1
|
Ahrends R, Ellis SR, Verhelst SHL, Kreutz MR. Synaptoneurolipidomics: lipidomics in the study of synaptic function. Trends Biochem Sci 2025; 50:156-170. [PMID: 39753434 DOI: 10.1016/j.tibs.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025]
Abstract
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes. Several lines of evidence suggest that the lipid composition of synapses is unique and distinct from other neuronal subcompartments. Here, we delve into the nascent field of synaptoneurolipidomics, offering an overview of current knowledge on the lipid composition of synaptic junctions and technological advances that will allow us to study the impact on synaptic function.
Collapse
Affiliation(s)
- Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria.
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
| | | | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| |
Collapse
|
2
|
Xu YQ, Chen Y, Xing JX, Yao J. Relationship between enriched environment and neurodegeneration: a review from mechanism to therapy. Clin Epigenetics 2025; 17:13. [PMID: 39849536 PMCID: PMC11761206 DOI: 10.1186/s13148-025-01820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Enriched environment (EE), as a non-pharmacological intervention, has garnered considerable attention for its potential to ameliorate neurodegenerative diseases (NDs). This review delineated the impact of EE on the biological functions associated with NDs, emphasizing its role in enhancing neural plasticity, reducing inflammation, and bolstering cognitive performance. We discussed the molecular underpinnings of the effects of EE, including modulation of key signaling pathways such as extracellular regulated kinase 1/2 (ERK1/2), mitogen-activated protein kinases (MAPK), and AMPK/SIRT1, which were implicated in neuroprotection and synaptic plasticity. Additionally, we scrutinized the influence of EE on epigenetic modifications and autophagy, processes pivotal to ND pathogenesis. Animal models, encompassing both rodents and larger animals, offer insights into the disease-modifying effects of EE, underscoring its potential as a complementary approach to pharmacological interventions. In summary, EE emerges as a promising strategy to augment cognitive function and decelerate the progression of NDs.
Collapse
Affiliation(s)
- Yuan-Qiao Xu
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China
| | - Yanjiao Chen
- Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, Liaoning Province, People's Republic of China.
- China Medical University Center of Forensic Investigation, Shenbei New District, No.77, Puhe Road, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
3
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
4
|
Hemmati M, Wudy SI, Hackbarth F, Mittermeier-Kleßinger VK, Coleman OI, Haller D, Ludwig C, Dawid C, Kleigrewe K. Development of a Global Metabo-Lipid-Prote-omics Workflow to Compare Healthy Proximal and Distal Colonic Epithelium in Mice. J Proteome Res 2024; 23:3124-3140. [PMID: 39052308 DOI: 10.1021/acs.jproteome.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A multimetabo-lipid-prote-omics workflow was developed to characterize the molecular interplay within proximal (PC) and distal (DC) colonic epithelium of healthy mice. This multiomics data set lays the foundation to better understand the two tissue types and can be used to study, for example, colon-related diseases like colorectal cancer or inflammatory bowel disease. First, the methyl tert-butyl ether extraction method was optimized, so that from a single tissue biopsy >350 reference-matched metabolites, >1850 reference-matched lipids, and >4500 proteins were detected by using targeted and untargeted metabolomics, untargeted lipidomics, and proteomics. Next, each omics-data set was analyzed individually and then merged with the additional omics disciplines to generate a deep understanding of the underlying complex regulatory network within the colon. Our data demonstrates, for example, differences in mucin formation, detected on substrate level as well as on enzyme level, and altered lipid metabolism by the detection of phospholipases hydrolyzing sphingomyelins to ceramides. In conclusion, the combination of the three mass spectrometry-based omics techniques can better entangle the functional and regional differences between PC and DC tissue compared to each single omics technique.
Collapse
Affiliation(s)
- Maryam Hemmati
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Susanne I Wudy
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Franziska Hackbarth
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Verena K Mittermeier-Kleßinger
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Olivia I Coleman
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Corinna Dawid
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Professorship for Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- ZIEL Institute for Food and Health, Technical University of Munich, 85354 Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
5
|
Rubenzucker S, Manke MC, Lehmann R, Assinger A, Borst O, Ahrends R. A Targeted, Bioinert LC-MS/MS Method for Sensitive, Comprehensive Analysis of Signaling Lipids. Anal Chem 2024; 96:9643-9652. [PMID: 38795073 PMCID: PMC11170558 DOI: 10.1021/acs.analchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.
Collapse
Affiliation(s)
- Stefanie Rubenzucker
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Mailin-Christin Manke
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Centre of Physiology
and Pharmacology, Medical University of
Vienna, 1090 Vienna, Austria
| | - Oliver Borst
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Milbocker KA, Smith IF, Klintsova AY. Maintaining a Dynamic Brain: A Review of Empirical Findings Describing the Roles of Exercise, Learning, and Environmental Enrichment in Neuroplasticity from 2017-2023. Brain Plast 2024; 9:75-95. [PMID: 38993580 PMCID: PMC11234674 DOI: 10.3233/bpl-230151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 07/13/2024] Open
Abstract
Brain plasticity, also termed neuroplasticity, refers to the brain's life-long ability to reorganize itself in response to various changes in the environment, experiences, and learning. The brain is a dynamic organ capable of responding to stimulating or depriving environments, activities, and circumstances from changes in gene expression, release of neurotransmitters and neurotrophic factors, to cellular reorganization and reprogrammed functional connectivity. The rate of neuroplastic alteration varies across the lifespan, creating further challenges for understanding and manipulating these processes to benefit motor control, learning, memory, and neural remodeling after injury. Neuroplasticity-related research spans several decades, and hundreds of reviews have been written and published since its inception. Here we present an overview of the empirical papers published between 2017 and 2023 that address the unique effects of exercise, plasticity-stimulating activities, and the depriving effect of social isolation on brain plasticity and behavior.
Collapse
Affiliation(s)
| | - Ian F. Smith
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| |
Collapse
|
7
|
Cooper O, Hallett P, Isacson O. Upstream lipid and metabolic systems are potential causes of Alzheimer's disease, Parkinson's disease and dementias. FEBS J 2024; 291:632-645. [PMID: 36165619 PMCID: PMC10040476 DOI: 10.1111/febs.16638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Brain health requires circuits, cells and molecular pathways to adapt when challenged and to promptly reset once the challenge has resolved. Neurodegeneration occurs when adaptability becomes confined, causing challenges to overwhelm neural circuitry. Studies of rare and common neurodegenerative diseases suggest that the accumulation of lipids can compromise circuit adaptability. Using microglia as an example, we review data that suggest increased lipid concentrations cause dysfunctional inflammatory responses to immune challenges, leading to Alzheimer's disease, Parkinson's disease and dementia. We highlight current approaches to treat lipid metabolic and clearance pathways and identify knowledge gaps towards restoring adaptive homeostasis in individuals who are at-risk of losing cognition.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Penny Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
8
|
de Jonckheere B, Kollotzek F, Münzer P, Göb V, Fischer M, Mott K, Coman C, Troppmair NN, Manke MC, Zdanyte M, Harm T, Sigle M, Kopczynski D, Bileck A, Gerner C, Hoffmann N, Heinzmann D, Assinger A, Gawaz M, Stegner D, Schulze H, Borst O, Ahrends R. Critical shifts in lipid metabolism promote megakaryocyte differentiation and proplatelet formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:835-852. [PMID: 38075556 PMCID: PMC7615361 DOI: 10.1038/s44161-023-00325-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2024]
Abstract
During megakaryopoiesis, megakaryocytes (MK) undergo cellular morphological changes with strong modification of membrane composition and lipid signaling. Here we adopt a lipid-centric multiomics approach to create a quantitative map of the MK lipidome during maturation and proplatelet formation. Data reveal that MK differentiation is driven by an increased fatty acyl import and de novo lipid synthesis, resulting in an anionic membrane phenotype. Pharmacological perturbation of fatty acid import and phospholipid synthesis blocked membrane remodeling and directly reduced MK polyploidization and proplatelet formation resulting in thrombocytopenia. The anionic lipid shift during megakaryopoiesis was paralleled by lipid-dependent relocalization of the scaffold protein CKIP-1 and recruitment of the kinase CK2α to the plasma membrane, which seems to be essential for sufficient platelet biogenesis. Overall, this study provides a framework to understand how the MK lipidome is altered during maturation and the impact of MK membrane lipid remodeling on MK kinase signaling involved in thrombopoiesis.
Collapse
Affiliation(s)
- Bianca de Jonckheere
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Ferdinand Kollotzek
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Vanessa Göb
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Melina Fischer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Kristina Mott
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, Austria
| | - Nina Nicole Troppmair
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Mailin-Christin Manke
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Monika Zdanyte
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | | | - Andrea Bileck
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Nils Hoffmann
- Institute of Analytical Chemistry, University of Vienna, Austria
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5) Jülich, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Alice Assinger
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Harald Schulze
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Oliver Borst
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Austria
| |
Collapse
|
9
|
Andres-Alonso M, Borgmeyer M, Mirzapourdelavar H, Lormann J, Klein K, Schweizer M, Hoffmeister-Ullerich S, Oelschlegel AM, Dityatev A, Kreutz MR. Golgi satellites are essential for polysialylation of NCAM and expression of LTP at distal synapses. Cell Rep 2023; 42:112692. [PMID: 37355986 DOI: 10.1016/j.celrep.2023.112692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023] Open
Abstract
The complex cytoarchitecture of neurons poses significant challenges for the maturation of synaptic membrane proteins. It is currently unclear whether locally secreted synaptic proteins bypass the Golgi or whether they traffic through Golgi satellites (GSs). Here, we create a transgenic GS reporter mouse line and show that GSs are widely distributed along dendrites and are capable of mature glycosylation, in particular sialylation. We find that polysialylation of locally secreted NCAM takes place at GSs. Accordingly, in mice lacking a component of trans-Golgi network-to-plasma membrane trafficking, we find fewer GSs and significantly reduced PSA-NCAM levels in distal dendrites of CA1 neurons that receive input from the temporoammonic pathway. Induction of long-term potentiation at those, but not more proximal, synapses is severely impaired. We conclude that GSs serve the need for local mature glycosylation of synaptic membrane proteins in distal dendrites and thereby contribute to rapid changes in synaptic strength.
Collapse
Affiliation(s)
- Maria Andres-Alonso
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| | - Maximilian Borgmeyer
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | - Jakob Lormann
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Kim Klein
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michaela Schweizer
- Core Facility Morphology und Electron Microscopy, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sabine Hoffmeister-Ullerich
- Core Facility Bioanalytik, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anja M Oelschlegel
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael R Kreutz
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
10
|
van Pijkeren A, Egger AS, Hotze M, Zimmermann E, Kipura T, Grander J, Gollowitzer A, Koeberle A, Bischoff R, Thedieck K, Kwiatkowski M. Proteome Coverage after Simultaneous Proteo-Metabolome Liquid-Liquid Extraction. J Proteome Res 2023; 22:951-966. [PMID: 36763818 PMCID: PMC9990123 DOI: 10.1021/acs.jproteome.2c00758] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Proteomics and metabolomics are essential in systems biology, and simultaneous proteo-metabolome liquid-liquid extraction (SPM-LLE) allows isolation of the metabolome and proteome from the same sample. Since the proteome is present as a pellet in SPM-LLE, it must be solubilized for quantitative proteomics. Solubilization and proteome extraction are critical factors in the information obtained at the proteome level. In this study, we investigated the performance of two surfactants (sodium deoxycholate (SDC), sodium dodecyl sulfate (SDS)) and urea in terms of proteome coverage and extraction efficiency of an interphase proteome pellet generated by methanol-chloroform based SPM-LLE. We also investigated how the performance differs when the proteome is extracted from the interphase pellet or by direct cell lysis. We quantified 12 lipids covering triglycerides and various phospholipid classes, and 25 polar metabolites covering central energy metabolism in chloroform and methanol extracts. Our study reveals that the proteome coverages between the two surfactants and urea for the SPM-LLE interphase pellet were similar, but the extraction efficiencies differed significantly. While SDS led to enrichment of basic proteins, which were mainly ribosomal and ribonuclear proteins, urea was the most efficient extraction agent for simultaneous proteo-metabolome analysis. The results of our study also show that the performance of surfactants for quantitative proteomics is better when the proteome is extracted through direct cell lysis rather than an interphase pellet. In contrast, the performance of urea for quantitative proteomics was significantly better when the proteome was extracted from an interphase pellet than by direct cell lysis. We demonstrated that urea is superior to surfactants for proteome extraction from SPM-LLE interphase pellets, with a particularly good performance for the extraction of proteins associated with metabolic pathways. Data are available via ProteomeXchange with identifier PXD027338.
Collapse
Affiliation(s)
- Alienke van Pijkeren
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria.,Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Elisabeth Zimmermann
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - Rainer Bischoff
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| |
Collapse
|
11
|
Faugere J, Brunet TA, Clément Y, Espeyte A, Geffard O, Lemoine J, Chaumot A, Degli-Esposti D, Ayciriex S, Salvador A. Development of a multi-omics extraction method for ecotoxicology: investigation of the reproductive cycle of Gammarus fossarum. Talanta 2023; 253:123806. [PMID: 36113334 DOI: 10.1016/j.talanta.2022.123806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022]
Abstract
Omics study exemplified by proteomics, lipidomics or metabolomics, provides the opportunity to get insight of the molecular modifications occurring in living organisms in response to contaminants or in different physiological conditions. However, individual omics discloses only a single layer of information leading to a partial image of the biological complexity. Multiplication of samples preparation and processing can generate analytical variations resulting from several extractions and instrumental runs. To get all the -omics information at the proteins, metabolites and lipids level coming from a unique sample, a specific sample preparation must be optimized. In this study, we streamlined a biphasic extraction procedure based on a MTBE/Methanol mixture to provide the simultaneous extraction of polar (proteins, metabolites) and apolar compounds (lipids) for multi-omics analyses from a unique biological sample by a liquid chromatography (LC)/mass spectrometry (MS)/MS-based targeted approach. We applied the methodology for the study of female amphipod Gammarus fossarum during the reproductive cycle. Multivariate data analyses including Partial Least Squares Discriminant Analysis and multiple factor analysis were applied for the integration of the multi-omics data sets and highlighted molecular signatures, specific to the different stages.
Collapse
Affiliation(s)
- Julien Faugere
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Thomas Alexandre Brunet
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Yohann Clément
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Anabelle Espeyte
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | - Jérôme Lemoine
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | | | - Sophie Ayciriex
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de La Doua, F-69100, Villeurbanne, France.
| |
Collapse
|
12
|
Arends M, Weber M, Papan C, Damm M, Surma MA, Spiegel C, Djannatian M, Li S, Connell L, Johannes L, Schifferer M, Klose C, Simons M. Ganglioside lipidomics of CNS myelination using direct infusion shotgun mass spectrometry. iScience 2022; 25:105323. [PMID: 36310581 PMCID: PMC9615322 DOI: 10.1016/j.isci.2022.105323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Gangliosides are present and concentrated in axons and implicated in axon-myelin interactions, but how ganglioside composition changes during myelin formation is not known. Here, we present a direct infusion (shotgun) lipidomics method to analyze gangliosides in small amounts of tissue reproducibly and with high sensitivity. We resolve the mouse ganglioside lipidome during development and adulthood and determine the ganglioside content of mice lacking the St3gal5 and B4galnt1 genes that synthesize most ganglioside species. Our results reveal substantial changes in the ganglioside lipidome during the formation of myelinated nerve fibers. In sum, we provide insights into the CNS ganglioside lipidome with a quantitative and sensitive mass spectrometry method. Since this method is compatible with global lipidomic profiling, it will provide insights into ganglioside function in physiology and pathology.
Collapse
Affiliation(s)
- Martina Arends
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | | | | | | | | | - Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | | | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France
| | - Martina Schifferer
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | | | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
13
|
Falahati H, Wu Y, Feuerer V, Simon HG, De Camilli P. Proximity proteomics of synaptopodin provides insight into the molecular composition of the spine apparatus of dendritic spines. Proc Natl Acad Sci U S A 2022; 119:e2203750119. [PMID: 36215465 PMCID: PMC9586327 DOI: 10.1073/pnas.2203750119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023] Open
Abstract
The spine apparatus is a specialized compartment of the neuronal smooth endoplasmic reticulum (ER) located in a subset of dendritic spines. It consists of stacks of ER cisterns that are interconnected by an unknown dense matrix and are continuous with each other and with the ER of the dendritic shaft. While this organelle was first observed over 60 y ago, its molecular organization remains a mystery. Here, we performed in vivo proximity proteomics to gain some insight into its molecular components. To do so, we used the only known spine apparatus-specific protein, synaptopodin, to target a biotinylating enzyme to this organelle. We validated the specific localization in dendritic spines of a small subset of proteins identified by this approach, and we further showed their colocalization with synaptopodin when expressed in nonneuronal cells. One such protein is Pdlim7, an actin binding protein not previously identified in spines. Pdlim7, which we found to interact with synaptopodin through multiple domains, also colocalizes with synaptopodin on the cisternal organelle, a peculiar stack of ER cisterns resembling the spine apparatus and found at axon initial segments of a subset of neurons. Moreover, Pdlim7 has an expression pattern similar to that of synaptopodin in the brain, highlighting a functional partnership between the two proteins. The components of the spine apparatus identified in this work will help elucidate mechanisms in the biogenesis and maintenance of this enigmatic structure with implications for the function of dendritic spines in physiology and disease.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Vanessa Feuerer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Stanley Manne Children’s Research Institute, Chicago, IL 60611
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
14
|
Vallés AS, Barrantes FJ. Nanoscale Sub-Compartmentalization of the Dendritic Spine Compartment. Biomolecules 2021; 11:1697. [PMID: 34827695 PMCID: PMC8615865 DOI: 10.3390/biom11111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Compartmentalization of the membrane is essential for cells to perform highly specific tasks and spatially constrained biochemical functions in topographically defined areas. These membrane lateral heterogeneities range from nanoscopic dimensions, often involving only a few molecular constituents, to micron-sized mesoscopic domains resulting from the coalescence of nanodomains. Short-lived domains lasting for a few milliseconds coexist with more stable platforms lasting from minutes to days. This panoply of lateral domains subserves the great variety of demands of cell physiology, particularly high for those implicated in signaling. The dendritic spine, a subcellular structure of neurons at the receiving (postsynaptic) end of central nervous system excitatory synapses, exploits this compartmentalization principle. In its most frequent adult morphology, the mushroom-shaped spine harbors neurotransmitter receptors, enzymes, and scaffolding proteins tightly packed in a volume of a few femtoliters. In addition to constituting a mesoscopic lateral heterogeneity of the dendritic arborization, the dendritic spine postsynaptic membrane is further compartmentalized into spatially delimited nanodomains that execute separate functions in the synapse. This review discusses the functional relevance of compartmentalization and nanodomain organization in synaptic transmission and plasticity and exemplifies the importance of this parcelization in various neurotransmitter signaling systems operating at dendritic spines, using two fast ligand-gated ionotropic receptors, the nicotinic acetylcholine receptor and the glutamatergic receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as paradigmatic examples.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|