1
|
Gai Y, Ma G, Yang S, Hu Z, Ma Y, He R, Zhang Y, Huang S, Azzaz HH, Gu Z, Mao S, Ghaffari MH, Chen Y. Effects of Maternal Blood β-Hydroxybutyrate on Brown Adipose Tissue Functions and Thermogenic and Metabolic Health in Neonatal Calves. J Dairy Sci 2025:S0022-0302(25)00233-4. [PMID: 40222674 DOI: 10.3168/jds.2024-26123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025]
Abstract
Maternal metabolic health, particularly during late pregnancy, plays a crucial role in fetal development and postnatal metabolic function. Elevated levels of β-hydroxybutyrate (BHB) in dry cows, commonly observed in late gestation, may affect offspring development, but the effects on brown adipose tissue (BAT) and metabolic health remain unclear. In this study, 60 pregnant Holstein dairy cows were categorized into 2 groups based on serum BHB concentrations measured at 1, 3, 5 and 7 wk after dry-off: Maternal-Low-BHB (n = 30; mean ± SEM, 0.21 ± 0.005 mM) and Maternal-High-BHB (n = 30; mean ± SEM, 0.64 ± 0.02 mM). Blood metabolites, including BHB, nonesterified fatty acids (NEFA) and glucose, were monitored throughout the dry period. Calves born from these cows were evaluated for body growth, body temperature, glucose sensitivity, fecal and cough score during the first month of life, with perirenal BAT and skin samples collected for analysis of thermogenic gene expression. Expression of stress genes, including Cold-Inducible RNA-Binding Protein (CIRBP), Heat Shock Protein 70 (HSP70) and Heat Shock Factor Binding Protein 1 (HSBP1), was analyzed in skin tissue. Expression of thermogenic genes, including Uncoupling Protein 1 (UCP-1), Cyclic AMP Response Element-Binding Protein 4 (CREBP4) and Carnitine Palmitoyltransferase 1B (CPT1B), and protein contents of UCP-1, Activated Receptor Gamma Coactivator 1 Alpha (PGC-1a) were analyzed in BAT. In vitro, stromal vascular fractions (SVFs) were also isolated in calf's BAT, and further induced for brown adipocyte formation with dosed BHB supplementation. Results showed no differences in birth weight, body size and body temperatures of calves born to Maternal High BHB cows compared with calves born to Maternal Low BHB cows. However, the calves from the Maternal High BHB group had higher expressions of stress genes in the skin, and decreased BAT mass and expression of thermogenic genes. Compared with the Maternal Low BHB group, one-month-old calves in the Maternal High BHB group also showed significantly lower BAT mass, decreased expression of thermogenic genes such as UCP-1, CREBP4 and CPT1B, and decreased mitochondrial density, indicating impaired BAT development. In addition, the calves from the Maternal High BHB group showed reduced glucose sensitivity, as evidenced by their inability to maintain stable blood glucose levels during a glucose tolerance test. Protein concentrations of UCP-1 and PGC-1a were significantly lower in the BAT of calves born to Maternal High BHB cows. In vitro, BHB supplementation inhibited brown adipocyte differentiation and thermogenesis, supporting the elevated maternal BHB impairs brown adipogenesis and mitochondrial biogenesis. Overall, this study demonstrates that calves born from elevated maternal BHB levels (∼0.64 mM) within the normal physiological range in dry period significantly had impaired perinatal BAT development, thermogenesis, and glucose metabolism, highlighting the roles of maternal metabolic health in programming metabolic and thermoregulatory capacity in offspring.
Collapse
Affiliation(s)
- Yang Gai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiling Ma
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuyan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Hu
- College of Animal Science, Shandong Agricultural University, Taian 21018, China
| | - Yulin Ma
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Rui He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shilong Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hossam H Azzaz
- Dairy Department National Research Center, Giza, Cairo 12622, Egypt
| | - Zhaobing Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Morteza H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Yanting Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.; National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing, 210095 China.
| |
Collapse
|
2
|
Levi J, Das M, Vasanawala MS, Behl D, Pomper M, Forde PM, Nakajima E, Sayre J, Shen B, Cabrera H, Del Mar N, Gullen M, Pierini M, Cox L, Lokre O, Perk T, Chae HD. [ 18F]F-AraG Uptake in Vertebral Bone Marrow May Predict Survival in Patients with Non-Small Cell Lung Cancer Treated with Anti-PD-(L)1 Immunotherapy. J Nucl Med 2024; 65:1869-1875. [PMID: 39448270 PMCID: PMC11619592 DOI: 10.2967/jnumed.124.268253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Despite the systemic impact of both cancer and the associated immune response, immuno-PET is predominantly centered on assessment of the immune milieu within the tumor microenvironment. The aim of this study was to assess the value of [18F]F-AraG PET imaging as a noninvasive method for evaluation of system-wide immune status of patients with non-small cell lung cancer before starting immunotherapy. Methods: Eleven patients with advanced non-small cell lung cancer were imaged with [18F]F-AraG before starting immunotherapy. Diagnostic [18F]FDG PET/CT scans were analyzed to assess differences in the extent of disease among patients. SUVmax, SUVmean, and total SUV (SUVtotal) from all tumor lesions, active lymph nodes, spleen, vertebral bone marrow, liver, thyroid, heart, and bowel were extracted from the baseline [18F]F-AraG scans, and discriminant and Kaplan-Meier analyses were performed to test their ability to predict patient response and overall survival. Results: The extent of the disease was variable in the patient cohort, but none of the [18F]FDG biomarkers associated with tumor burden (SUVmax, total metabolic tumor volume, and total lesion glycolysis) was predictive of patient survival. The differences in the [18F]F-AraG and [18F]FDG distribution were observed both within and between lesions, confirming that they capture distinct aspects of the tumor microenvironment. Of the 3 SUV parameters studied, [18F]F-AraG SUVtotal provided a dynamic range suitable for stratifying tumors or patients according to their immune activity. [18F]F-AraG SUVtotal measured in the lumbar and sacral vertebrae differentiated between patients who progressed on therapy and those who did not with 90.9% and 81.8% accuracy, respectively. The Kaplan-Meier analysis revealed that patients with high [18F]F-AraG SUVtotal in the lumbar bone marrow had significantly lower probability of survival than those with a low signal (P = 0.0003). Conclusion: This study highlights the significance of assessing systemic immunity and indicates the potential of the [18F]F-AraG bone marrow signal as a predictive imaging biomarker for patient stratification and treatment guidance.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Inc., San Francisco, California;
| | - Millie Das
- Department of Medicine, Stanford University, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Minal S Vasanawala
- Department of Medicine, Stanford University, Palo Alto, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Deepti Behl
- Sutter Medical Center, Sacramento, California
| | - Martin Pomper
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | | | | | - James Sayre
- Department of Radiology, David Geffen School of Medicine at UCLA, UCLA Center for the Health Sciences, Los Angeles, California
| | - Bin Shen
- Department of Radiology, Stanford University, Palo Alto, California; and
| | - Hilda Cabrera
- CellSight Technologies Inc., San Francisco, California
| | - Niko Del Mar
- Department of Medicine, Stanford University, Palo Alto, California
| | | | | | - Laura Cox
- Sutter Medical Center, Sacramento, California
| | | | | | - Hee-Don Chae
- CellSight Technologies Inc., San Francisco, California
| |
Collapse
|
3
|
Jeon J, Lee SW, Park HJ, Park YH, Kim TC, Lee S, Lee S, Van Kaer L, Hong S. Overexpression of Chromatin Remodeling Factor SRG3 Down-Regulates IL1β-Expressing M1 Macrophages and IL17-Producing T Cells in Adipose Tissues. Int J Mol Sci 2024; 25:11681. [PMID: 39519233 PMCID: PMC11546064 DOI: 10.3390/ijms252111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The SWItch3-related gene (SRG3) is a core component of ATP-dependent SWI/SNF complexes, which are crucial for regulating immune cell development and function (e.g., macrophages and CD4+ T cells), embryonic development, and non-immune cell differentiation. Notably, SRG3 overexpression has been shown to polarize macrophages in the central nervous system toward an anti-inflammatory M2 phenotype, thereby protecting against the development of experimental autoimmune encephalomyelitis in mice. However, the effect of SRG3 on immune responses in adipose tissues remains unclear. To address this issue, we examined the cellularity and inflammatory status of adipose tissue in B10.PL mice overexpressing the SRG3 gene under the ubiquitous β-actin promoter (SRG3β-actin). Interestingly, SRG3 overexpression significantly reduced adipocyte size in both white and brown adipose tissues, without affecting the overall adipose tissue weight. Such phenotypic effects might be associated with the improved glucose tolerance observed in SRG3β-actin B10.PL mice. Moreover, we found that SRG3 overexpression down-regulates IL1β-expressing M1 macrophages, leading to a significant decrease in the M1/M2 macrophage ratio. Additionally, SRG3β-actin B10.PL mice showed a dramatic reduction in neutrophils as well as IL1β- and IL17-producing T cells in adipose tissues. Taken together, our results indicate that SRG3 plays a vital role in maintaining immune homeostasis within adipose tissues.
Collapse
Affiliation(s)
- Jungmin Jeon
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju 26339, Republic of Korea;
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Sujin Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Seyeong Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea; (J.J.); (H.J.P.); (Y.H.P.); (T.-C.K.); (S.L.); (S.L.)
| |
Collapse
|
4
|
Snyder M, Liu YK, Shang R, Xu H, Thrift C, Chen X, Chen J, Kim KH, Qiu J, Bi P, Tao WA, Kuang S. LETMD1 regulates mitochondrial protein synthesis and import to guard brown fat mitochondrial integrity and function. iScience 2024; 27:110944. [PMID: 39398236 PMCID: PMC11467678 DOI: 10.1016/j.isci.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Thermogenic brown adipocytes (BAs) catabolize lipids to generate heat, representing powerful agents against the growing global obesity epidemic. We and others reported recently that LETMD1 is a BA-specific protein essential for mitochondrial structure and function, but the mechanisms of action remain unclear. We performed sequential digestion to demonstrate that LETMD1 is a trans-inner mitochondrial membrane protein. We then generated UCP1Cre-driven BA-specific Letmd1 knockout (Letmd1 UKO ) mice to show that Letmd1 UKO leads to protein aggregation, reactive oxidative stress, hyperpolarization, and mitophagy in BAs. We further employed TurboID proximity labeling to identify LETMD1-interacting proteins. Many candidate proteins are associated with mitochondrial ribosomes, protein import machinery, and electron transport chain complexes (ETC-I and ETC-IV). Using quantitative proteomics, we confirmed the elevated aggregations of ETC and mitochondrial ribosomal proteins, impairing mitochondrial protein synthesis in the Letmd1 UKO BAs. Therefore, LETMD1 may function to maintain mitochondrial proteostasis through regulating import of nuclear-encoded proteins and local protein translation in brown fat mitochondria.
Collapse
Affiliation(s)
- Madigan Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Haowei Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Charlie Thrift
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Wan Q, Luo S, Lu Q, Guan C, Zhang H, Deng Z. Protective effects of puerarin on metabolic diseases: Emphasis on the therapeutical effects and the underlying molecular mechanisms. Biomed Pharmacother 2024; 179:117319. [PMID: 39197190 DOI: 10.1016/j.biopha.2024.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic diseases (MetD) such as diabetes mellitus, obesity, and hyperlipidemia have become global health challenges. As a naturally occurring plant component, puerarin has been verified to possess a wide range of pharmacological effects including lowering blood glucose, improving insulin resistance, and regulating lipid metabolism, which has attracted extensive attention in recent years, and its potential in the treatment of MetD has been highly acclaimed. In addition, puerarin has exhibited antioxidant, anti-inflammatory, and cardiovascular protective effects, which are of great significance in the prevention and treatment of MetD. This article comprehensively summarizes the research progress of puerarin in the treatment of MetD and explores its pharmacological mechanisms, clinical applications, and future perspectives. More importantly, this review provided a list of the involved molecular mechanims in treating MetD of puerarin. Taking into account these conclusions, it may provide a strong foundation for the optimized use of puerarin in the treatment of patients suffering from MetD.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Medical Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China; Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhiyan Deng
- Department of Gastroenterology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua 321017, China.
| |
Collapse
|
6
|
Levi J, Guglielmetti C, Henrich TJ, Yoon JC, Gokhale PC, Reardon DA, Packiasamy J, Huynh L, Cabrera H, Ruzevich M, Blecha J, Peluso MJ, Huynh TL, An SM, Dornan M, Belanger AP, Nguyen QD, Seo Y, Song H, Chaumeil MM, VanBrocklin HF, Chae HD. [ 18F]F-AraG imaging reveals association between neuroinflammation and brown- and bone marrow adipose tissue. Commun Biol 2024; 7:793. [PMID: 38951146 PMCID: PMC11217368 DOI: 10.1038/s42003-024-06494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, USA.
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | | | | | | | - Lyna Huynh
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | - Hilda Cabrera
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | | | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Mark Dornan
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anthony P Belanger
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hee-Don Chae
- CellSight Technologies Incorporated, San Francisco, CA, USA
| |
Collapse
|
7
|
Mota CMD, Madden CJ. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat Rev Neurosci 2024; 25:143-158. [PMID: 38316956 DOI: 10.1038/s41583-023-00785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Romeo S, Jamialahmadi O, De Vincentis A, Tavaglione F, Malvestiti F, Li-Gao R, Mancina R, Alvarez M, Gelev K, Maurotti S, Vespasiani-Gentilucci U, Rosendaal F, Kozlitina J, Pajukanta P, Pattou F, Valenti L. Partitioned polygenic risk scores identify distinct types of metabolic dysfunction-associated steatotic liver disease. RESEARCH SQUARE 2024:rs.3.rs-3878807. [PMID: 38405802 PMCID: PMC10889080 DOI: 10.21203/rs.3.rs-3878807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses an excess of triglycerides in the liver, which can lead to cirrhosis and liver cancer. While there is solid epidemiological evidence of MASLD coexisting with cardiometabolic disease, several leading genetic risk factors for MASLD do not increase the risk of cardiovascular disease, suggesting no causal relationship between MASLD and cardiometabolic derangement. In this work, we leveraged measurements of visceral adiposity and identified 27 novel genetic loci associated with MASLD. Among these loci, we replicated 6 in several independent cohorts. Next, we generated two partitioned polygenic risk scores (PRS) based on the mechanism of genetic association with MASLD encompassing intra-hepatic lipoprotein retention. The two PRS suggest the presence of at least two distinct types of MASLD, one confined to the liver resulting in a more aggressive liver disease and one that is systemic and results in a higher risk of cardiometabolic disease.
Collapse
Affiliation(s)
- Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg
| | | | - Antonio De Vincentis
- Operative Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | | | | | - Rosellina Mancina
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xing Z, Du M, Zhen Y, Chen J, Li D, Liu R, Zheng J. LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis: A protective mechanism in the pathogenesis of atherosclerosis. Cell Signal 2023; 112:110907. [PMID: 37769890 DOI: 10.1016/j.cellsig.2023.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Atherosclerosis (AS), a metabolic disorder, is usually caused by chronic inflammation. LETM1 Domain-Containing Protein 1 (LETMD1) is a mitochondrial outer membrane protein required for mitochondrial structure. This study aims to evaluate the functional role of LETMD1 in endothelial pathogenesis of AS. Oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) and high-fat diet apolipoprotein E-deficient (ApoE-/-) mice were used to establish in vitro and in vivo models, respectively. Recombinant adenovirus vectors were constructed to investigate the role of LETMD1 in AS. mRNA sequencing was used to explore the effect of LETMD1 overexpression on gene expression in ox-LDL-induced HUVECs. A dual-luciferase reporting assay and chromatin immunoprecipitation (ChIP)-PCR were further conducted to verify the relationship between KLF4 and LETMD1. Results showed that LETMD1 was highly expressed in the aortas of atherosclerotic animals. LETMD1 overexpression reduced the expression of inflammatory factors, pyroptosis, ROS production, and NF-κB activation in ox-LDL-induced HUVECs, whereas LETMD1 knockdown had the opposite impact. LETMD1 overexpression was involved in regulating gene expression in ox-LDL-induced HUVECs. Overexpression of LETMD1 in mice reduced serum lipid levels as well as atherosclerotic lesions in the aortic roots. Furthermore, LETMD1 overexpression suppressed inflammatory reactions, cell pyroptosis, nuclear p65 protein level, cell apoptosis, and ROS generation in the aortas of AS mice. KLF4 (Krüppel-like factor 4) was found to be the transcriptional regulator of LETMD1. In conclusion, LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis, which is a mechanism inhibiting the development of atherosclerosis.
Collapse
Affiliation(s)
- Zeyu Xing
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Jie Chen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Dongdong Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Ruyin Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, People's Republic of China..
| |
Collapse
|
10
|
Abstract
In this review, we provide a brief synopsis of the connections between adipose tissue and metabolic health and highlight some recent developments in understanding and exploiting adipocyte biology. Adipose tissue plays critical roles in the regulation of systemic glucose and lipid metabolism and secretes bioactive molecules possessing endocrine, paracrine, and autocrine functions. Dysfunctional adipose tissue has a detrimental impact on metabolic health and is intimately involved in key aspects of metabolic diseases such as insulin resistance, lipid overload, inflammation, and organelle stress. Differences in the distribution of fat depots and adipose characteristics relate to divergent degrees of metabolic dysfunction found in metabolically healthy and unhealthy obese individuals. Thermogenic adipocytes increase energy expenditure via mitochondrial uncoupling or adenosine triphosphate-consuming futile substrate cycles, while functioning as a metabolic sink and participating in crosstalk with other metabolic organs. Manipulation of adipose tissue provides a wealth of opportunities to intervene and combat the progression of associated metabolic diseases. We discuss current treatment modalities for obesity including incretin hormone analogs and touch upon emerging strategies with therapeutic potential including exosome-based therapy, pharmacological activation of brown and beige adipocyte thermogenesis, and administration or inhibition of adipocyte-derived factors.
Collapse
Affiliation(s)
- Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Seung-Hee Cho
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - John C. Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
11
|
Park A, Kim KE, Park I, Lee SH, Park KY, Jung M, Li X, Sleiman MB, Lee SJ, Kim DS, Kim J, Lim DS, Woo EJ, Lee EW, Han BS, Oh KJ, Lee SC, Auwerx J, Mun JY, Rhee HW, Kim WK, Bae KH, Suh JM. Mitochondrial matrix protein LETMD1 maintains thermogenic capacity of brown adipose tissue in male mice. Nat Commun 2023; 14:3746. [PMID: 37353518 PMCID: PMC10290150 DOI: 10.1038/s41467-023-39106-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.
Collapse
Affiliation(s)
- Anna Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang-Eun Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Isaac Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Kun-Young Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Su Jeong Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Dae-Soo Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Digital Biotech Innovation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, KAIST Stem Cell Center, Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Eui-Jeon Woo
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Eun Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Baek Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
- Biodefense Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Xiao H, Bozi LHM, Sun Y, Riley CL, Philip VM, Chen M, Li J, Zhang T, Mills EL, Emont MP, Sun W, Reddy A, Garrity R, Long J, Becher T, Vitas LP, Laznik-Bogoslavski D, Ordonez M, Liu X, Chen X, Wang Y, Liu W, Tran N, Liu Y, Zhang Y, Cypess AM, White AP, He Y, Deng R, Schöder H, Paulo JA, Jedrychowski MP, Banks AS, Tseng YH, Cohen P, Tsai LT, Rosen ED, Klein S, Chondronikola M, McAllister FE, Van Bruggen N, Huttlin EL, Spiegelman BM, Churchill GA, Gygi SP, Chouchani ET. Architecture of the outbred brown fat proteome defines regulators of metabolic physiology. Cell 2022; 185:4654-4673.e28. [PMID: 36334589 PMCID: PMC10040263 DOI: 10.1016/j.cell.2022.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Brown adipose tissue (BAT) regulates metabolic physiology. However, nearly all mechanistic studies of BAT protein function occur in a single inbred mouse strain, which has limited the understanding of generalizable mechanisms of BAT regulation over physiology. Here, we perform deep quantitative proteomics of BAT across a cohort of 163 genetically defined diversity outbred mice, a model that parallels the genetic and phenotypic variation found in humans. We leverage this diversity to define the functional architecture of the outbred BAT proteome, comprising 10,479 proteins. We assign co-operative functions to 2,578 proteins, enabling systematic discovery of regulators of BAT. We also identify 638 proteins that correlate with protection from, or sensitivity to, at least one parameter of metabolic disease. We use these findings to uncover SFXN5, LETMD1, and ATP1A2 as modulators of BAT thermogenesis or adiposity, and provide OPABAT as a resource for understanding the conserved mechanisms of BAT regulation over metabolic physiology.
Collapse
Affiliation(s)
- Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Luiz H M Bozi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher L Riley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mandy Chen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Wenfei Sun
- Department of Bioengineering, Stanford University, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University, CA 94305, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiani Long
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tobias Becher
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Laura Potano Vitas
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiong Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yun Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Weihai Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nhien Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yitong Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Zhang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew P White
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yuchen He
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca Deng
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY 10065, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Song R, Du Y, Li P, Zhou L, Zheng H, Lu X, Wang S, Ma W, Zhang H, Li X. Deletion of Letmd1 leads to the disruption of mitochondrial function in brown adipose tissue. Biochimie 2022; 201:100-115. [PMID: 35817133 DOI: 10.1016/j.biochi.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/06/2022]
Abstract
Human cervical cancer oncogene (HCCR-1), also named as LETMD1, is an LETM-domain containing outer mitochondrial membrane protein which plays an important role in carcinogenesis. The present study found that the loss of Letmd1 in mice led to severe abnormities, such as brown adipose tissue (BAT) whitening, impaired thermogenesis of both BAT and beige fat, cold intolerance, diet-induced obesity, glucose intolerance and insulin resistance. Mechanically, the deletion of Letmd1 in BAT caused decreased level of both mitochondrial and intracellular Ca2+. The reduced intracellular Ca2+ could suppress the fission of mitochondria and ultimately lead to the disruption of BAT thermogenesis by regulating mitochondrial structures and functions. This study indicates that LETMD1 played a crucial role in BAT thermogenesis and energy homeostasis through regulating mitochondrial structures and functions, which provides a novel insight into therapeutic target exploration from oncogenes for metabolic disorders.
Collapse
Affiliation(s)
- Runjie Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaqi Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lijun Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Han Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaohui Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shenghong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenqiang Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
14
|
Pan R, Chen Y. Latest Advancements on Combating Obesity by Targeting Human Brown/Beige Adipose Tissues. Front Endocrinol (Lausanne) 2022; 13:884944. [PMID: 35600577 PMCID: PMC9114493 DOI: 10.3389/fendo.2022.884944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity is defined as overaccumulation of white adipose tissue in the body, mainly under the skin (subcutaneous adiposity) or in the abdominal cavity (visceral adiposity). It could be the origin of various metabolic disorders including hypertension, hyperlipidemia, type 2 diabetes, cardiovascular diseases etc. Active adipose tissue was discovered in humans through 18F-fluorodeoxyglucose Positron Emission Tomography coupled with Computer Tomography (18F FDG-PET/CT), which was initially performed for tumor scanning. Since human active adipose tissue is probably composed of brown and beige adipose tissues and they burn white adipose tissue to generate heat, targeting human brown/beige adipose tissue to induce their thermogenic function is considered significant to combat obesity. In this review, we describe the latest advancements on promising therapeutic strategies to combat obesity by targeting human thermogenic adipose tissues to achieve further metabolic balance in humans.
Collapse
Affiliation(s)
- Ruping Pan
- Department of nuclear medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- Laboratory of Endocrinology and Metabolism, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Yong Chen,
| |
Collapse
|