1
|
McAtee C, Patel M, Hoshino D, Sung BH, von Lersner A, Shi M, Hong NH, Young A, Krystofiak E, Zijlstra A, Weaver AM. Secreted exosomes induce filopodia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.20.604139. [PMID: 40161676 PMCID: PMC11952364 DOI: 10.1101/2024.07.20.604139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Filopodia are dynamic adhesive cytoskeletal structures that are critical for directional sensing, polarization, cell-cell adhesion, and migration of diverse cell types. Filopodia are also critical for neuronal synapse formation. While dynamic rearrangement of the actin cytoskeleton is known to be critical for filopodia biogenesis, little is known about the upstream extracellular signals. Here, we identify secreted exosomes as potent regulators of filopodia formation. Inhibition of exosome secretion inhibited the formation and stabilization of filopodia in both cancer cells and neurons and inhibited subsequent synapse formation by neurons. Rescue experiments with purified small and large extracellular vesicles (EVs) identified exosome-enriched small EVs (SEVs) as having potent filopodia-inducing activity. Proteomic analyses of cancer cell-derived SEVs identified the TGF-β family coreceptor endoglin as a key SEV-enriched cargo that regulates filopodia. Cancer cell endoglin levels also affected filopodia-dependent behaviors, including metastasis of cancer cells in chick embryos and 3D migration in collagen gels. As neurons do not express endoglin, we performed a second proteomics experiment to identify SEV cargoes regulated by endoglin that might promote filopodia in both cell types. We discovered a single SEV cargo that was altered in endoglin-KD cancer SEVs, the transmembrane protein Thrombospondin Type 1 Domain Containing 7A (THSD7A). We further found that both cancer cell and neuronal SEVs carry THSD7A and that add-back of purified THSD7A is sufficient to rescue filopodia defects of both endoglin-KD cancer cells and exosome-inhibited neurons. We also find that THSD7A induces filopodia formation through activation of the Rho GTPase, Cdc42. These findings suggest a new model for filopodia formation, triggered by exosomes carrying THSD7A.
Collapse
Affiliation(s)
- Caitlin McAtee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Mikin Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | | | - Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Ariana von Lersner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Mingjian Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - Nan Hyung Hong
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Anna Young
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource EM Facility, Vanderbilt University, Nashville, Tennessee, USA
| | - Andries Zijlstra
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
2
|
Jaudon F, Cingolani LA. Unlocking mechanosensitivity: integrins in neural adaptation. Trends Cell Biol 2024; 34:1029-1043. [PMID: 38514304 DOI: 10.1016/j.tcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Mechanosensitivity extends beyond sensory cells to encompass most neurons in the brain. Here, we explore recent research on the role of integrins, a diverse family of adhesion molecules, as crucial biomechanical sensors translating mechanical forces into biochemical and electrical signals in the brain. The varied biomechanical properties of neuronal integrins, including their force-dependent conformational states and ligand interactions, dictate their specific functions. We discuss new findings on how integrins regulate filopodia and dendritic spines, shedding light on their contributions to synaptic plasticity, and explore recent discoveries on how they engage with metabotropic receptors and ion channels, highlighting their direct participation in electromechanical transduction. Finally, to facilitate a deeper understanding of these developments, we present molecular and biophysical models of mechanotransduction.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy.
| |
Collapse
|
3
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
4
|
Shangguan J, Rock RS. Hundreds of myosin 10s are pushed to the tips of filopodia and could cause traffic jams on actin. eLife 2024; 12:RP90603. [PMID: 39480891 PMCID: PMC11527427 DOI: 10.7554/elife.90603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.
Collapse
Affiliation(s)
- Julia Shangguan
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| |
Collapse
|
5
|
Wang X, Baster Z, Azizi L, Li L, Rajfur Z, Hytönen VP, Huang C. Talin2 binds to non-muscle myosin IIa and regulates cell attachment and fibronectin secretion. Sci Rep 2024; 14:20175. [PMID: 39215026 PMCID: PMC11364542 DOI: 10.1038/s41598-024-70866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Talin2 is localized to large focal adhesions and is indispensable for traction force generation, invadopodium formation, cell invasion as well as metastasis. Talin2 has a higher affinity toward β-integrin tails than talin1. Moreover, disruption of the talin2-β-integrin interaction inhibits traction force generation, invadopodium formation and cell invasion, indicating that a strong talin2-β-integrin interaction is required for talin2 to fulfill these functions. Nevertheless, the role of talin2 in mediation of these processes remains unknown. Here we show that talin2 binds to the N-terminus of non-muscle myosin IIA (NMIIA) through its F3 subdomain. Moreover, talin2 co-localizes with NMIIA at cell edges as well as at some cytoplasmic spots. Talin2 also co-localizes with cortactin, an invadopodium marker. Furthermore, overexpression of NMIIA promoted the talin2 head binding to the β1-integrin tail, whereas knockdown of NMIIA reduced fibronectin and matrix metalloproteinase secretion as well as inhibited cell attachment on fibronectin-coated substrates. These results suggest that talin2 binds to NMIIA to control the secretion of extracellular matrix proteins and this interaction modulates cell adhesion.
Collapse
Affiliation(s)
- Xiaochuan Wang
- The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| | - Zbigniew Baster
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Liqing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Cai Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA.
- Doer Biologics Inc, 2nd Floor, Building 3, Hexiang Science and Technology Center, Medicine Port Town, Qiantang District, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
6
|
Brockhaus K, Hemsen I, Jauch-Speer SL, Niland S, Vogl T, Eble JA. Integrin α2 is an early marker for osteoclast differentiation that contributes to key steps in osteoclastogenesis. Front Cell Dev Biol 2024; 12:1448725. [PMID: 39220682 PMCID: PMC11363192 DOI: 10.3389/fcell.2024.1448725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Osteoclasts determine bone tissue turnover. Their increased activity causes osteoporosis, their dysfunction osteopetrosis. Methods and Results Murine monocytic ER-Hoxb8 cells differentiate into OCs upon treatment with M-CSF and RANKL and upregulate the collagen-binding integrin α2β1 distinctly earlier than other OC markers, such as the OC-associated receptor, OSCAR. Integrin α2β1 promotes OC differentiation at multiple levels by stimulating differentiation-relevant genes, by regulating cell matrix adhesion and the formation of adhesion-promoting protrusions, and by the upregulation of proteins involved in precursor cell fusion. The two key factors in osteoclastogenesis, RANK and NFATc1, were essentially unaffected after knocking out the ITGA2 gene encoding integrin α2 subunit. However, compared to integrin α2β1 expressing ER-Hoxb8 cells, ITGA2-deficient cells adhered differently with more branched filopodia and significantly longer tunneling nanotubes. Despite the higher number of fusion-relevant TNTs, they form fewer syncytia. They also resorb less hydroxyapatite, because integrin α2β1 regulates expression of lacuna proteins necessary for bone matrix resorption. The impaired syncytia formation of ITGA2-deficient OC precursor cells also correlated with reduced gene activation of fusion-supporting DC-STAMP and with an almost abolished transcription of tetraspanin CD9. CD9 only partially colocalized with integrin α2β1 in TNTs and filopodia of integrin α2β1-expressing OC precursors. Discussion Our findings define integrin α2β1 as an early marker of OC differentiation.
Collapse
Affiliation(s)
- Katrin Brockhaus
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Isabel Hemsen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Shangguan J, Rock RS. Hundreds of myosin 10s are pushed to the tips of filopodia and could cause traffic jams on actin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546598. [PMID: 37425746 PMCID: PMC10327019 DOI: 10.1101/2023.06.26.546598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.
Collapse
Affiliation(s)
- Julia Shangguan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Gómez-de-Mariscal E, Grobe H, Pylvänäinen JW, Xénard L, Henriques R, Tinevez JY, Jacquemet G. CellTracksColab is a platform that enables compilation, analysis, and exploration of cell tracking data. PLoS Biol 2024; 22:e3002740. [PMID: 39116189 PMCID: PMC11335138 DOI: 10.1371/journal.pbio.3002740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In life sciences, tracking objects from movies enables researchers to quantify the behavior of single particles, organelles, bacteria, cells, and even whole animals. While numerous tools now allow automated tracking from video, a significant challenge persists in compiling, analyzing, and exploring the large datasets generated by these approaches. Here, we introduce CellTracksColab, a platform tailored to simplify the exploration and analysis of cell tracking data. CellTracksColab facilitates the compiling and analysis of results across multiple fields of view, conditions, and repeats, ensuring a holistic dataset overview. CellTracksColab also harnesses the power of high-dimensional data reduction and clustering, enabling researchers to identify distinct behavioral patterns and trends without bias. Finally, CellTracksColab also includes specialized analysis modules enabling spatial analyses (clustering, proximity to specific regions of interest). We demonstrate CellTracksColab capabilities with 3 use cases, including T cells and cancer cell migration, as well as filopodia dynamics. CellTracksColab is available for the broader scientific community at https://github.com/CellMigrationLab/CellTracksColab.
Collapse
Affiliation(s)
| | - Hanna Grobe
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Joanna W. Pylvänäinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura Xénard
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
- Institut Pasteur, Université Paris Cité, INSERM UMR1225, Pathogenesis of Vascular Infections, Paris, France
| | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- UCL Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, Paris, France
| | - Guillaume Jacquemet
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
9
|
Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, Zhou B, Guo S, Fang W. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed Pharmacother 2024; 171:116118. [PMID: 38181716 DOI: 10.1016/j.biopha.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.
Collapse
Affiliation(s)
- Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology hospital, Shenzhen 518000, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Yinhao Wen
- Department of Oncology, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou 510315, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; The People's Hospital of Gaozhou, Gaozhou 525200, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
10
|
Yim YI, Pedrosa A, Wu X, Chinthalapudi K, Cheney RE, Hammer JA. Mechanisms underlying Myosin 10's contribution to the maintenance of mitotic spindle bipolarity. Mol Biol Cell 2024; 35:ar14. [PMID: 38019611 PMCID: PMC10881153 DOI: 10.1091/mbc.e23-07-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Myosin 10 (Myo10) couples microtubules and integrin-based adhesions to movement along actin filaments via its microtubule-binding MyTH4 domain and integrin-binding FERM domain, respectively. Here we show that Myo10-depleted HeLa cells and mouse embryo fibroblasts (MEFs) both exhibit a pronounced increase in the frequency of multipolar spindles. Staining of unsynchronized metaphase cells showed that the primary driver of spindle multipolarity in Myo10-depleted MEFs and in Myo10-depleted HeLa cells lacking supernumerary centrosomes is pericentriolar material (PCM) fragmentation, which creates y-tubulin-positive acentriolar foci that serve as extra spindle poles. For HeLa cells possessing supernumerary centrosomes, Myo10 depletion further accentuates spindle multipolarity by impairing the clustering of the extra spindle poles. Complementation experiments show that Myo10 must interact with both microtubules and integrins to promote PCM/pole integrity. Conversely, Myo10 only needs interact with integrins to promote supernumerary centrosome clustering. Importantly, images of metaphase Halo-Myo10 knockin cells show that the myosin localizes exclusively to the spindle and the tips of adhesive retraction fibers. We conclude that Myo10 promotes PCM/pole integrity in part by interacting with spindle microtubules, and that it promotes supernumerary centrosome clustering by supporting retraction fiber-based cell adhesion, which likely serves to anchor the microtubule-based forces driving pole focusing.
Collapse
Affiliation(s)
- Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Antonio Pedrosa
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Chen X, Arciola JM, Lee YI, Wong PHP, Yin H, Tao Q, Jin Y, Qin X, Sweeney HL, Park H. Myo10 tail is crucial for promoting long filopodia. J Biol Chem 2024; 300:105523. [PMID: 38043799 PMCID: PMC10790087 DOI: 10.1016/j.jbc.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
Filopodia are slender cellular protrusions containing parallel actin bundles involved in environmental sensing and signaling, cell adhesion and migration, and growth cone guidance and extension. Myosin 10 (Myo10), an unconventional actin-based motor protein, was reported to induce filopodial initiation with its motor domain. However, the roles of the multifunctional tail domain of Myo10 in filopodial formation and elongation remain elusive. Herein, we generated several constructs of Myo10-full-length Myo10, Myo10 with a truncated tail (Myo10 HMM), and Myo10 containing four mutations to disrupt its coiled-coil domain (Myo10 CC mutant). We found that the truncation of the tail domain decreased filopodial formation and filopodial length, while four mutations in the coiled-coil domain disrupted the motion of Myo10 toward filopodial tips and the elongation of filopodia. Furthermore, we found that filopodia elongated through multiple elongation cycles, which was supported by the Myo10 tail. These findings suggest that Myo10 tail is crucial for promoting long filopodia.
Collapse
Affiliation(s)
- Xingxiang Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | | - Young Il Lee
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, USA
| | - Pak Hung Philip Wong
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Haoran Yin
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Quanqing Tao
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Yuqi Jin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xianan Qin
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, USA; Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Suarez C, Winkelman JD, Harker AJ, Ye HJ, McCall PM, Morganthaler AN, Gardel ML, Kovar DR. Reconstitution of the transition from a lamellipodia- to filopodia-like actin network with purified proteins. Eur J Cell Biol 2023; 102:151367. [PMID: 37890285 DOI: 10.1016/j.ejcb.2023.151367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
How cells utilize complex mixtures of actin binding proteins to assemble and maintain functionally diverse actin filament networks with distinct architectures and dynamics within a common cytoplasm is a longstanding question in cell biology. A compelling example of complex and specialized actin structures in cells are filopodia which sense extracellular chemical and mechanical signals to help steer motile cells. Filopodia have distinct actin architecture, composed of long, parallel actin filaments bundled by fascin, which form finger-like membrane protrusions. Elongation of the parallel actin filaments in filopodia can be mediated by two processive actin filament elongation factors, formin and Ena/VASP, which localize to the tips of filopodia. There remains debate as to how the architecture of filopodia are generated, with one hypothesis proposing that filopodia are generated from the lamellipodia, which consists of densely packed, branched actin filaments nucleated by Arp2/3 complex and kept short by capping protein. It remains unclear if different actin filament elongation factors are necessary and sufficient to facilitate the emergence of filopodia with diverse characteristics from a highly dense network of short-branched capped filaments. To address this question, we combined bead motility and micropatterning biomimetic assays with multi-color Total Internal Reflection Fluorescence microscopy imaging, to successfully reconstitute the formation of filopodia-like networks (FLN) from densely-branched lamellipodia-like networks (LLN) with eight purified proteins (actin, profilin, Arp2/3 complex, Wasp pWA, fascin, capping protein, VASP and formin mDia2). Saturating capping protein concentrations inhibit FLN assembly, but the addition of either formin or Ena/VASP differentially rescues the formation of FLN from LLN. Specifically, we found that formin/mDia2-generated FLNs are relatively long and lack capping protein, whereas VASP-generated FLNs are comparatively short and contain capping protein, indicating that the actin elongation factor can affect the architecture and composition of FLN emerging from LLN. Our biomimetic reconstitution systems reveal that formin or VASP are necessary and sufficient to induce the transition from a LLN to a FLN, and establish robust in vitro platforms to investigate FLN assembly mechanisms.
Collapse
Affiliation(s)
- Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan D Winkelman
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alyssa J Harker
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J Ye
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Patrick M McCall
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Alisha N Morganthaler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
Belian S, Korenkova O, Zurzolo C. Actin-based protrusions at a glance. J Cell Sci 2023; 136:jcs261156. [PMID: 37987375 DOI: 10.1242/jcs.261156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Actin-based protrusions are at the base of many fundamental cellular processes, such as cell adhesion, migration and intercellular communication. In recent decades, the discovery of new types of actin-based protrusions with unique functions has enriched our comprehension of cellular processes. However, as the repertoire of protrusions continues to expand, the rationale behind the classification of newly identified and previously known structures becomes unclear. Although current nomenclature allows good categorization of protrusions based on their functions, it struggles to distinguish them when it comes to structure, composition or formation mechanisms. In this Cell Science at a Glance article, we discuss the different types of actin-based protrusions, focusing on filopodia, cytonemes and tunneling nanotubes, to help better distinguish and categorize them based on their structural and functional differences and similarities.
Collapse
Affiliation(s)
- Sevan Belian
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, F-75015 Paris, France
- Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Olga Korenkova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, F-75015 Paris, France
- Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, F-75015 Paris, France
| |
Collapse
|
14
|
Li W, Chung WL, Kozlov MM, Medalia O, Geiger B, Bershadsky AD. Chiral growth of adherent filopodia. Biophys J 2023; 122:3704-3721. [PMID: 37301982 PMCID: PMC10541518 DOI: 10.1016/j.bpj.2023.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Adherent filopodia are elongated finger-like membrane protrusions, extending from the edges of diverse cell types and participating in cell adhesion, spreading, migration, and environmental sensing. The formation and elongation of filopodia are driven by the polymerization of parallel actin filaments, comprising the filopodia cytoskeletal core. Here, we report that adherent filopodia, formed during the spreading of cultured cells on galectin-8-coated substrates, tend to change the direction of their extension in a chiral fashion, acquiring a left-bent shape. Cryoelectron tomography examination indicated that turning of the filopodia tip to the left is accompanied by the displacement of the actin core bundle to the right of the filopodia midline. Reduction of the adhesion to galectin-8 by treatment with thiodigalactoside abolished this filopodia chirality. By modulating the expression of a variety of actin-associated filopodia proteins, we identified myosin-X and formin DAAM1 as major filopodia chirality promoting factors. Formin mDia1, actin filament elongation factor VASP, and actin filament cross-linker fascin were also shown to be involved. Thus, the simple actin cytoskeleton of filopodia, together with a small number of associated proteins are sufficient to drive a complex navigation process, manifested by the development of left-right asymmetry in these cellular protrusions.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Alexander D Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Yim YI, Pedrosa A, Wu X, Chinthalapudi K, Cheney RE, Hammer JA. Myosin 10 uses its MyTH4 and FERM domains differentially to support two aspects of spindle pole biology required for mitotic spindle bipolarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545002. [PMID: 37398378 PMCID: PMC10312724 DOI: 10.1101/2023.06.15.545002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myosin 10 (Myo10) has the ability to link actin filaments to integrin-based adhesions and to microtubules by virtue of its integrin-binding FERM domain and microtubule-binding MyTH4 domain, respectively. Here we used Myo10 knockout cells to define Myo10's contribution to the maintenance of spindle bipolarity, and complementation to quantitate the relative contributions of its MyTH4 and FERM domains. Myo10 knockout HeLa cells and mouse embryo fibroblasts (MEFs) both exhibit a pronounced increase in the frequency of multipolar spindles. Staining of unsynchronized metaphase cells showed that the primary driver of spindle multipolarity in knockout MEFs and knockout HeLa cells lacking supernumerary centrosomes is pericentriolar material (PCM) fragmentation, which creates γ-tubulin-positive acentriolar foci that serve as additional spindle poles. For HeLa cells possessing supernumerary centrosomes, Myo10 depletion further accentuates spindle multipolarity by impairing the clustering of the extra spindle poles. Complementation experiments show that Myo10 must interact with both integrins and microtubules to promote PCM/pole integrity. Conversely, Myo10's ability to promote the clustering of supernumerary centrosomes only requires that it interact with integrins. Importantly, images of Halo-Myo10 knock-in cells show that the myosin localizes exclusively within adhesive retraction fibers during mitosis. Based on these and other results, we conclude that Myo10 promotes PCM/pole integrity at a distance, and that it facilitates supernumerary centrosome clustering by promoting retraction fiber-based cell adhesion, which likely provides an anchor for the microtubule-based forces driving pole focusing.
Collapse
Affiliation(s)
- Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Antonio Pedrosa
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xufeng Wu
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH
| | - Richard E. Cheney
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Ravid Y, Penič S, Mimori-Kiyosue Y, Suetsugu S, Iglič A, Gov NS. Theoretical model of membrane protrusions driven by curved active proteins. Front Mol Biosci 2023; 10:1153420. [PMID: 37228585 PMCID: PMC10203436 DOI: 10.3389/fmolb.2023.1153420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Eukaryotic cells intrinsically change their shape, by changing the composition of their membrane and by restructuring their underlying cytoskeleton. We present here further studies and extensions of a minimal physical model, describing a closed vesicle with mobile curved membrane protein complexes. The cytoskeletal forces describe the protrusive force due to actin polymerization which is recruited to the membrane by the curved protein complexes. We characterize the phase diagrams of this model, as function of the magnitude of the active forces, nearest-neighbor protein interactions and the proteins' spontaneous curvature. It was previously shown that this model can explain the formation of lamellipodia-like flat protrusions, and here we explore the regimes where the model can also give rise to filopodia-like tubular protrusions. We extend the simulation with curved components of both convex and concave species, where we find the formation of complex ruffled clusters, as well as internalized invaginations that resemble the process of endocytosis and macropinocytosis. We alter the force model representing the cytoskeleton to simulate the effects of bundled instead of branched structure, resulting in shapes which resemble filopodia.
Collapse
Affiliation(s)
- Yoav Ravid
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samo Penič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Minatojima-minaminachi, Kobe, Hyogo, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Bachmann M, Su B, Rahikainen R, Hytönen VP, Wu J, Wehrle-Haller B. ConFERMing the role of talin in integrin activation and mechanosignaling. J Cell Sci 2023; 136:jcs260576. [PMID: 37078342 PMCID: PMC10198623 DOI: 10.1242/jcs.260576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Talin (herein referring to the talin-1 form), is a cytoskeletal adapter protein that binds integrin receptors and F-actin, and is a key factor in the formation and regulation of integrin-dependent cell-matrix adhesions. Talin forms the mechanical link between the cytoplasmic domain of integrins and the actin cytoskeleton. Through this linkage, talin is at the origin of mechanosignaling occurring at the plasma membrane-cytoskeleton interface. Despite its central position, talin is not able to fulfill its tasks alone, but requires help from kindlin and paxillin to detect and transform the mechanical tension along the integrin-talin-F-actin axis into intracellular signaling. The talin head forms a classical FERM domain, which is required to bind and regulate the conformation of the integrin receptor, as well as to induce intracellular force sensing. The FERM domain allows the strategic positioning of protein-protein and protein-lipid interfaces, including the membrane-binding and integrin affinity-regulating F1 loop, as well as the interaction with lipid-anchored Rap1 (Rap1a and Rap1b in mammals) GTPase. Here, we summarize the structural and regulatory features of talin and explain how it regulates cell adhesion and force transmission, as well as intracellular signaling at integrin-containing cell-matrix attachment sites.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | - Baihao Su
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere University, FI-33520 Tampere, Finland
- Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| |
Collapse
|
18
|
Popović A, Miihkinen M, Ghimire S, Saup R, Grönloh MLB, Ball NJ, Goult BT, Ivaska J, Jacquemet G. Myosin-X recruits lamellipodin to filopodia tips. J Cell Sci 2023; 136:293507. [PMID: 36861887 PMCID: PMC10022686 DOI: 10.1242/jcs.260574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Myosin-X (MYO10), a molecular motor localizing to filopodia, is thought to transport various cargo to filopodia tips, modulating filopodia function. However, only a few MYO10 cargoes have been described. Here, using GFP-Trap and BioID approaches combined with mass spectrometry, we identified lamellipodin (RAPH1) as a novel MYO10 cargo. We report that the FERM domain of MYO10 is required for RAPH1 localization and accumulation at filopodia tips. Previous studies have mapped the RAPH1 interaction domain for adhesome components to its talin-binding and Ras-association domains. Surprisingly, we find that the RAPH1 MYO10-binding site is not within these domains. Instead, it comprises a conserved helix located just after the RAPH1 pleckstrin homology domain with previously unknown functions. Functionally, RAPH1 supports MYO10 filopodia formation and stability but is not required to activate integrins at filopodia tips. Taken together, our data indicate a feed-forward mechanism whereby MYO10 filopodia are positively regulated by MYO10-mediated transport of RAPH1 to the filopodium tip.
Collapse
Affiliation(s)
- Ana Popović
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Mitro Miihkinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Sujan Ghimire
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Rafael Saup
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Max L B Grönloh
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Neil J Ball
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Department of Life Technologies, University of Turku, 20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Western Finnish Cancer Center (FICAN West), University of Turku, 20520 Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Turku Bioimaging, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
19
|
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol 2023; 24:142-161. [PMID: 36168065 PMCID: PMC9892292 DOI: 10.1038/s41580-022-00531-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Hong X, Song K, Rahman MU, Wei T, Zhang Y, Da LT, Chen HF. Phosphorylation Regulation Mechanism of β2 Integrin for the Binding of Filamin Revealed by Markov State Model. J Chem Inf Model 2023; 63:605-618. [PMID: 36607244 DOI: 10.1021/acs.jcim.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leukocyte adhesion deficiency-1 (LAD-1) disorder is a severe immunodeficiency syndrome caused by deficiency or mutation of β2 integrin. The phosphorylation on threonine 758 of β2 integrin acts as a molecular switch inhibiting the binding of filamin. However, the switch mechanism of site-specific phosphorylation at the atom level is still poorly understood. To resolve the regulation mechanism, all-atom molecular dynamics simulation and Markov state model were used to study the dynamic regulation pathway of phosphorylation. Wild type system possessed lower binding free energy and fewer number of states than the phosphorylated system. Both systems underwent local disorder-to-order conformation conversion when achieving steady states. To reach steady states, wild type adopted less number of transition paths/shortest path according to the transition path theory than the phosphorylated system. The underlying phosphorylated regulation pathway was from P1 to P0 and then P4 state, and the main driving force should be hydrogen bond and hydrophobic interaction disturbing the secondary structure of phosphorylated states. These studies will shed light on the pathogenesis of LAD-1 disease and lay a foundation for drug development.
Collapse
Affiliation(s)
- Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Kaiyuan Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Ting Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Lin-Tai Da
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
- Shanghai Center for Bioinformation Technology, Shanghai200240, China
| |
Collapse
|
21
|
Abstract
Filopodia are fingerlike membrane protrusions extended by cells to sense their environment. Filopodia are widely used by migrating cells in vivo and directly contribute to several physiological processes and diseases. Due to the essential roles of filopodia in sensing the extracellular environment, there is a need to characterize their composition and ultrastructure further. This chapter highlights FiloMap, an image analysis pipeline that utilizes Fiji and R to map the localization of proteins within filopodia from microscopy images. I provide step-by-step protocols on (a) setting up FiloMap in Fiji and R, (b) extracting line intensity profiles from filopodia stainings in Fiji, (c) further analyzing line intensity profiles in R, and (d) creating filopodia maps to compare the localization of multiple proteins within filopodia. Notably, while FiloMap was written to analyze filopodia, the analysis pipeline described here can also analyze and compile any line intensity profiles.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland. .,Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland. .,InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
22
|
Tu Y, Pal K, Austin J, Wang X. Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging. Curr Biol 2022; 32:4386-4396.e3. [PMID: 36084647 PMCID: PMC9613586 DOI: 10.1016/j.cub.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 μm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.
Collapse
Affiliation(s)
- Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Jacob Austin
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
23
|
Peuhu E, Jacquemet G, Scheele CL, Isomursu A, Laisne MC, Koskinen LM, Paatero I, Thol K, Georgiadou M, Guzmán C, Koskinen S, Laiho A, Elo LL, Boström P, Hartiala P, van Rheenen J, Ivaska J. MYO10-filopodia support basement membranes at pre-invasive tumor boundaries. Dev Cell 2022; 57:2350-2364.e7. [DOI: 10.1016/j.devcel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
|
24
|
Michiels R, Gensch N, Erhard B, Rohrbach A. Pulling, failing, and adaptive mechanotransduction of macrophage filopodia. Biophys J 2022; 121:3224-3241. [PMID: 35927956 PMCID: PMC9463700 DOI: 10.1016/j.bpj.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Macrophages use filopodia to withdraw particles toward the cell body for phagocytosis. This can require substantial forces, which the cell generates after bio-mechanical stimuli are transmitted to the filopodium. Adaptation mechanisms to mechanical stimuli are essential for cells, but can a cell iteratively improve filopodia pulling? If so, the underlying mechanic adaptation principles organized on the protein level are unclear. Here, we tackle this problem using optically trapped 1 μm beads, which we tracked interferometrically at 1 MHz during connection to the tips of dorsal filopodia of macrophages. We observe repetitive failures while the filopodium tries to pull the bead out of the optical trap. Analyses of mean bead motions and position fluctuations on the nano-meter and microsecond scale indicate mechanical ruptures caused by a force-dependent actin-membrane connection. We found that beads are retracted three times slower under any load between 5 and 40 pN relative to the no-load transport, which has the same speed as the actin retrograde flow obtained from fluorescent speckle tracking. From this duty ratio of pulling velocities, we estimated a continuous on/off binding with τoff = 2⋅τon, with measured off times τoff = 0.1-0.5 s. Remarkably, we see a gradual increase of filopodia pulling forces from 10 to 30 pN over time and after failures, which points toward an unknown adaptation mechanism. Additionally, we see that the attachment strength and friction between the bead and filopodium tip increases under load and over time. All observations are typical for catch-bond proteins such as integrin-talin complexes. We present a mechanistic picture of adaptive mechanotransduction, which formed by the help of mathematical models for repetitive tip ruptures and reconnections. The analytic mathematical model and the stochastic computer simulations, both based on catch-bond lifetimes, confirmed our measurements. Such catch-bond characteristics could also be important for other immune cells taking up counteracting pathogens.
Collapse
Affiliation(s)
- Rebecca Michiels
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Nicole Gensch
- Core Facility Signalling Factory, University of Freiburg, Freiburg, Germany
| | - Birgit Erhard
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; CIBSS, Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| |
Collapse
|
25
|
Heckman CA, Ademuyiwa OM, Cayer ML. How filopodia respond to calcium in the absence of a calcium-binding structural protein: non-channel functions of TRP. Cell Commun Signal 2022; 20:130. [PMID: 36028898 PMCID: PMC9414478 DOI: 10.1186/s12964-022-00927-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background For many cell types, directional locomotion depends on their maintaining filopodia at the leading edge. Filopodia lack any Ca2+-binding structural protein but respond to store-operated Ca2+ entry (SOCE). Methods SOCE was induced by first replacing the medium with Ca2+-free salt solution with cyclopiazonic acid (CPA). This lowers Ca2+ in the ER and causes stromal interacting molecule (STIM) to be translocated to the cell surface. After this priming step, CPA was washed out, and Ca2+ influx restored by addition of extracellular Ca2+. Intracellular Ca2+ levels were measured by calcium orange fluorescence. Regulatory mechanisms were identified by pharmacological treatments. Proteins mediating SOCE were localized by immunofluorescence and analyzed after image processing. Results Depletion of the ER Ca2+ increased filopodia prevalence briefly, followed by a spontaneous decline that was blocked by inhibitors of endocytosis. Intracellular Ca2+ increased continuously for ~ 50 min. STIM and a transient receptor potential canonical (TRPC) protein were found in separate compartments, but an aquaporin unrelated to SOCE was present in both. STIM1- and TRPC1-bearing vesicles were trafficked on microtubules. During depletion, STIM1 migrated to the surface where it coincided with Orai in punctae, as expected. TRPC1 was partially colocalized with Vamp2, a rapidly releasable pool marker, and with phospholipases (PLCs). TRPC1 retreated to internal compartments during ER depletion. Replenishment of extracellular Ca2+ altered the STIM1 distribution, which came to resemble that of untreated cells. Vamp2 and TRPC1 underwent exocytosis and became homogeneously distributed on the cell surface. This was accompanied by an increased prevalence of filopodia, which was blocked by inhibitors of TRPC1/4/5 and endocytosis. Conclusions Because the media were devoid of ligands that activate receptors during depletion and Ca2+ replenishment, we could attribute filopodia extension to SOCE. We propose that the Orai current stimulates exocytosis of TRPC-bearing vesicles, and that Ca2+ influx through TRPC inhibits PLC activity. This allows regeneration of the substrate, phosphatidylinositol 4,5 bisphosphate (PIP2), a platform for assembling proteins, e. g. Enabled and IRSp53. TRPC contact with PLC is required but is broken by TRPC dissemination. This explains how STIM1 regulates the cell’s ability to orient itself in response to attractive or repulsive cues. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00927-y.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA.
| | - O M Ademuyiwa
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA
| | - M L Cayer
- Center for Microscopy and Microanalysis, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
26
|
Ou H, Wang L, Xi Z, Shen H, Jiang Y, Zhou F, Liu Y, Zhou Y. MYO10 contributes to the malignant phenotypes of colorectal cancer via RACK1 by activating integrin/Src/FAK signaling. Cancer Sci 2022; 113:3838-3851. [PMID: 35912545 DOI: 10.1111/cas.15519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Liver metastases still remain a major cause of colorectal cancer (CRC) patient death. MYO10 is upregulated in several tumor types, however, its significance and the underlying mechanism in CRC is not entirely clear. Here we found that MYO10 was highly expressed in CRC tumor tissues, especially in liver metastasis tissues. MYO10 knockout reduced CRC cell proliferation, invasion, and migration in vitro, and CRC metastasis in vivo. We identified RACK1 by LC-MS/MS and demonstrated that MYO10 interacts with and stabilizes RACK1. Mechanistically, MYO10 promotes CRC cell progression and metastasis via ubiquitination-mediated RACK1 degradation and integrin/Src/FAK signaling activation. Therefore, the MYO10/RACK1/integrin/Src/FAK axis may play an important role in CRC progression and metastasis.
Collapse
Affiliation(s)
- Haibin Ou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lili Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ziyao Xi
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Shen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yaofei Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Adherens junctions stimulate and spatially guide integrin activation and extracellular matrix deposition. Cell Rep 2022; 40:111091. [PMID: 35858563 DOI: 10.1016/j.celrep.2022.111091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Cadherins and integrins are intrinsically linked through the actin cytoskeleton and are largely responsible for the mechanical integrity and organization of tissues. We show that cadherin clustering stimulates and spatially guides integrin activation. Adherens junction (AJ)-associated integrin activation depends on locally generated tension and does not require extracellular matrix ligands. It leads to the creation of primed integrin clusters, which spatially determine where focal adhesions will form if ligands are present and where ligands will be deposited. AJs that display integrin activation are targeted by microtubules facilitating their disassembly via caveolin-based endocytosis, showing that integrin activation impacts the stability of the core cadherin complex. Thus, the interplay between cadherins and integrins is more intimate than what was once believed and is rooted in the capacity of active integrins to be stabilized via AJ-generated tension. Altogether, our data establish a mechanism of cross-regulation between cadherins and integrins.
Collapse
|
28
|
Moura AA, Bezerra MJB, Martins AMA, Borges DP, Oliveira RTG, Oliveira RM, Farias KM, Viana AG, Carvalho GGC, Paier CRK, Sousa MV, Fontes W, Ricart CAO, Moraes MEA, Magalhães SMM, Furtado CLM, Moraes-Filho MO, Pessoa C, Pinheiro RF. Global Proteomics Analysis of Bone Marrow: Establishing Talin-1 and Centrosomal Protein of 55 kDa as Potential Molecular Signatures for Myelodysplastic Syndromes. Front Oncol 2022; 12:833068. [PMID: 35814389 PMCID: PMC9257025 DOI: 10.3389/fonc.2022.833068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a hematological disorder characterized by abnormal stem cell differentiation and a high risk of acute myeloid leukemia transformation. Treatment options for MDS are still limited, making the identification of molecular signatures for MDS progression a vital task. Thus, we evaluated the proteome of bone marrow plasma from patients (n = 28) diagnosed with MDS with ring sideroblasts (MDS-RS) and MDS with blasts in the bone marrow (MDS-EB) using label-free mass spectrometry. This strategy allowed the identification of 1,194 proteins in the bone marrow plasma samples. Polyubiquitin-C (UBC), moesin (MSN), and Talin-1 (TLN1) showed the highest abundances in MDS-EB, and centrosomal protein of 55 kDa (CEP55) showed the highest relative abundance in the bone marrow plasma of MDS-RS patients. In a follow-up, in the second phase of the study, expressions of UBC, MSN, TLN1, and CEP55 genes were evaluated in bone marrow mononuclear cells from 45 patients by using qPCR. This second cohort included only seven patients from the first study. CEP55, MSN, and UBC expressions were similar in mononuclear cells from MDS-RS and MDS-EB individuals. However, TLN1 gene expression was greater in mononuclear cells from MDS-RS (p = 0.049) as compared to MDS-EB patients. Irrespective of the MDS subtype, CEP55 expression was higher (p = 0.045) in MDS patients with abnormal karyotypes, while MSN, UBC, and TALIN1 transcripts were similar in MDS with normal vs. abnormal karyotypes. In conclusion, proteomic and gene expression approaches brought evidence of altered TLN1 and CEP55 expressions in cellular and non-cellular bone marrow compartments of patients with low-risk (MDS-RS) and high-risk (MDS-EB) MDSs and with normal vs. abnormal karyotypes. As MDS is characterized by disrupted apoptosis and chromosomal alterations, leading to mitotic slippage, TLN1 and CEP55 represent potential markers for MDS prognosis and/or targeted therapy.
Collapse
Affiliation(s)
- Arlindo A. Moura
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| | - Maria Julia B. Bezerra
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aline M. A. Martins
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Daniela P. Borges
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Roberta T. G. Oliveira
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Raphaela M. Oliveira
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Kaio M. Farias
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
| | - Arabela G. Viana
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme G. C. Carvalho
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos R. K. Paier
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Marcelo V. Sousa
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Carlos A. O. Ricart
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Maria Elisabete A. Moraes
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Silvia M. M. Magalhães
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiana L. M. Furtado
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Experimental Biology Center, NUBEX, The University of Fortaleza (Unifor), Fortaleza, Brazil
| | - Manoel O. Moraes-Filho
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| | - Ronald F. Pinheiro
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| |
Collapse
|
29
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
30
|
Yang YF, Sun YY, Peters DM, Keller KE. The Effects of Mechanical Stretch on Integrins and Filopodial-Associated Proteins in Normal and Glaucomatous Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886706. [PMID: 35573666 PMCID: PMC9100841 DOI: 10.3389/fcell.2022.886706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023] Open
Abstract
The trabecular meshwork (TM) is the tissue responsible for regulating aqueous humor fluid egress from the anterior eye. If drainage is impaired, intraocular pressure (IOP) becomes elevated, which is a primary risk factor for primary open angle glaucoma. TM cells sense elevated IOP via changes in their biomechanical environment. Filopodia cellular protrusions and integrin transmembrane proteins may play roles in detecting IOP elevation, yet this has not been studied in detail in the TM. Here, we investigate integrins and filopodial proteins, such as myosin-X (Myo10), in response to mechanical stretch, an in vitro technique that produces mechanical alterations mimicking elevated IOP. Pull-down assays showed Myo10 binding to α5 but not the β1 subunit, αvβ3, and αvβ5 integrins. Several of these integrins colocalized in nascent adhesions in the filopodial tip and shaft. Using conformation-specific antibodies, we found that β1 integrin, but not α5 or αvβ3 integrins, were activated following 1-h mechanical stretch. Cadherin -11 (CDH11), a cell adhesion molecule, did not bind to Myo10, but was associated with filopodia. Interestingly, CDH11 was downregulated on the TM cell surface following 1-h mechanical stretch. In glaucoma cells, CDH11 protein levels were increased. Finally, mechanical stretch caused a small, yet significant increase in Myo10 protein levels in glaucoma cells, but did not affect cellular communication of fluorescent vesicles via filopodia-like tunneling nanotubes. Together, these data suggest that TM cell adhesion proteins, β1 integrin and CDH11, have relatively rapid responses to mechanical stretch, which suggests a central role in sensing changes in IOP elevation in situ.
Collapse
Affiliation(s)
- Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Kate E. Keller,
| |
Collapse
|