1
|
Raven F, Vega Medina A, Schmidt K, He A, Vankampen AA, Balendran V, Aton SJ. Brief sleep disruption alters synaptic structures among hippocampal and neocortical somatostatin-expressing interneurons. Sleep 2025; 48:zsaf064. [PMID: 40096531 PMCID: PMC12163128 DOI: 10.1093/sleep/zsaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
STUDY OBJECTIVES Brief sleep loss alters cognition and synaptic structures of principal neurons in the hippocampus and neocortex. However, while in vivo recording and bioinformatic data suggest that inhibitory interneurons are more strongly affected by sleep loss, it is unclear how sleep and sleep deprivation (SD) affect interneurons' synapses. Disruption of the somatostatin-expressing (SST+) interneuron population seems to be a critical early sign of neuropathology in Alzheimer's dementia, schizophrenia, and bipolar disorder-and the risk of developing all three is increased by habitual sleep loss. We aimed to test how the synaptic structures of SST+ interneurons in various brain regions are affected by brief sleep disruption. METHODS We used Brainbow 3.0 to label SST+ interneurons in the dorsal hippocampus, prefrontal cortex, and visual cortex of male SST-CRE transgenic mice, then compared synaptic structures in labeled neurons after a 6-hour period of ad lib sleep, or gentle handling SD starting at lights on. RESULTS Dendritic spine density among SST+ interneurons in both hippocampus and neocortex was altered in a subregion-specific manner, with increased overall and thin spine density in CA1, dramatic increases in spine volume and surface area in CA3, and small but significant changes (primarily decreases) in spine size in CA1, PFC, and V1. CONCLUSIONS We suggest that the synaptic connectivity of SST+ interneurons is significantly altered in a brain region-specific manner by a few hours of sleep loss. This suggests a cell type-specific mechanism by which sleep loss disrupts cognition and alters excitatory-inhibitory balance in brain networks.
Collapse
Affiliation(s)
- Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexis Vega Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kailynn Schmidt
- University of New England College of Osteopathic Medicine, Biddeford, ME, USA
| | - Annie He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anna A Vankampen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vinodh Balendran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Lopes-Dos-Santos V, Brizee D, Dupret D. Spatio-temporal organization of network activity patterns in the hippocampus. Cell Rep 2025; 44:115808. [PMID: 40478735 PMCID: PMC7617751 DOI: 10.1016/j.celrep.2025.115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/04/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
Understanding how coordinated neural networks support brain functions remains a central goal in neuroscience. The hippocampus, with its layered architecture and structured inputs to diverse cell populations, is a tractable model for dissecting operating microcircuits through the analysis of electrophysiological signatures. We investigated hippocampal network patterns in behaving mice by developing a low-dimensional embedding of local field potentials recorded along the CA1-to-dentate gyrus axis. This embedding revealed layer-specific gamma profiles reflecting spatially organized rhythms and their associated principal cell-interneuron firing motifs. Moreover, firing behaviors along the CA1 radial axis distinguished between deep and superficial principal cells, as well as between interneurons from the pyramidal, radiatum, and lacunosum-moleculare layers. These findings provide a comprehensive map of spatiotemporal activity patterns underlying hippocampal network functions.
Collapse
Affiliation(s)
- Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
3
|
Vetere LM, Galas AM, Vaughan N, Feng Y, Wick ZC, Philipsberg PA, Liobimova O, Fernandez-Ruiz A, Cai DJ, Shuman T. Medial entorhinal-hippocampal desynchronization parallels the emergence of memory impairment in a mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633171. [PMID: 39868201 PMCID: PMC11761809 DOI: 10.1101/2025.01.15.633171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology. We found that reduced hippocampal theta power, reduced MEC-CA1 theta coherence, and altered phase locking of MEC and hippocampal neurons all coincided with the emergence of spatial memory impairment in 3xTg mice. Together, these findings indicate that disrupted temporal coordination of neural activity in the MEC-hippocampal system parallels the emergence of memory impairment in a model of AD pathology.
Collapse
Affiliation(s)
| | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
4
|
Bello-Medina PC, Díaz-Muñoz M, Martín del Campo ST, Pacheco-Moisés FP, Flores Miguel C, Cobián Cervantes R, García Solano PB, Navarro-Meza M. A maternal low-protein diet results in sex-specific differences in synaptophysin expression and milk fatty acid profiles in neonatal rats. J Nutr Sci 2024; 13:e64. [PMID: 39469193 PMCID: PMC11514622 DOI: 10.1017/jns.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/30/2024] Open
Abstract
The developmental origins of health and disease hypothesis have highlighted the link between early life environment and long-term health outcomes in offspring. For example, maternal protein restriction during pregnancy and lactation can result in adverse metabolic and cognitive outcomes in offspring postnatal. Hence, in the present study, we assess whether an isocaloric low-protein diet (ILPD) affects the fatty acid profile in breast milk, the hippocampal synaptophysin (Syn) ratio, and the oxidative stress markers in the neonatal stage of male and female offspring. The aim of this work was to assess the effect of an ILPD on the fatty acid profile in breast milk, quantified the hippocampal synaptophysin (Syn) ratio and oxidative stress markers in neonatal stage of male and female offspring. Female Wistar rats were fed with either a control diet or an ILPD during gestation to day 10 of lactation. Oxidative stress markers were assessed in serum and liver. All quantifications were done at postnatal day 10. The results showed: ILPD led to decreases of 38.5% and 17.4% in breast milk volume and polyunsaturated fatty acids content. Significant decreases of hippocampal Syn ratio in male offspring (decreases of 98% in hippocampal CA1 pyramidal and CA1 oriens, 83%, stratum pyramidal in CA3, 80%, stratum lucidum in CA3, and 81% stratum oriens in CA3). Male offspring showed an increase in pro-oxidant status in serum and liver. Thus, the data suggest that male offspring are more vulnerable than females to an ILPD during gestation and lactation.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Sandra Teresita Martín del Campo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
- Food Engineering and Statistical Independent Consultant, Querétaro, México
| | | | - Claudia Flores Miguel
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Raquel Cobián Cervantes
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Perla Belén García Solano
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Mónica Navarro-Meza
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Departamento de Ciencias Clínicas, División de Ciencias de Salud, Centro Universitario del Sur, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
5
|
Carretero-Guillén A, Treviño M, Gómez-Climent MÁ, Dogbevia GK, Bertocchi I, Sprengel R, Larkum ME, Vlachos A, Gruart A, Delgado-García JM, Hasan MT. Dentate gyrus is needed for memory retrieval. Mol Psychiatry 2024; 29:2939-2950. [PMID: 38609585 PMCID: PMC11449802 DOI: 10.1038/s41380-024-02546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.
Collapse
Affiliation(s)
- Alejandro Carretero-Guillén
- Division of Neuroscience, University Pablo de Olavide, Seville, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Mario Treviño
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, 44130, México
| | | | - Godwin K Dogbevia
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Health Canada, Ottawa, ON, Canada
| | - Ilaria Bertocchi
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin, Turin, Italy
| | - Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Agnès Gruart
- Division of Neuroscience, University Pablo de Olavide, Seville, Spain
| | | | - Mazahir T Hasan
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Max Planck Institute for Medical Research, Heidelberg, Germany.
- NeuroCure, Charité - Universitätsmedizin, Berlin, Germany.
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
6
|
Zhang WY, Wei QQ, Zhang T, Wang CS, Chen J, Wang JH, Xie X, Jiang P. Microglial AKAP8L: a key mediator in diabetes-associated cognitive impairment via autophagy inhibition and neuroinflammation triggering. J Neuroinflammation 2024; 21:177. [PMID: 39033121 PMCID: PMC11264944 DOI: 10.1186/s12974-024-03170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Diabetes-associated cognitive impairment (DACI) poses a significant challenge to the self-management of diabetes, markedly elevating the risk of adverse complications. A burgeoning body of evidence implicates microglia as a central player in the pathogenesis of DACI. METHODS We utilized proteomics to identify potential biomarkers in high glucose (HG)-treated microglia, followed by gene knockdown techniques for mechanistic validation in vitro and in vivo. RESULTS Our proteomic analysis identified a significant upregulation of AKAP8L in HG-treated microglia, with concurrent dysregulation of autophagy and inflammation markers, making AKAP8L a novel biomarker of interest. Notably, the accumulation of AKAP8L was specific to HG-treated microglia, with no observed changes in co-cultured astrocytes or neurons, a pattern that was mirrored in streptozotocin (STZ)-induced diabetic mice. Further studies through co-immunoprecipitation and proximity ligation assay indicated that the elevated AKAP8L in HG-treated microglial cells interacts with the mTORC1. In the STZ mouse model, we demonstrated that both AKAP8L knockdown and rapamycin treatment significantly enhanced cognitive function, as evidenced by improved performance in the Morris water maze, and reduced microglial activation. Moreover, these interventions effectively suppressed mTORC1 signaling, normalized autophagic flux, mitigated neuroinflammation, and decreased pyroptosis. CONCLUSIONS Our findings highlight the critical role of AKAP8L in the development of DACI. By interacting with mTORC1, AKAP8L appears to obstruct autophagic processes and initiate a cascade of neuroinflammatory responses. The identification of AKAP8L as a key mediator in DACI opens up new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528403, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 510006, China
| | - Qian-Qian Wei
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528403, China
- School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 510006, China
| | - Tao Zhang
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Chang-Shui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Jing Chen
- Neurobiology Key Laboratory, Jining Medical University, Jining, 272067, China
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jian-Hua Wang
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Xin Xie
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People ' s Hospital, Shandong First Medical University, Jining, 272000, China.
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China.
| |
Collapse
|
7
|
Li Y, Hou S, Li F, Long S, Yang Y, Li Y, Zhao L, Yu Y. Preoperative recovery sleep ameliorates postoperative cognitive dysfunction aggravated by sleep fragmentation in aged mice by enhancing EEG delta-wave activity and LFP theta oscillation in hippocampal CA1. Brain Res Bull 2024; 211:110945. [PMID: 38608544 DOI: 10.1016/j.brainresbull.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shaowei Hou
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Feixiang Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Siwen Long
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yue Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
8
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. eLife 2024; 12:RP90597. [PMID: 38345923 PMCID: PMC10942544 DOI: 10.7554/elife.90597] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Previously, Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression (Wheeler et al., 2015). Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W Wheeler
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Alexander O Komendantov
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| |
Collapse
|
9
|
Santiago RMM, Lopes-Dos-Santos V, Aery Jones EA, Huang Y, Dupret D, Tort ABL. Waveform-based classification of dentate spikes. Sci Rep 2024; 14:2989. [PMID: 38316828 PMCID: PMC10844627 DOI: 10.1038/s41598-024-53075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M M Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B L Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
10
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540597. [PMID: 37425693 PMCID: PMC10327012 DOI: 10.1101/2023.05.12.540597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression. Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W. Wheeler
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Jeffrey D. Kopsick
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Alexander O. Komendantov
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| |
Collapse
|
11
|
Zhao M, Gu H, Pan W, Liu P, Zhu T, Shang H, Jia M, Yang J. SynCAM1 deficiency in the hippocampal parvalbumin interneurons contributes to sevoflurane-induced cognitive impairment in neonatal rats. CNS Neurosci Ther 2024; 30:e14554. [PMID: 38105652 PMCID: PMC10805405 DOI: 10.1111/cns.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
AIMS Sevoflurane is widely used for general anesthesia in children. Previous studies reported that multiple neonatal exposures to sevoflurane can induce long-term cognitive impairment in adolescent rats, but the underlying mechanisms were not defined. METHODS Postnatal day 6 (P6) to P8 rat pups were exposed to 30% oxygen with or without 3% sevoflurane balanced with air. The Y maze test (YMT) and Morris water maze (MWM) tests were performed in some cohorts from age P35 to assess cognitive functions, and their brain samples were harvested at age P14, 21, 28, 35, and 42 for measurements of various molecular entities and in vivo electrophysiology experiments at age P35. RESULTS Sevoflurane exposure resulted in cognitive impairment that was associated with decreased synCAM1 expression in parvalbumin (PV) interneurons, a reduction of PV phenotype, disturbed gamma oscillations, and dendritic spine loss in the hippocampal CA3 region. Enriched environment (EE) increased synCAM1 expression in the PV interneurons and attenuated sevoflurane-induced cognitive impairment. The synCAM1 overexpression by the adeno-associated virus vector in the hippocampal CA3 region restored sevoflurane-induced cognitive impairment, PV phenotype loss, gamma oscillations decrease, and dendritic spine loss. CONCLUSION Our data suggested that neonatal sevoflurane exposure results in cognitive impairment through decreased synCAM1 expression in PV interneurons in the hippocampus.
Collapse
Affiliation(s)
- Ming‐ming Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Han‐wen Gu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Wei‐tong Pan
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Pan‐miao Liu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ting‐ting Zhu
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Hui‐jie Shang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Neuroscience Research Institute, Zhengzhou University Academy of Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
12
|
Santiago RM, Lopes-dos-Santos V, Jones EAA, Huang Y, Dupret D, Tort AB. Waveform-based classification of dentate spikes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563826. [PMID: 37961150 PMCID: PMC10634814 DOI: 10.1101/2023.10.24.563826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synchronous excitatory discharges from the entorhinal cortex (EC) to the dentate gyrus (DG) generate fast and prominent patterns in the hilar local field potential (LFP), called dentate spikes (DSs). As sharp-wave ripples in CA1, DSs are more likely to occur in quiet behavioral states, when memory consolidation is thought to take place. However, their functions in mnemonic processes are yet to be elucidated. The classification of DSs into types 1 or 2 is determined by their origin in the lateral or medial EC, as revealed by current source density (CSD) analysis, which requires recordings from linear probes with multiple electrodes spanning the DG layers. To allow the investigation of the functional role of each DS type in recordings obtained from single electrodes and tetrodes, which are abundant in the field, we developed an unsupervised method using Gaussian mixture models to classify such events based on their waveforms. Our classification approach achieved high accuracies (> 80%) when validated in 8 mice with DG laminar profiles. The average CSDs, waveforms, rates, and widths of the DS types obtained through our method closely resembled those derived from the CSD-based classification. As an example of application, we used the technique to analyze single-electrode LFPs from apolipoprotein (apo) E3 and apoE4 knock-in mice. We observed that the latter group, which is a model for Alzheimer's disease, exhibited wider DSs of both types from a young age, with a larger effect size for DS type 2, likely reflecting early pathophysiological alterations in the EC-DG network, such as hyperactivity. In addition to the applicability of the method in expanding the study of DS types, our results show that their waveforms carry information about their origins, suggesting different underlying network dynamics and roles in memory processing.
Collapse
Affiliation(s)
- Rodrigo M.M. Santiago
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| | - Vítor Lopes-dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emily A. Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adriano B.L. Tort
- Computational Neurophysiology Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59078-900, Brazil
| |
Collapse
|
13
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
14
|
Hosseinzadeh Sahafi O, Sardari M, Alijanpour S, Rezayof A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci 2023; 13:brainsci13050815. [PMID: 37239287 DOI: 10.3390/brainsci13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The functional interplay between the corticolimbic GABAergic and opioidergic systems plays a crucial role in regulating the reward system and cognitive aspects of motivational behaviors leading to the development of addictive behaviors and disorders. This review provides a summary of the shared mechanisms of GABAergic and opioidergic transmission, which modulate the activity of dopaminergic neurons located in the ventral tegmental area (VTA), the central hub of the reward mechanisms. This review comprehensively covers the neuroanatomical and neurobiological aspects of corticolimbic inhibitory neurons that express opioid receptors, which act as modulators of corticolimbic GABAergic transmission. The presence of opioid and GABA receptors on the same neurons allows for the modulation of the activity of dopaminergic neurons in the ventral tegmental area, which plays a key role in the reward mechanisms of the brain. This colocalization of receptors and their immunochemical markers can provide a comprehensive understanding for clinicians and researchers, revealing the neuronal circuits that contribute to the reward system. Moreover, this review highlights the importance of GABAergic transmission-induced neuroplasticity under the modulation of opioid receptors. It discusses their interactive role in reinforcement learning, network oscillation, aversive behaviors, and local feedback or feedforward inhibitions in reward mechanisms. Understanding the shared mechanisms of these systems may lead to the development of new therapeutic approaches for addiction, reward-related disorders, and drug-induced cognitive impairment.
Collapse
Affiliation(s)
- Oveis Hosseinzadeh Sahafi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6465, Iran
| |
Collapse
|
15
|
Fernandez-Ruiz A, Sirota A, Lopes-Dos-Santos V, Dupret D. Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron 2023; 111:936-953. [PMID: 37023717 PMCID: PMC7614431 DOI: 10.1016/j.neuron.2023.02.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/08/2023]
Abstract
Gamma oscillations (∼30-150 Hz) are widespread correlates of neural circuit functions. These network activity patterns have been described across multiple animal species, brain structures, and behaviors, and are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether gamma oscillations implement causal mechanisms of specific brain functions or represent a general dynamic mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive function but rather constitutes an activity motif reporting the cellular substrates, communication channels, and computational operations underlying information processing in its generating brain circuit. Accordingly, we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
Collapse
Affiliation(s)
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Jiang Z, Dong T, Wang Y, Tang L, Zhao C, Wen Y, Chen J. Gandouling alleviates cognitive dysfunction by regulates the p62/Nrf2 signaling pathway to reduce oxidative stress and autophagy in mice models of Wilson’s disease. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Fuchsberger T, Paulsen O. Modulation of hippocampal plasticity in learning and memory. Curr Opin Neurobiol 2022; 75:102558. [PMID: 35660989 DOI: 10.1016/j.conb.2022.102558] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Synaptic plasticity plays a central role in the study of neural mechanisms of learning and memory. Plasticity rules are not invariant over time but are under neuromodulatory control, enabling behavioral states to influence memory formation. Neuromodulation controls synaptic plasticity at network level by directing information flow, at circuit level through changes in excitation/inhibition balance, and at synaptic level through modulation of intracellular signaling cascades. Although most research has focused on modulation of principal neurons, recent progress has uncovered important roles for interneurons in not only routing information, but also setting conditions for synaptic plasticity. Moreover, astrocytes have been shown to both gate and mediate plasticity. These additional mechanisms must be considered for a comprehensive mechanistic understanding of learning and memory.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|