1
|
Yao W, Hou X, Zheng W, Shi X, Zhang J, Bai F. Brain overlapping system-level architecture influenced by external magnetic stimulation and internal gene expression in AD-spectrum patients. Mol Psychiatry 2025:10.1038/s41380-025-02991-5. [PMID: 40185902 DOI: 10.1038/s41380-025-02991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
The brain overlapping system-level architecture is associated with functional information integration in the multiple roles of the same region, and it has been developed as an underlying novel biomarker of brain disease and may characterise the indicators for the treatment of Alzheimer's disease (AD). However, it remains uncertain whether these changes are influenced by external magnetic stimulation and internal gene expression. A total of 73 AD-spectrum patients (52 with true stimulation and 21 with sham stimulation) were underwent four-week neuronavigated transcranial magnetic stimulation (rTMS). Shannon-entropy diversity coefficient analysis was used to explore the brain overlapping system of the neuroimaging data in these pre- and posttreatment patients. Transcription-neuroimaging association analysis was further performed via gene expression data from the Allen Human Brain Atlas. Compared with the rTMS_sham stimulation group, the rTMS_true stimulation group achieved the goal of cognitive improvement through the reconstruction of functional information integration in the multiple roles of 27 regions associated with the brain overlapping system, involving the attentional network, sensorimotor network, default mode network and limbic network. Furthermore, these overlapping regions were closely linked to gene expression on cellular homeostasis and immune inflammation, and support vector regression analysis revealed that the baseline diversity coefficients of the attentional and sensorimotor networks can effectively predict memory improvement after rTMS treatment. These findings highlight the brain overlapping system associated with cognitive improvement, and provide the first evidence that external magnetic stimulation and internal gene expression could influence these overlapping regions in AD-spectrum patients.
Collapse
Affiliation(s)
- Weina Yao
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210046, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing, 210046, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xian Shi
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Feng Bai
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210046, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Institute of Geriatric Medicine, Medical School of Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
2
|
Chen Z, Tang Y, Liu X, Li W, Hu Y, Hu B, Xu T, Zhang R, Xia L, Zhang JX, Xiao Z, Chen J, Feng Z, Zhou Y, He Q, Qiu J, Lei X, Chen H, Qin S, Feng T. Edge-centric connectome-genetic markers of bridging factor to comorbidity between depression and anxiety. Nat Commun 2024; 15:10560. [PMID: 39632897 PMCID: PMC11618586 DOI: 10.1038/s41467-024-55008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Depression-anxiety comorbidity is commonly attributed to the occurrence of specific symptoms bridging the two disorders. However, the significant heterogeneity of most bridging symptoms presents challenges for psychopathological interpretation and clinical applicability. Here, we conceptually established a common bridging factor (cb factor) to characterize a general structure of these bridging symptoms, analogous to the general psychopathological p factor. We identified a cb factor from 12 bridging symptoms in depression-anxiety comorbidity network. Moreover, this cb factor could be predicted using edge-centric connectomes with robust generalizability, and was characterized by connectome patterns in attention and frontoparietal networks. In an independent twin cohort, we found that these patterns were moderately heritable, and identified their genetic connectome-transcriptional markers that were associated with the neurobiological enrichment of vasculature and cerebellar development, particularly during late-childhood-to-young-adulthood periods. Our findings revealed a general factor of bridging symptoms and its neurobiological architectures, which enriched neurogenetic understanding of depression-anxiety comorbidity.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China.
- School of Psychology, Southwest University, Chongqing, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| | - Yancheng Tang
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Wei Li
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yuanyuan Hu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ting Xu
- School of Psychology, Southwest University, Chongqing, China
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Zhang
- School of Psychology, Southwest University, Chongqing, China
| | - Lei Xia
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Jing-Xuan Zhang
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ji Chen
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Qinghua He
- School of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- School of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Tingyong Feng
- School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Facca M, Del Felice A, Bertoldo A. Multiscale and multimodal signatures of structure-function coupling variability across the human neocortex. Neuroimage 2024; 302:120902. [PMID: 39490561 DOI: 10.1016/j.neuroimage.2024.120902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
The relationship between the brain's structural wiring and its dynamic activity is thought to vary regionally, implying that the mechanisms underlying structure-function coupling may differ depending on a region's position within the brain's hierarchy. To better bridge the gap between structure and function, it is crucial to identify the factors shaping this regionality, not only in terms of how static functional connectivity aligns with structure, but also regarding the time-domain variability of this interplay. Here we map structure - function coupling and its time-domain variability and relate them to the heterogeneity of the cortex. We show that these two properties split the cortical landscape into two districts anchored to the opposite ends of the brain's hierarchy. By looking at statistical relationships with layer-specific gene transcription, T1w/T2 w ratio, and synaptic density, we show that macro-scale structure-function coupling may be rooted in the brain's microstructure and meso‑scale laminar specialization. Finally, we demonstrate that a lower and more variable alignment of function and structure may bestow the emergence of unique functional dynamics.
Collapse
Affiliation(s)
| | - Alessandra Del Felice
- Padova Neuroscience Center (PNC), Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy.
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), Padova, Italy; Department of Information Engineering, University of Padova, Italy
| |
Collapse
|
4
|
Wang L, Xu H, Song Z, Wang H, Hu W, Gao Y, Zhang Z, Jiang J. fMRI signals in white matter rewire gray matter community organization. Neuroimage 2024; 297:120763. [PMID: 39084280 DOI: 10.1016/j.neuroimage.2024.120763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
Human brain gray matter (GM) has usually been clustered into multiple functional networks. The white matter (WM) fiber bundles are known to interconnect these networks simultaneously, engaging in numerous cognitive functions. However, the exact interconnections between GM and WM are still unclear, whether functional signals in WM rewires GM community organization remains to be explored. In this study, we divided brain functional connections into three types by using edge-centric method, including intra-GM, intra-WM and GM-WM connections, and calculated the edge community evaluation indexes for quantifying GM community engagement. The results showed that the involvement of WM significantly enhanced community entropy in the heteromodal system, while the sensory-attention system remained barely changed. In addition, delta community entropy showed a significant correlation with clinical cognitive scale. Our results suggested that WM rewired GM community organization, enhancing the community engagement of brain regions in the heteromodal system. This involvement was observed to be disrupted in disease groups. Our study revealed that considering the functional signals of GM and WM simultaneously could better understand the brain's functional organization.
Collapse
Affiliation(s)
- Luyao Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huanyu Xu
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Ziyan Song
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huanxin Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenjing Hu
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yiwen Gao
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Guo Y, Wu X, Sun Y, Dong Y, Sun J, Song Z, Xiang J, Cui X. Abnormal Dynamic Reconstruction of Overlapping Communities in Schizophrenia Patients. Brain Sci 2024; 14:783. [PMID: 39199476 PMCID: PMC11352520 DOI: 10.3390/brainsci14080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE This study aims to explore the changes in dynamic overlapping communities in the brains of schizophrenia (SZ) patients and further investigate the dynamic restructuring patterns of overlapping communities in SZ patients. MATERIALS AND METHODS A total of 43 SZ patients and 49 normal controls (NC) were selected for resting-state functional MRI (rs-fMRI) scans. Dynamic functional connectivity analysis was conducted separately on SZ patients and NC using rs-fMRI and Jackknife Correlation techniques to construct dynamic brain network models. Based on these models, a dynamic overlapping community detection method was utilized to explore the abnormal overlapping community structure in SZ patients using evaluation metrics such as the structural stability of overlapping communities, nodes' functional diversity, and activity level of overlapping communities. RESULTS The stability of communities in SZ patients showed a decreasing trend. The changes in the overlapping community structure of SZ patients may be related to a decrease in the diversity of overlapping node functions. Additionally, compared to the NC group, the activity level of overlapping communities of SZ patients was significantly reduced. CONCLUSION The structure or organization of the brain functional network in SZ patients is abnormal or disrupted, and the activity of the brain network in information processing and transmission is weakened in SZ patients.
Collapse
Affiliation(s)
- Yuxiang Guo
- School of Software, Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China;
| | - Xubin Wu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Yumeng Sun
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Yanqing Dong
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Jie Sun
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Zize Song
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| | - Xiaohong Cui
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, No.209, University Street, Jinzhong 030600, China; (X.W.); (Y.S.); (Y.D.); (J.S.); (Z.S.); (J.X.)
| |
Collapse
|
6
|
Du Y, Fang S, He X, Calhoun VD. A survey of brain functional network extraction methods using fMRI data. Trends Neurosci 2024; 47:608-621. [PMID: 38906797 DOI: 10.1016/j.tins.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Functional network (FN) analyses play a pivotal role in uncovering insights into brain function and understanding the pathophysiology of various brain disorders. This paper focuses on classical and advanced methods for deriving brain FNs from functional magnetic resonance imaging (fMRI) data. We systematically review their foundational principles, advantages, shortcomings, and interrelations, encompassing both static and dynamic FN extraction approaches. In the context of static FN extraction, we present hypothesis-driven methods such as region of interest (ROI)-based approaches as well as data-driven methods including matrix decomposition, clustering, and deep learning. For dynamic FN extraction, both window-based and windowless methods are surveyed with respect to the estimation of time-varying FN and the subsequent computation of FN states. We also discuss the scope of application of the various methods and avenues for future improvements.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China.
| | - Songke Fang
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Xingyu He
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Hilbert K, Böhnlein J, Meinke C, Chavanne AV, Langhammer T, Stumpe L, Winter N, Leenings R, Adolph D, Arolt V, Bischoff S, Cwik JC, Deckert J, Domschke K, Fydrich T, Gathmann B, Hamm AO, Heinig I, Herrmann MJ, Hollandt M, Hoyer J, Junghöfer M, Kircher T, Koelkebeck K, Lotze M, Margraf J, Mumm JLM, Neudeck P, Pauli P, Pittig A, Plag J, Richter J, Ridderbusch IC, Rief W, Schneider S, Schwarzmeier H, Seeger FR, Siminski N, Straube B, Straube T, Ströhle A, Wittchen HU, Wroblewski A, Yang Y, Roesmann K, Leehr EJ, Dannlowski U, Lueken U. Lack of evidence for predictive utility from resting state fMRI data for individual exposure-based cognitive behavioral therapy outcomes: A machine learning study in two large multi-site samples in anxiety disorders. Neuroimage 2024; 295:120639. [PMID: 38796977 DOI: 10.1016/j.neuroimage.2024.120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.
Collapse
Affiliation(s)
- Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Psychology, HMU Health and Medical University Erfurt, Erfurt, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany.
| | - Charlotte Meinke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alice V Chavanne
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Université Paris-Saclay, INSERM U1299 "Trajectoires développementales et psychiatrie", CNRS UMR 9010 Centre Borelli, Ecole Normale Supérieure Paris-Saclay, France
| | - Till Langhammer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lara Stumpe
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Nils Winter
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Dirk Adolph
- Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Sophie Bischoff
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan C Cwik
- Department of Clinical Psychology and Psychotherapy, Faculty of Human Sciences, Universität zu Köln, Germany
| | - Jürgen Deckert
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Fydrich
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Germany
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Ingmar Heinig
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Martin J Herrmann
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Maike Hollandt
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany
| | - Jürgen Hoyer
- Institute of Clinical Psychology & Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katja Koelkebeck
- LVR-University-Hospital Essen, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
| | - Martin Lotze
- Functional Imaging Unit. Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Margraf
- Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Jennifer L M Mumm
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Neudeck
- Protect-AD Study Site Cologne, Cologne, Germany; Institut für Klinische Psychologie und Psychotherapie, TU Chemnitz, Germany
| | - Paul Pauli
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Andre Pittig
- Translational Psychotherapy, Institute of Psychology, University of Göttingen, Germany
| | - Jens Plag
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Alexianer Krankenhaus Hedwigshoehe, St. Hedwig Kliniken, Berlin, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology, University of Greifswald, Greifswald, Germany; Department of Experimental Psychopathology, University of Hildesheim, Hildesheim, Germany
| | | | - Winfried Rief
- Department of Clinical Psychology and Psychotherapy, Faculty of Psychology & Center for Mind, Brain and Behavior - CMBB, Philipps-University of Marburg, Marburg, Germany
| | - Silvia Schneider
- Faculty of Psychology, Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Hanna Schwarzmeier
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Fabian R Seeger
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Niklas Siminski
- Center for Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Thomas Straube
- Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrueck, Osnabruck, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kati Roesmann
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany; Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrueck, Osnabruck, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Germany
| |
Collapse
|
8
|
Hindriks R, Broeders TAA, Schoonheim MM, Douw L, Santos F, van Wieringen W, Tewarie PKB. Higher-order functional connectivity analysis of resting-state functional magnetic resonance imaging data using multivariate cumulants. Hum Brain Mapp 2024; 45:e26663. [PMID: 38520377 PMCID: PMC10960559 DOI: 10.1002/hbm.26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity. It is not yet clear how higher-order connectivity can best be quantified. The measures that are currently in use cannot distinguish between pairwise (i.e., second-order) and higher-order connectivity. We show that genuine higher-order connectivity can be quantified by using multivariate cumulants. We explore the use of multivariate cumulants for quantifying higher-order connectivity and the performance of block bootstrapping for statistical inference. In particular, we formulate a generative model for fMRI signals exhibiting higher-order connectivity and use it to assess bias, standard errors, and detection probabilities. Application to resting-state fMRI data from the Human Connectome Project demonstrates that spontaneous fMRI signals are organized into higher-order networks that are distinct from second-order resting-state networks. Application to a clinical cohort of patients with multiple sclerosis further demonstrates that cumulants can be used to classify disease groups and explain behavioral variability. Hence, we present a novel framework to reliably estimate genuine higher-order connectivity in fMRI data which can be used for constructing hyperedges, and finally, which can readily be applied to fMRI data from populations with neuropsychiatric disease or cognitive neuroscientific experiments.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Tommy A. A. Broeders
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Menno M. Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Fernando Santos
- Dutch Institute for Emergent Phenomena (DIEP)Institute for Advanced Studies, University of AmsterdamAmsterdamThe Netherlands
- Korteweg de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Wessel van Wieringen
- Department of Epidemiology and BiostatisticsAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Prejaas K. B. Tewarie
- Sir Peter Mansfield Imaging CenterSchool of Physics, University of NottinghamNottinghamUnited Kingdom
- Clinical Neurophysiology GroupUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
9
|
Zhang J, Zhang Z, Sun H, Ma Y, Yang J, Chen K, Yu X, Qin T, Zhao T, Zhang J, Chu C, Wang J. Personalized functional network mapping for autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl Psychiatry 2024; 14:92. [PMID: 38346949 PMCID: PMC10861462 DOI: 10.1038/s41398-024-02797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are two typical neurodevelopmental disorders that have a long-term impact on physical and mental health. ASD is usually comorbid with ADHD and thus shares highly overlapping clinical symptoms. Delineating the shared and distinct neurophysiological profiles is important to uncover the neurobiological mechanisms to guide better therapy. In this study, we aimed to establish the behaviors, functional connectome, and network properties differences between ASD, ADHD-Combined, and ADHD-Inattentive using resting-state functional magnetic resonance imaging. We used the non-negative matrix fraction method to define personalized large-scale functional networks for each participant. The individual large-scale functional network connectivity (FNC) and graph-theory-based complex network analyses were executed and identified shared and disorder-specific differences in FNCs and network attributes. In addition, edge-wise functional connectivity analysis revealed abnormal edge co-fluctuation amplitude and number of transitions among different groups. Taken together, our study revealed disorder-specific and -shared regional and edge-wise functional connectivity and network differences for ASD and ADHD using an individual-level functional network mapping approach, which provides new evidence for the brain functional abnormalities in ASD and ADHD and facilitates understanding the neurobiological basis for both disorders.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Zhiwei Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaohui Yu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Tianwei Qin
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tianyu Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Jingyue Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Chumin EJ, Cutts SA, Risacher SL, Apostolova LG, Farlow MR, McDonald BC, Wu YC, Betzel R, Saykin AJ, Sporns O. Edge time series components of functional connectivity and cognitive function in Alzheimer's disease. Brain Imaging Behav 2024; 18:243-255. [PMID: 38008852 PMCID: PMC10844434 DOI: 10.1007/s11682-023-00822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.
Collapse
Affiliation(s)
- Evgeny J Chumin
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA.
| | - Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
| | - Shannon L Risacher
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| | - Liana G Apostolova
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Martin R Farlow
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Brenna C McDonald
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
- Department of Neurology, IUSM, Indianapolis, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University (IU), Psychology Building 308, 1101 E 10th St, Bloomington, IN, 47405, USA
- Indiana University Network Sciences Institute, IU, Bloomington, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, IUSM, Indianapolis, IN, USA
- Program in Neuroscience, IU, Bloomington, IN, USA
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, USA
| |
Collapse
|
11
|
Ragone E, Tanner J, Jo Y, Zamani Esfahlani F, Faskowitz J, Pope M, Coletta L, Gozzi A, Betzel R. Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains. Commun Biol 2024; 7:126. [PMID: 38267534 PMCID: PMC10810083 DOI: 10.1038/s42003-024-05766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of "bursty" dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation.
Collapse
Affiliation(s)
| | - Jacob Tanner
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
| | - Youngheun Jo
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Farnaz Zamani Esfahlani
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA
| | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47401, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA
| | | | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Richard Betzel
- Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Department of Psychological and Brain Sciences and Cognitive Science Program, Indiana University, Bloomington, IN, 47401, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47401, USA.
| |
Collapse
|
12
|
Dai W, Qiu E, Lin X, Zhang S, Zhang M, Han X, Jia Z, Su H, Bian X, Zang X, Li M, Zhang Q, Ran Y, Gong Z, Wang X, Wang R, Tian L, Dong Z, Yu S. Abnormal Thalamo-Cortical Interactions in Overlapping Communities of Migraine: An Edge Functional Connectivity Study. Ann Neurol 2023; 94:1168-1181. [PMID: 37635687 DOI: 10.1002/ana.26783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Migraine has been demonstrated to exhibit abnormal functional connectivity of large-scale brain networks, which is closely associated with its pathophysiology and has not yet been explored by edge functional connectivity. We used an edge-centric approach combined with motif analysis to evaluate higher-order communication patterns of brain networks in migraine. METHODS We investigated edge-centric metrics in 108 interictal migraine patients and 71 healthy controls. We parcellated the brain into networks using independent component analysis. We applied edge graph construction, k-means clustering, community overlap detection, graph-theory-based evaluations, and clinical correlation analysis. We conducted motif analysis to explore the interactions among regions, and a classification model to test the specificity of edge-centric results. RESULTS The normalized entropy of lateral thalamus was significantly increased in migraine, which was positively correlated with the baseline headache duration, and negatively correlated with headache duration reduction following preventive medications at 3-month follow-up. Network-wise entropy of the sensorimotor network was significantly elevated in migraine. The community similarity between lateral thalamus and postcentral gyrus was enhanced in migraine. Migraine patients showed overrepresented L-shape and diverse motifs, and underrepresented forked motifs with lateral thalamus serving as the reference node. Furthermore, migraine patients presented with overrepresented L-shape triads, where the postcentral gyrus shared different edges with the lateral thalamus. The classification model showed that entropy of the lateral thalamus had the highest discriminative power, with an area under the curve of 0.86. INTERPRETATION Our findings indicated an abnormal higher-order thalamo-cortical communication pattern in migraine patients. The thalamo-cortical-somatosensory disturbance of concerted working may potentially lead to aberrant information flow and deficit pain processing of migraine. ANN NEUROL 2023;94:1168-1181.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Enchao Qiu
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaoxue Lin
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuhua Zhang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mingjie Zhang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xun Han
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhihua Jia
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Su
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangbing Bian
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Zang
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Meng Li
- Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qingkui Zhang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ye Ran
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zihua Gong
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaolin Wang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rongfei Wang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Zhao Dong
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Chumin EJ, Cutts SA, Risacher SL, Apostolova LG, Farlow MR, McDonald BC, Wu YC, Betzel R, Saykin AJ, Sporns O. Edge Time Series Components of Functional Connectivity and Cognitive Function in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.13.23289936. [PMID: 38014005 PMCID: PMC10680898 DOI: 10.1101/2023.05.13.23289936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and neuropsychological/behavioral measures in Alzheimer's disease is key for advancement of neuroimaging analysis methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, in combination with other network science methods, allows for investigations of brain-behavior relationships that are not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer's Disease Research Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 Alzheimer's disease participants) were used to investigate relationships between functional connectivity components, each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific neuropsychological functions. Multiple relationships were identified with the component approach that were not found with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems and their interactions, which were shown to couple with cognitive, executive, language, and attention neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies (network contingency correlation analysis and network-based statistics correlation). Results demonstrate that connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships not observed with conventional static functional connectivity.
Collapse
Affiliation(s)
- Evgeny J. Chumin
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Sarah A. Cutts
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
| | - Shannon L. Risacher
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Liana G. Apostolova
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Martin R. Farlow
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Brenna C. McDonald
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Yu-Chien Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
| | - Andrew J. Saykin
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
- Department of Neurology, IUSM, Indianapolis, IN, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University (IU), Bloomington, IN, United States
- Indiana University Network Sciences Institute, IU, Bloomington, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine (IUSM), Indianapolis, IN, United States
- Indiana Alzheimer’s Disease Research Center, IUSM, Indianapolis, IN, United States
- Program in Neuroscience, IU, Bloomington, IN, United States
- Department of Radiology and Imaging Sciences, IUSM, Indianapolis, IN, United States
| |
Collapse
|
14
|
Betzel RF, Faskowitz J, Sporns O. Living on the edge: network neuroscience beyond nodes. Trends Cogn Sci 2023; 27:1068-1084. [PMID: 37716895 PMCID: PMC10592364 DOI: 10.1016/j.tics.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023]
Abstract
Network neuroscience has emphasized the connectional properties of neural elements - cells, populations, and regions. This has come at the expense of the anatomical and functional connections that link these elements to one another. A new perspective - namely one that emphasizes 'edges' - may prove fruitful in addressing outstanding questions in network neuroscience. We highlight one recently proposed 'edge-centric' method and review its current applications, merits, and limitations. We also seek to establish conceptual and mathematical links between this method and previously proposed approaches in the network science and neuroimaging literature. We conclude by presenting several avenues for future work to extend and refine existing edge-centric analysis.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Uddin LQ, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Laird AR, Larson-Prior L, McIntosh AR, Nickerson LD, Pessoa L, Pinho AL, Poldrack RA, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Spreng RN. Controversies and progress on standardization of large-scale brain network nomenclature. Netw Neurosci 2023; 7:864-905. [PMID: 37781138 PMCID: PMC10473266 DOI: 10.1162/netn_a_00323] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S. Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Deptartment of Psychiatry and Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A. Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Vancouver, BC, Canada
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Ana Luísa Pinho
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | | | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Greenwell S, Faskowitz J, Pritschet L, Santander T, Jacobs EG, Betzel RF. High-amplitude network co-fluctuations linked to variation in hormone concentrations over the menstrual cycle. Netw Neurosci 2023; 7:1181-1205. [PMID: 37781152 PMCID: PMC10473261 DOI: 10.1162/netn_a_00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/20/2022] [Indexed: 10/03/2023] Open
Abstract
Many studies have shown that the human endocrine system modulates brain function, reporting associations between fluctuations in hormone concentrations and brain connectivity. However, how hormonal fluctuations impact fast changes in brain network organization over short timescales remains unknown. Here, we leverage a recently proposed framework for modeling co-fluctuations between the activity of pairs of brain regions at a framewise timescale. In previous studies we showed that time points corresponding to high-amplitude co-fluctuations disproportionately contributed to the time-averaged functional connectivity pattern and that these co-fluctuation patterns could be clustered into a low-dimensional set of recurring "states." Here, we assessed the relationship between these network states and quotidian variation in hormone concentrations. Specifically, we were interested in whether the frequency with which network states occurred was related to hormone concentration. We addressed this question using a dense-sampling dataset (N = 1 brain). In this dataset, a single individual was sampled over the course of two endocrine states: a natural menstrual cycle and while the subject underwent selective progesterone suppression via oral hormonal contraceptives. During each cycle, the subject underwent 30 daily resting-state fMRI scans and blood draws. Our analysis of the imaging data revealed two repeating network states. We found that the frequency with which state 1 occurred in scan sessions was significantly correlated with follicle-stimulating and luteinizing hormone concentrations. We also constructed representative networks for each scan session using only "event frames"-those time points when an event was determined to have occurred. We found that the weights of specific subsets of functional connections were robustly correlated with fluctuations in the concentration of not only luteinizing and follicle-stimulating hormones, but also progesterone and estradiol.
Collapse
Affiliation(s)
- Sarah Greenwell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neurosciences, Indiana University, Bloomington, IN, USA
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neurosciences, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
- Network Science Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
17
|
Zhang J, Ji C, Zhai X, Ren S, Tong H. Global trends and hotspots in research on acupuncture for stroke: a bibliometric and visualization analysis. Eur J Med Res 2023; 28:359. [PMID: 37735698 PMCID: PMC10512511 DOI: 10.1186/s40001-023-01253-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023] Open
Abstract
Acupuncture has been widely used in stroke and post-stroke rehabilitation (PSR), but there is no literature on the bibliometric analysis of acupuncture for stroke. This study aimed to characterize the global publications and analyze the trends of acupuncture for stroke in the past 40 years. We identified 1157 publications from the Web of Science Core Collection. The number of publications grew slowly in the first three decades from 1980 until it started to grow after 2010, with significant growth in 2011-2012 and 2019-2020. China, the USA, and South Korea are the top three countries in this field, and China has formed good internal cooperative relations. Early studies focused on the clinical efficacy of acupuncture for stroke. In the last five years, more emphasis has been placed on the effectiveness of acupuncture in treating sequelae and complications, combined with neuroimaging studies to explore the mechanisms of brain injury repair and neurological recovery. Acupuncture for stroke has a vast research potential, and researchers from different countries/regions and organizations still need to remove academic barriers to enhance communication and collaboration.
Collapse
Affiliation(s)
- Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chenyang Ji
- Science and Technology College of Jiangxi, University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xu Zhai
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Shuo Ren
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
18
|
Tewarie PKB, Hindriks R, Lai YM, Sotiropoulos SN, Kringelbach M, Deco G. Non-reversibility outperforms functional connectivity in characterisation of brain states in MEG data. Neuroimage 2023; 276:120186. [PMID: 37268096 DOI: 10.1016/j.neuroimage.2023.120186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional connectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross-correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation in future neuroscientific experiments.
Collapse
Affiliation(s)
- Prejaas K B Tewarie
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands; Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands; Sir Peter Mansfield Imaging Centre, School of Physics, University of Nottingham, Nottingham, United Kingdom.
| | - Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yi Ming Lai
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom; NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
19
|
Sasse L, Larabi DI, Omidvarnia A, Jung K, Hoffstaedter F, Jocham G, Eickhoff SB, Patil KR. Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity. Commun Biol 2023; 6:705. [PMID: 37429937 PMCID: PMC10333234 DOI: 10.1038/s42003-023-05073-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes.
Collapse
Affiliation(s)
- Leonard Sasse
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Daouia I Larabi
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gerhard Jocham
- Institute for Experimental Psychology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
20
|
Fan Y, Wang R, Yi C, Zhou L, Wu Y. Hierarchical overlapping modular structure in the human cerebral cortex improves individual identification. iScience 2023; 26:106575. [PMID: 37250302 PMCID: PMC10214405 DOI: 10.1016/j.isci.2023.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/23/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
The idea that brain networks have a hierarchical modular organization is pervasive. Increasing evidence suggests that brain modules overlap. However, little is known about the hierarchical overlapping modular structure in the brain. In this study, we developed a framework to uncover brain hierarchical overlapping modular structures based on a nested-spectral partition algorithm and an edge-centric network model. Overlap degree between brain modules is symmetrical across hemispheres, with highest overlap observed in the control and salience/ventral attention networks. Furthermore, brain edges are clustered into two groups: intrasystem and intersystem edges, to form hierarchical overlapping modules. At different levels, modules are self-similar in the degree of overlap. Additionally, the brain's hierarchical structure contains more individual identifiable information than a single-level structure, particularly in the control and salience/ventral attention networks. Our results offer pathways for future studies aimed at relating the organization of hierarchical overlapping modules to brain cognitive behavior and disorders.
Collapse
Affiliation(s)
- Yongchen Fan
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- College of Science, Xi’an University of Science and Technology, Xi’an 710049, China
| | - Chao Yi
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lv Zhou
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
21
|
Jiang L, Yang Q, He R, Wang G, Yi C, Si Y, Yao D, Xu P, Yu L, Li F. Edge-centric functional network predicts risk propensity in economic decision-making: evidence from a resting-state fMRI study. Cereb Cortex 2023:7162717. [PMID: 37191346 DOI: 10.1093/cercor/bhad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Despite node-centric studies revealing an association between resting-state functional connectivity and individual risk propensity, the prediction of future risk decisions remains undetermined. Herein, we applied a recently emerging edge-centric method, the edge community similarity network (ECSN), to alternatively describe the community structure of resting-state brain activity and to probe its contribution to predicting risk propensity during gambling. Results demonstrated that inter-individual variability of risk decisions correlates with the inter-subnetwork couplings spanning the visual network (VN) and default mode network (DMN), cingulo-opercular task control network, and sensory/somatomotor hand network (SSHN). Particularly, participants who have higher community similarity of these subnetworks during the resting state tend to choose riskier and higher yielding bets. And in contrast to low-risk propensity participants, those who behave high-risky show stronger couplings spanning the VN and SSHN/DMN. Eventually, based on the resting-state ECSN properties, the risk rate during the gambling task is effectively predicted by the multivariable linear regression model at the individual level. These findings provide new insights into the neural substrates of the inter-individual variability in risk propensity and new neuroimaging metrics to predict individual risk decisions in advance.
Collapse
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingqing Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runyang He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yajing Si
- School of Psychology, Xinxiang Medical University, Xinxiang 453003, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Liang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| |
Collapse
|
22
|
Cutts SA, Faskowitz J, Betzel RF, Sporns O. Uncovering individual differences in fine-scale dynamics of functional connectivity. Cereb Cortex 2023; 33:2375-2394. [PMID: 35690591 DOI: 10.1093/cercor/bhac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain-behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.
Collapse
Affiliation(s)
- Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
23
|
Rodriguez RX, Noble S, Tejavibulya L, Scheinost D. Leveraging edge-centric networks complements existing network-level inference for functional connectomes. Neuroimage 2022; 264:119742. [PMID: 36368501 PMCID: PMC9838718 DOI: 10.1016/j.neuroimage.2022.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The human connectome is modular with distinct brain regions clustering together to form large-scale communities, or networks. This concept has recently been leveraged in novel inferencing procedures by averaging the edge-level statistics within networks to induce more powerful inferencing at the network level. However, these networks are constructed based on the similarity between pairs of nodes. Emerging work has described novel edge-centric networks, which instead use the similarity between pairs of edges to construct networks. In this work, we use these edge-centric networks in a network-level inferencing procedure and compare this novel method to traditional inferential procedures and the network-level procedure using node-centric networks. We use data from the Human Connectome Project, the Healthy Brain Network, and the Philadelphia Neurodevelopmental Cohort and use a resampling technique with various sample sizes (n=40, 80, 120) to probe the power and specificity of each method. Across datasets and sample sizes, using the edge-centric networks outperforms using node-centric networks for inference as well as edge-level FDR correction and NBS. Additionally, the edge-centric networks were found to be more consistent in clustering effect sizes of similar values as compared to node-centric networks, although node-centric networks often had a lower average within-network effect size variability. Together, these findings suggest that using edge-centric networks for network-level inference can procure relatively powerful results while remaining similarly accurate to the underlying edge-level effects across networks, complementing previous inferential methods.
Collapse
Affiliation(s)
- Raimundo X. Rodriguez
- Interdepartmental Neuroscience Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA,Corresponding author. (R.X. Rodriguez)
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA,Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, 17 Hillhouse Avenue, New Haven, CT 06511, USA,Department of Statistics and Data Science, Yale University, 24 Hillhouse Avenue, New Haven, CT 06511, USA,Child Study Center, Yale School of Medicine, 230 South Frontage Road, New Haven, CT 06519, USA,Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT 06510, USA
| |
Collapse
|
24
|
Xu H, Wang L, Zuo C, Jiang J. Brain network analysis between Parkinson's Disease and Health Control based on edge functional connectivity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4805-4808. [PMID: 36085832 DOI: 10.1109/embc48229.2022.9871613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parkinson's Disease (PD) is the second largest neurodegenerative disease. Brain functional connectivity (FC) studies for PD were useful. In this study, we employed a novel brain network construction method, edge functional connectivity (eFC), to explore FC differences between healthy control (HC) subjects and PD patients. The data used in this study included 34 HCs and 47 PDs from Huashan Hospital, Fudan University, China. Resting state functional magnetic resonance imaging (rsfMRI) and clinical information were selected. Firstly, we constructed eFC brain network and calculated network matrix for the HC and PD groups. Then, we compared brain network matrix between eFC and the traditional nodal functional connectivity (nFC) method. Receiver operating characteristic curve (ROC) analysis was applied to validate the efficiency of the eFC brain network. The results showed that both nFC and eFC brain networks could identify significantly different characteristics between the HC and PD groups. Important hubs were mainly concentrated in visual network, sensorimotor network, subcortex and cerebellum. In addition, new hubs in basal ganglia and cerebellum regions were found in eFC. Furthermore, eFC achieved better classification results (AUC=0.985) than nFC (AUC=0.861) in discriminating PD from CN subjects.
Collapse
|
25
|
Idesis S, Faskowitz J, Betzel RF, Corbetta M, Sporns O, Deco G. Edge-centric analysis of stroke patients: An alternative approach for biomarkers of lesion recovery. Neuroimage Clin 2022; 35:103055. [PMID: 35661469 PMCID: PMC9163596 DOI: 10.1016/j.nicl.2022.103055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Most neuroimaging studies of post-stroke recovery rely on analyses derived from standard node-centric functional connectivity to map the distributed effects in stroke patients. Here, given the importance of nonlocal and diffuse damage, we use an edge-centric approach to functional connectivity in order to provide an alternative description of the effects of this disorder. These techniques allow for the rendering of metrics such as normalized entropy, which describes the diversity of edge communities at each node. Moreover, the approach enables the identification of high amplitude co-fluctuations in fMRI time series. We found that normalized entropy is associated with stroke lesion severity and continually increases across the time of patients' recovery. Furthermore, high amplitude co-fluctuations not only relate to the lesion severity but are also associated with patients' level of recovery. The current study is the first edge-centric application for a clinical population in a longitudinal dataset and demonstrates how a different perspective for functional data analysis can further characterize topographic modulations of brain dynamics.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain.
| | - Joshua Faskowitz
- Department of Psychological and Brain Science, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Richard F Betzel
- Department of Psychological and Brain Science, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States; Network Science Institute, Indiana University, Bloomington, IN 47405, United States
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, via Orus 2/B, 35129 Padova, Italy; Department of Neuroscience (DNS), University of Padova, via Giustiniani 2, 35128 Padova, Italy; Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, United States; Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, United States; VIMM, Venetian Institute of Molecular Medicine (VIMM), Biomedical Foundation, via Orus 2, 35129 Padova, Italy
| | - Olaf Sporns
- Department of Psychological and Brain Science, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States; Network Science Institute, Indiana University, Bloomington, IN 47405, United States
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias i Fargas 25-27, 08005 Barcelona, Catalonia, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Cortico-subcortical interactions in overlapping communities of edge functional connectivity. Neuroimage 2022; 250:118971. [PMID: 35131435 PMCID: PMC9903436 DOI: 10.1016/j.neuroimage.2022.118971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Both cortical and subcortical regions can be functionally organized into networks. Regions of the basal ganglia are extensively interconnected with the cortex via reciprocal connections that relay and modulate cortical function. Here we employ an edge-centric approach, which computes co-fluctuations among region pairs in a network to investigate the role and interaction of subcortical regions with cortical systems. By clustering edges into communities, we show that cortical systems and subcortical regions couple via multiple edge communities, with hippocampus and amygdala having a distinct pattern from striatum and thalamus. We show that the edge community structure of cortical networks is highly similar to one obtained from cortical nodes when the subcortex is present in the network. Additionally, we show that the edge community profile of both cortical and subcortical nodes can be estimates solely from cortico-subcortical interactions. Finally, we used a motif analysis focusing on edge community triads where a subcortical region coupled to two cortical regions and found that two community triads where one community couples the subcortex to the cortex were overrepresented. In summary, our results show organized coupling of the subcortex to the cortex that may play a role in cortical organization of primary sensorimotor/attention and heteromodal systems and puts forth the motif analysis of edge community triads as a promising method for investigation of communication patterns in networks.
Collapse
|
27
|
Individualized event structure drives individual differences in whole-brain functional connectivity. Neuroimage 2022; 252:118993. [DOI: 10.1016/j.neuroimage.2022.118993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/25/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023] Open
|