hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide dimer acid (HFPO-DA), as major alternatives for perfluorooctanoate (PFOA), have rarely been reported. In addition, the role of gut microbiota was greatly understudied. In this study, the uptake, distribution, and depuration of HFPO-TA, HFPO-DA, and PFOA were investigated by exposure to mice for 14 days, followed by a clearance period of 7 days. The patterns of tissue distribution and depuration kinetics of HFPO-TA and PFOA were similar, but different from HFPO-DA. Liver was the main deposition organ for HFPO-TA and PFOA, making contributions of 58.8 % and 59.1 % to the total mass recovered on day 14. Depuration of HFPO-DA was more rapid than HFPO-TA and PFOA. Approximately 95.3 % of HFPO-DA in liver was eliminated on day 21 compared with day 14. While the clearance rates of HPFO-TA and PFOA were only 6.1 % and 13.9 % on day 21. The comparison between normal and pseudo germ-free mice (GM) was also conducted to investigate the effect of gut microbial on in vivo absorption of the three per- and polyfluoroalkyl substances (PFASs). Significantly higher (p < 0.05) concentrations of all the three PFASs were observed in most organs and tissues of GM compared with NC group. An analysis of gut microbiota showed that the higher absorption of PFASs in GM group may be attributed to the increase of intestinal permeability (as indicated by the decrease of tight junction protein expression), which were induced by the change of lachnospiraceae abundance. The result highlighted the importance of gut microbiota in absorption and health risk evaluation of emerging PFASs.
Collapse
Affiliation(s)
- Yong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ying Peng
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
49
|
Li SX, Chen L, Li MQ, Lv GY. Pharmacological agents for defatting livers by normothermic machine perfusion. Artif Organs 2022. [PMID: 36514256 DOI: 10.1111/aor.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ex-vivo normothermic machine perfusion (NMP) preserves the liver metabolism at 37°C and has rapidly developed as a promising approach for assessing the viability and improving the performance of organs from expanded criteria donors, including fatty liver grafts. NMP is an effective method for defatting fatty livers when combined with pharmaceutical therapies. Pharmacological agents have been shown to facilitate liver defatting by NMP. OBSERVATIONS This systematic review summarizes available pharmacological therapies for liver defatting, with a particular emphasis on defatting agents that can be employed clinically as defatting components during liver NMP as an ex vivo translational paradigm. CONCLUSION NMP provides an opportunity for organ treatment and can be used as a defatting platform in the future with defatting agents. Nagrath's cocktail is the most commonly used defatting cocktail in NMP; however, its carcinogenic components may limit its clinical application. Thus, the combination of a defatting cocktail with a new clinically applicable component, for example, a polyphenolic natural compound, may be a novel pharmacological option.
Collapse
Affiliation(s)
- Shu-Xuan Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Lanlan Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Ming-Qian Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| | - Guo-Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Jilin, China
| |
Collapse
|
50
|
Chen S, Zhu H, Luo Y. The gut-mediated function of polyphenols: Opinions on functional foods development for non-alcoholic fatty liver disease. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|