1
|
Hansman DS, Lim K, Thomas D, Casson RJ, Peet DJ. Distinct metabolome and flux responses in the retinal pigment epithelium to cytokines associated with age-related macular degeneration: comparison of ARPE-19 cells and eyecups. Sci Rep 2025; 15:13012. [PMID: 40234500 PMCID: PMC12000464 DOI: 10.1038/s41598-025-93882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Age-related macular degeneration (AMD) is associated with chronic inflammation of the retinal pigment epithelium (RPE) and elevated cytokines including TNFα, TGF-β, IL-6, and IL-1β. As a metabolic intermediary supporting aerobic glycolysis in the adjacent photoreceptors, the RPE's metabolic responses to inflammation and the optimal methods to study cytokine-driven metabolic programming remain unclear. We performed a rigorous comparison of ARPE-19 cells and rat eyecup metabolomes, revealing key distinctions. Rat eyecups exhibit higher levels of lactate and palmitate but depleted glutathione and high-energy nucleotides. Conversely, ARPE-19 cells are enriched with high-energy currency metabolites and the membrane phospholipid precursors phosphocholine and inositol. Both models showed contrasting responses to individual cytokines: ARPE-19 cells were more sensitive to TNFα, while eyecups responded more strongly to TGF-β2. Notably, a combined cytokine cocktail elicited stronger metabolic effects on ARPE-19 cells, more potently impacting both metabolite abundance (41 vs. 29) and glucose carbon flux (29 vs. 5), and influencing key RPE metabolites such as alanine, glycine, aspartate, proline, citrate, α-ketoglutarate, and palmitate. Overall, these findings position ARPE-19 cells as a more responsive platform for studying inflammatory cytokine effects on RPE metabolism and reveal critical RPE metabolites which may be linked with AMD pathogenesis.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Kelly Lim
- South Australian Health and Medical Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Chandler LC, Gardner A, Cepko CL. RPE-specific MCT2 expression promotes cone survival in models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2025; 122:e2421978122. [PMID: 40178895 PMCID: PMC12002273 DOI: 10.1073/pnas.2421978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration worldwide. It is characterized by the sequential death of rod and cone photoreceptors, the cells responsible for night and daylight vision, respectively. Although the expression of most RP genes occurs only in rods, there is a secondary degeneration of cones. One possible mechanism of cone death is metabolic dysregulation. Photoreceptors are highly metabolically active, consuming large quantities of glucose and producing substantial amounts of lactate. The retinal pigment epithelium (RPE) mediates the transport of glucose from the blood to photoreceptors and, in turn, removes lactate, which can influence the rate of consumption of glucose by the RPE. One model for metabolic dysregulation in RP suggests that following the death of rods, lactate levels are substantially diminished causing the RPE to withhold glucose, resulting in nutrient deprivation for cones. Here, we present adeno-associated viral vector-mediated delivery of monocarboxylate transporter 2 (MCT2, Slc16a7) into the eye, with expression limited to RPE cells, with the aim of promoting lactate uptake from the blood and encouraging the passage of glucose to cones. We demonstrate prolonged survival and function of cones in rat and mouse RP models, revealing a possible gene-agnostic therapy for preserving vision in RP. We also present the use of fluorescence lifetime imaging-based biosensors for lactate and glucose within the eye. Using this technology, we show changes to lactate and glucose levels within MCT2-expressing RPE, suggesting that cone survival is impacted by changes in RPE metabolism.
Collapse
Affiliation(s)
- Laurel C. Chandler
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| | - Apolonia Gardner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
- Virology Program, Harvard Medical School, Boston, MA02115
| | - Constance L. Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA02115
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
3
|
Ikromova FR, Khasanov FA, Saidova MJ, Shokirov RK, Gazieva S, Khadjibaev AM, Tulyaganov DB, Akalaev RN, Levitskaya YV, Stopnitskiy AA, Baev AY. Acute CCl 4-induced intoxication reduces complex I, but not complex II-based mitochondrial bioenergetics - protective role of succinate. J Bioenerg Biomembr 2025; 57:11-26. [PMID: 39668320 DOI: 10.1007/s10863-024-10047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
The main therapeutic strategy for the treatment of patients with toxic liver failure is the elimination of the toxic agent in combination with the targeted mitigation of pathological processes that have been initiated due to the toxicant. In the current research we evaluated the strategy of metabolic supplementation to improve mitochondrial bioenergetics during acute liver intoxication. In our study, we have shown that acute CCl4-induced intoxication negatively affects Complex I (in the presence of glutamate-malate as energy substrates) based respiration, generation of mitochondrial membrane potential (ΔΨm), mitochondrial NAD(P)H pool and NADH redox index, mitochondrial calcium retention capacity (CRC) and structure and functions of the liver. Boosting of mitochondrial bioenergetics through the complex II, using succinate as metabolic substrate in vitro, significantly improved mitochondrial respiration and generation of ΔΨm, but not mitochondrial CRC. Co-application of rotenone along with succinate, to prevent possible reverse electron flow, didn't show significant differences compared to the effects of succinate alone. Treatment of animals with acute liver failure, using a metabolic supplement containing succinate, inosine, methionine and nicotinamide improved Complex I based respiration, generation of ΔΨm, mitochondrial NAD(P)H pool and NADH redox index, mitochondrial CRC and slightly decreased the level of oxidative stress. These changes resulted in averting destructive and dystrophic changes in the structure of rat liver tissue caused by CCl4 intoxication, concomitantly enhancing hepatic functionality. Thus, we propose that metabolic supplementation targeting complex II could serve as a potential adjunctive therapy in the management of acute liver intoxication.
Collapse
Affiliation(s)
- Fozila R Ikromova
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Feruzbek A Khasanov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
- Department of Biochemistry, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Malika J Saidova
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Ravshan K Shokirov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Shakhlo Gazieva
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | | | | | - Rustam N Akalaev
- Republican Research Centre of Emergency Medicine, Tashkent, Uzbekistan
| | - Yulia V Levitskaya
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | | | - Artyom Y Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan.
- Department of Biophysics, Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan.
| |
Collapse
|
4
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Prins S, Kiel C, Foss AJE, Zouache MA, Luthert PJ. "Energetics of the outer retina I: Estimates of nutrient exchange and ATP generation". PLoS One 2024; 19:e0312260. [PMID: 39739933 DOI: 10.1371/journal.pone.0312260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/02/2024] [Indexed: 01/02/2025] Open
Abstract
Photoreceptors (PRs) are metabolically demanding and packed at high density, which presents a challenge for nutrient exchange between the associated vascular beds and the tissue. Motivated by the ambition to understand the constraints under which PRs function, in this study we have drawn together diverse physiological and anatomical data in order to generate estimates of the rates of ATP production per mm2 of retinal surface area. With the predictions of metabolic demand in the companion paper, we seek to develop an integrated energy budget for the outer retina. It is known that rod PR number and the extent of the choriocapillaris (CC) vascular network that supports PRs both decline with age. To set the outer retina energy budget in the context of aging we demonstrate how, at different eccentricities, decline CC density is more than matched by rod loss in a way that tends to preserve nutrient exchange per rod. Together these finds provide an integrated framework for the study of outer retinal metabolism and how it might change with age.
Collapse
Affiliation(s)
- Stella Prins
- UCL Institute of Ophthalmology, London, United Kingdom
- Advanced Research Computing Centre, University College London, London, United Kingdom
| | - Christina Kiel
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alexander J E Foss
- Department of Ophthalmology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Philip J Luthert
- UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Moorfields Biomedical Research Centre, UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
6
|
Grayson C, Chalifoux O, Russo MDST, Avizonis DZ, Sterman S, Faerman B, Koufos O, Agellon LB, Mailloux RJ. Ablating the glutaredoxin-2 (Glrx2) gene protects male mice against non-alcoholic fatty liver disease (NAFLD) by limiting oxidative distress. Free Radic Biol Med 2024; 224:660-677. [PMID: 39278573 DOI: 10.1016/j.freeradbiomed.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
In the present study, we investigated the consequences of deleting the glutaredoxin-2 gene (Glrx2-/-) on the development of non-alcoholic fatty liver disease (NAFLD) in male and female C57BL6N mice fed a control (CD) or high-fat diet (HFD). We report that the HFD induced a significant increase in body mass in the wild-type (Wt) and Glrx2-/- male, but not female, mice, which was associated with the hypertrophying of the abdominal fat. Interestingly, while the Wt male mice fed the HFD developed NAFLD, the deletion of the Glrx2 gene mitigated vesicle formation, intrahepatic lipid accumulation, and fibrosis in the males. The protective effect associated with ablating the Glrx2 gene in male mice was due to enhancement of mitochondrial redox buffering capacity. Specifically, liver mitochondria from male Glrx2-/- fed a CD or HFD produced significantly less hydrogen peroxide (mtH2O2), had lower malondialdehyde levels, greater activities for glutathione peroxidase and thioredoxin reductase, and less protein glutathione mixed disulfides (PSSG) when compared to the Wt male mice fed the HFD. These effects correlated with the S-glutathionylation of α-ketoglutarate dehydrogenase (KGDH), a potent mtH2O2 source and key redox sensor in hepatic mitochondria. In comparison to the male mice, both Wt and Glrx2-/- female mice displayed almost complete resistance to HFD-induced body mass increases and the development of NAFLD, which was attributed to the superior redox buffering capacity of the liver mitochondria. Together, our findings show that modulation of mitochondrial S-glutathionylation signaling through Glrx2 augments resistance of male mice towards the development of NAFLD through preservation of mitochondrial redox buffering capacity. Additionally, our findings demonstrate the sex dimorphisms associated with the manifestation of NAFLD is related to the superior redox buffering capacity and modulation of the S-glutathionylome in hepatic mitochondria from female mice.
Collapse
Affiliation(s)
- Cathryn Grayson
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Chalifoux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Mariana De Sa Tavares Russo
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Daina Zofija Avizonis
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Samantha Sterman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ben Faerman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Koufos
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Luis B Agellon
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada.
| |
Collapse
|
7
|
Wang Y, Xiu Z, Qu K, Wang L, Wang H, Yu Y. Trailblazing in adjuvant research: succinate's uncharted territory with neutrophils. Am J Physiol Cell Physiol 2024; 327:C1-C10. [PMID: 38708521 DOI: 10.1152/ajpcell.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
The purpose of this study is to investigate the previously unknown connection that succinate has with neutrophils in the setting of adjuvant-mediated immunological enhancement. It has been discovered that succinates stimulate the recruitment of neutrophils in immunization sites, which in turn induces the expression of what is known as neutrophil-derived B cell-activating factor (BAFF). Further amplification of vaccine-induced antibody responses is provided via the succinate receptor 1-interferon regulatory factor 5 (SUCNR1-IRF5)-BAFF signaling pathway, which provides insights into a unique mechanism for immunological enhancement.NEW & NOTEWORTHY This study explores the role of succinate as a vaccine adjuvant, revealing its capacity to enhance neutrophil recruitment at immunization sites, which boosts B cell activation through the succinate receptor 1-interferon regulatory factor 5-B cell-activating factor (SUCNR1-IRF5-BAFF) signaling pathway. Results demonstrate succinate's potential to amplify vaccine-induced antibody responses, highlighting its significance in immunological enhancement and offering new insights into the adjuvant mechanisms of action, particularly in neutrophil-mediated immune responses.
Collapse
Affiliation(s)
- Yangyang Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Zhiming Xiu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
8
|
Chen M, Wang Y, Dalal R, Du J, Vollrath D. Alternative oxidase blunts pseudohypoxia and photoreceptor degeneration due to RPE mitochondrial dysfunction. Proc Natl Acad Sci U S A 2024; 121:e2402384121. [PMID: 38865272 PMCID: PMC11194566 DOI: 10.1073/pnas.2402384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA94305
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV26506
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA94305
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV26506
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA94305
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA94305
| |
Collapse
|
9
|
Hansman D, Ma Y, Thomas D, Smith J, Casson R, Peet D. Metabolic reprogramming of the retinal pigment epithelium by cytokines associated with age-related macular degeneration. Biosci Rep 2024; 44:BSR20231904. [PMID: 38567515 PMCID: PMC11043024 DOI: 10.1042/bsr20231904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024] Open
Abstract
The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-β2, IL-6, and IL-1β, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- David S. Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Irerhievwie O, Ichipi-Ifukor PC, Asagba SO. Hepatocellular degeneration in mice co-exposed to in-utero aluminium and cadmium: Implication of a disordered antioxidant and energy homeostatic response in the liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104375. [PMID: 38262495 DOI: 10.1016/j.etap.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The current study comprised four groups of pregnant animals viz; Control (CTR) received 10 ml/kg of normal saline, Al:10 mg/kg of AlCl3, Cd: 1.5 mg/Kg of CdCl2 Al+Cd; 10 mg/kg of AlCl3 and 1.5 mg/Kg of CdCl2. Treatment was done from pregnancy days (PNT) 7-20. After delivery, male animals were weaned on PSD 21 and sacrificed on PSD 78. From the study significant increases on serum liver enzymes in the group exposed to Cd and that exposed to Al+Cd were observed. The study further showed altered serum and hepatic antioxidant balance for the Cd, Al and Al+Cd groups compared to control. Similarly, lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH) activities in the liver were elevated in Cd and Al+Cd groups while an altered liver histological feature in treated groups were also observed. it was concluded that in utero co-exposure to Al and Cd had the ability to alter hepatic functional indices.
Collapse
|
11
|
Yu C, Wang D, Shen C, Luo Z, Zhang H, Zhang J, Xu W, Xu J. Remodeling of Hepatic Glucose Metabolism in Response to Early Weaning in Piglets. Animals (Basel) 2024; 14:190. [PMID: 38254359 PMCID: PMC10812452 DOI: 10.3390/ani14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to investigate the dynamic changes in hepatic glucose metabolism in response to early weaning. A total of 60 piglets were randomly selected and weaned at 21 days old. Six piglets were slaughtered on the weaning day (d0) and at 1 (d1), 4 (d4), 7 (d7), and 14 (d14) days postweaning. The results illustrated that body weight significantly increased from d4 to d14 (p < 0.001). Serum glucose fell sharply after weaning and then remained at a low level from d1 to d14 (p < 0.001). Serum insulin decreased from d4 (p < 0.001), which caused hepatic glycogen to be broken down (p = 0.007). The glucose-6-phosphatase activity increased from d0 to d4 and then decreased from d4 to d14 (p = 0.039). The pyruvate carboxylase activity presented a significant sustained increase from d0 to d14 (p < 0.001). The succinate (p = 0.006) and oxaloacetate (p = 0.003) content on d4 was lower than that on d0. The succinate dehydrogenase activity (p = 0.008) and ATP (p = 0.016) production decreased significantly on d4 compared to that on d0. Taken together, these findings reveal the dynamic changes of metabolites and enzymes related to hepatic glycometabolism and the TCA (tricarboxylic acid) cycle in piglets after weaning. Our findings enrich weaning stress theory and might provide a reference for dietary intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianxiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.Y.)
| |
Collapse
|
12
|
Suciu I, Delp J, Gutbier S, Suess J, Henschke L, Celardo I, Mayer TU, Amelio I, Leist M. Definition of the Neurotoxicity-Associated Metabolic Signature Triggered by Berberine and Other Respiratory Chain Inhibitors. Antioxidants (Basel) 2023; 13:49. [PMID: 38247474 PMCID: PMC10812665 DOI: 10.3390/antiox13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
To characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2. To obtain more detailed and specific information on the modes-of-action, the effects on energy metabolism (respiration and glycolysis) were measured. Ber, rotenone and MPP inhibited the mitochondrial respiratory chain and they shared complex I as the target. This group of toxicants was further evaluated by metabolomics under experimental conditions that did not deplete ATP. Ber (204 changed metabolites) showed similar effects as MPP and rotenone. The overall metabolic situation was characterized by oxidative stress, an over-abundance of NADH (>1000% increase) and a re-routing of metabolism in order to dispose of the nitrogen resulting from increased amino acid turnover. This unique overall pattern led to the accumulation of metabolites known as biomarkers of neurodegeneration (saccharopine, aminoadipate and branched-chain ketoacids). These findings suggest that neurotoxicity of mitochondrial inhibitors may result from an ensemble of metabolic changes rather than from a simple ATP depletion. The combi-omics approach used here provided richer and more specific MoA data than the more common transcriptomics analysis alone. As Ber, a human drug and food supplement, mimicked closely the mode-of-action of known neurotoxicants, its potential hazard requires further investigation.
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Julian Suess
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Lars Henschke
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Thomas U. Mayer
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
13
|
Zhu S, Xu R, Engel AL, Wang Y, McNeel R, Hurley JB, Chao JR, Du J. Proline provides a nitrogen source in the retinal pigment epithelium to synthesize and export amino acids for the neural retina. J Biol Chem 2023; 299:105275. [PMID: 37741457 PMCID: PMC10616405 DOI: 10.1016/j.jbc.2023.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA; Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James B Hurley
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA; Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
14
|
Lee SJ, Emery D, Vukmanic E, Wang Y, Lu X, Wang W, Fortuny E, James R, Kaplan HJ, Liu Y, Du J, Dean DC. Metabolic transcriptomics dictate responses of cone photoreceptors to retinitis pigmentosa. Cell Rep 2023; 42:113054. [PMID: 37656622 PMCID: PMC10591869 DOI: 10.1016/j.celrep.2023.113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Most mutations in retinitis pigmentosa (RP) arise in rod photoreceptors, but cone photoreceptors, responsible for high-resolution daylight and color vision, are subsequently affected, causing the most debilitating features of the disease. We used mass spectroscopy to follow 13C metabolites delivered to the outer retina and single-cell RNA sequencing to assess photoreceptor transcriptomes. The S cone metabolic transcriptome suggests engagement of the TCA cycle and ongoing response to ROS characteristic of oxidative phosphorylation, which we link to their histone modification transcriptome. Tumor necrosis factor (TNF) and its downstream effector RIP3, which drive ROS generation via mitochondrial dysfunction, are induced and activated as S cones undergo early apoptosis in RP. The long/medium-wavelength (L/M) cone transcriptome shows enhanced glycolytic capacity, which maintains their function as RP progresses. Then, as extracellular glucose eventually diminishes, L/M cones are sustained in long-term dormancy by lactate metabolism.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; Department of Ophthalmology, Kosin University College of Medicine, #262 Gamcheon-ro, Seo-gu, Busan 49267, Korea
| | - Douglas Emery
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Eric Vukmanic
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Yekai Wang
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaoqin Lu
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Enzo Fortuny
- Department of Neurosurgery, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Robert James
- Department of Neurosurgery, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology, St. Louis University School of Medicine, St. Louis MO 63110, USA
| | - Yongqing Liu
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | - Douglas C Dean
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Grumbine MK, Kamat V, Bao K, Crupi T, Mokate K, Lim R, Chao JR, Robbings BM, Hass DT, Hurley JB, Sweet IR. Maintaining and Assessing Various Tissue and Cell Types of the Eye Using a Novel Pumpless Fluidics System. J Vis Exp 2023:10.3791/65399. [PMID: 37522735 PMCID: PMC10791547 DOI: 10.3791/65399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Many in vitro models used to investigate tissue function and cell biology require a flow of media to provide adequate oxygenation and optimal cell conditions required for the maintenance of function and viability. Toward this end, we have developed a multi-channel flow culture system to maintain tissue and cells in culture and continuously assess function and viability by either in-line sensors and/or collection of outflow fractions. The system combines 8-channel, continuous optical sensing of oxygen consumption rate with a built-in fraction collector to simultaneously measure production rates of metabolites and hormone secretion. Although it is able to maintain and assess a wide range of tissue and cell models, including islets, muscle, and hypothalamus, here we describe its operating principles and the experimental preparations/protocols that we have used to investigate bioenergetic regulation of isolated mouse retina, mouse retinal pigment epithelium (RPE)-choroid-sclera, and cultured human RPE cells. Innovations in the design of the system, such as pumpless fluid flow, have produced a greatly simplified operation of a multi-channel flow system. Videos and images are shown that illustrate how to assemble, prepare the instrument for an experiment, and load the different tissue/cell models into the perifusion chambers. In addition, guidelines for selecting conditions for protocol- and tissue-specific experiments are delineated and discussed, including setting the correct flow rate to tissue ratio to obtain consistent and stable culture conditions and accurate determinations of consumption and production rates. The combination of optimal tissue maintenance and real-time assessment of multiple parameters yields highly informative data sets that will have great utility for research in the physiology of the eye and drug discovery for the treatment of impaired vision.
Collapse
Affiliation(s)
| | - Varun Kamat
- UW Medicine Diabetes Institute, University of Washington
| | | | | | - Kedar Mokate
- UW Medicine Diabetes Institute, University of Washington
| | - Rayne Lim
- Department of Ophthalmology, University of Washington
| | | | | | - Daniel T Hass
- Department of Biochemistry, University of Washington
| | | | - Ian R Sweet
- EnTox Sciences, Inc; UW Medicine Diabetes Institute, University of Washington;
| |
Collapse
|
16
|
Zhu S, Xu R, Engel AL, Wang Y, McNeel R, Hurley JB, Chao JR, Du J. Proline provides a nitrogen source in the retinal pigment epithelium to synthesize and export amino acids for the neural retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537355. [PMID: 37131780 PMCID: PMC10153141 DOI: 10.1101/2023.04.18.537355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Co-culture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase (PRODH), the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of PRODH blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Abbi L. Engel
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - James B. Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
- Department of Biochemistry, University of Washington, Seattle, WA 98109
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
17
|
Hang Z, Tong P, Zhao P, He Z, Shao L, Jia Y, Wang XC, Li Z. Hierarchical stringent response behaviors of activated sludge system to stressed conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161832. [PMID: 36716870 DOI: 10.1016/j.scitotenv.2023.161832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The stringent response of activated sludge systems to either stressed or harmful environments is important for the stable operation of activated sludge, which is examined by taking copper ion (Cu2+) as a stress model in this study. When weak stress was employed (Cu2+ ≤ 2.5 mg/L), the N-acyl-homoserine lactones (AHLs) of C6-, C8-, and C10-HSL increased by 30 %, 13 %, and 127 %, respectively, while the redox sensor green (RSG) intensity decreased by 28 %. Encountering the increased stress (2.5 mg/L < Cu2+ ≤ 5 mg/L), bacteria concentration in the supernatant increased by 87 %. However, the respiration rates of autotrophic and heterotrophic bacteria (SOURa and SOURh) and adenosine triphosphate decreased by 52 %, 18 %, and 27 %, respectively, and the flocs disintegrated with a diameter decreasing from 57 to 51 μm. When the stress became more serious (Cu2+ > 5 mg/L), the respiration rates continued to decline, but the quasi-endogenous respiration ratio (Rq/t) increased from 31 % to 47 %. Negligible changes occurred in the endogenous respiration rate (SOURe), adenosine diphosphate, and adenosine monophosphate. Based on these results, a hierarchical stringent response model of the activated sludge system to stressed conditions was proposed, and these responses were evaluated by respirogram. The initial response to weak stress was related to the most sensitive signals of quorum sensing and RSG intensity, well described by the quasi-endogenous respiration rate. The adaptive response to increased stress was the proactive migrations of low- and high-nucleic-acid bacteria to the supernatant, causing the looseness and even disintegration of sludge flocs, well described by SOURa, SOURh, and Rq/t. The lethal response to lethal stress was related to endogenous metabolic processes, well described by SOURe. This work provides new insights into understanding the stringent response of activated sludge systems to some stressed conditions. It helps to regulate the stability of activated sludge systems with respirogram technology.
Collapse
Affiliation(s)
- Zhenyu Hang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peipei Tong
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pian Zhao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhangwei He
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Linjun Shao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanru Jia
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology in Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
18
|
Saravanan M, Xu R, Roby O, Wang Y, Zhu S, Lu A, Du J. Tissue-Specific Sex Difference in Mouse Eye and Brain Metabolome Under Fed and Fasted States. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36892534 PMCID: PMC10010444 DOI: 10.1167/iovs.64.3.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Purpose Visual physiology and various ocular diseases demonstrate sexual dimorphisms; however, how sex influences metabolism in different eye tissues remains undetermined. This study aims to address common and tissue-specific sex differences in metabolism in the retina, RPE, lens, and brain under fed and fasted conditions. Methods After ad libitum fed or being deprived of food for 18 hours, mouse eye tissues (retina, RPE/choroid, and lens), brain, and plasma were harvested for targeted metabolomics. The data were analyzed with both partial least squares-discriminant analysis and volcano plot analysis. Results Among 133 metabolites that cover major metabolic pathways, we found 9 to 45 metabolites that are sex different in different tissues under the fed state and 6 to 18 metabolites under the fasted state. Among these sex-different metabolites, 33 were changed in 2 or more tissues, and 64 were tissue specific. Pantothenic acid, hypotaurine, and 4-hydroxyproline were the top commonly changed metabolites. The lens and the retina had the most tissue-specific, sex-different metabolites enriched in the metabolism of amino acid, nucleotide, lipids, and tricarboxylic acid cycle. The lens and the brain had more similar sex-different metabolites than other ocular tissues. The female RPE and female brain were more sensitive to fasting with more decreased metabolites in amino acid metabolism, tricarboxylic acid cycles, and glycolysis. The plasma had the fewest sex-different metabolites, with very few overlapping changes with tissues. Conclusions Sex has a strong influence on eye and brain metabolism in tissue-specific and metabolic state-specific manners. Our findings may implicate the sexual dimorphisms in eye physiology and susceptibility to ocular diseases.
Collapse
Affiliation(s)
- Meghashri Saravanan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Olivia Roby
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Amy Lu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
19
|
Bonelli R, Woods SM, Lockwood S, Bishop PN, Khan KN, Bahlo M, Ansell BRE, Fruttiger M. Spatial distribution of metabolites in the retina and its relevance to studies of metabolic retinal disorders. Metabolomics 2023; 19:10. [PMID: 36745234 PMCID: PMC9902429 DOI: 10.1007/s11306-022-01969-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The primate retina has evolved regional specialisations for specific visual functions. The macula is specialised towards high acuity vision and is an area that contains an increased density of cone photoreceptors and signal processing neurons. Different regions in the retina display unique susceptibility to pathology, with many retinal diseases primarily affecting the macula. OBJECTIVES To better understand the properties of different retinal areas we studied the differential distribution of metabolites across the retina. METHODS We conducted an untargeted metabolomics analysis on full-thickness punches from three different regions (macula, temporal peri-macula and periphery) of healthy primate retina. RESULTS Nearly half of all metabolites identified showed differential abundance in at least one comparison between the three regions. Furthermore, mapping metabolomics results from macula-specific eye diseases onto our region-specific metabolite distributions revealed differential abundance defining systemic metabolic dysregulations that were region specific. CONCLUSIONS The unique metabolic phenotype of different retinal regions is likely due to the differential distribution of different cell types in these regions reflecting the specific metabolic requirements of each cell type. Our results may help to better understand the pathobiology of retinal diseases with region specificity.
Collapse
Affiliation(s)
- Roberto Bonelli
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sasha M Woods
- UCL Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
| | - Sarah Lockwood
- UC Davis, CA National Primate Research Centre, Davis, CA, 95616, USA
| | - Paul N Bishop
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Kamron N Khan
- The Leeds Teaching Hospitals NHS Trust, St. James's Hospital, Leeds, LS9 7TF, UK
| | - Melanie Bahlo
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brendan R E Ansell
- Population Health & Immunity Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK.
| |
Collapse
|
20
|
Ng PQ, Saint-Geniez M, Kim LA, Shu DY. Divergent Metabolomic Signatures of TGFβ2 and TNFα in the Induction of Retinal Epithelial-Mesenchymal Transition. Metabolites 2023; 13:213. [PMID: 36837832 PMCID: PMC9966219 DOI: 10.3390/metabo13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a dedifferentiation program in which polarized, differentiated epithelial cells lose their cell-cell adhesions and transform into matrix-producing mesenchymal cells. EMT of retinal pigment epithelial (RPE) cells plays a crucial role in many retinal diseases, including age-related macular degeneration, proliferative vitreoretinopathy, and diabetic retinopathy. This dynamic process requires complex metabolic reprogramming to accommodate the demands of this dramatic cellular transformation. Both transforming growth factor-beta 2 (TGFβ2) and tumor necrosis factor-alpha (TNFα) have the capacity to induce EMT in RPE cells; however, little is known about their impact on the RPE metabolome. Untargeted metabolomics using high-resolution mass spectrometry was performed to reveal the metabolomic signatures of cellular and secreted metabolites of primary human fetal RPE cells treated with either TGFβ2 or TNFα for 5 days. A total of 638 metabolites were detected in both samples; 188 were annotated as primary metabolites. Metabolomics profiling showed distinct metabolomic signatures associated with TGFβ2 and TNFα treatment. Enrichment pathway network analysis revealed alterations in the pentose phosphate pathway, galactose metabolism, nucleotide and pyrimidine metabolism, purine metabolism, and arginine and proline metabolism in TNFα-treated cells compared to untreated control cells, whereas TGFβ2 treatment induced perturbations in fatty acid biosynthesis metabolism, the linoleic acid pathway, and the Notch signaling pathway. These results provide a broad metabolic understanding of the bioenergetic rewiring processes governing TGFβ2- and TNFα-dependent induction of EMT. Elucidating the contributions of TGFβ2 and TNFα and their mechanistic differences in promoting EMT of RPE will enable the identification of novel biomarkers for diagnosis, management, and tailored drug development for retinal fibrotic diseases.
Collapse
Affiliation(s)
- Pei Qin Ng
- Department of Plant Science, University of Cambridge, Downing Street, Cambridge CB2 3EA, Cambridgeshire, UK
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Leo A. Kim
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Daisy Y. Shu
- Schepens Eye Research Institute of Mass Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
21
|
Jung Y, Song JS, Ahn S. Pharmacokinetics and Tissue Distribution of 13C-Labeled Succinic Acid in Mice. Nutrients 2022; 14:nu14224757. [PMID: 36432443 PMCID: PMC9694402 DOI: 10.3390/nu14224757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Succinic acid is widely used as a food additive, and its effects on sepsis, cancer, ataxia, and obesity were recently reported. Dietary drug exposure studies have been conducted to evaluate the in vivo efficacy of succinic acid, but limited pharmacokinetic information is available. Therefore, this study evaluated the pharmacokinetic profiles and tissue distribution of succinic acid following a single intravenous or oral dose. A surrogate analyte, succinic acid-13C4 (13C4SA), was administrated to distinguish endogenous and exogenous succinic acid. The concentration of 13C4SA was determined by a validated analytical method using mass spectrometry. After a 10 mg/kg intravenous dose, non-compartmental pharmacokinetic analysis in plasma illustrated that the clearance, volume of distribution, and terminal half-life of 13C4SA were 4574.5 mL/h/kg, 520.8 mL/kg, and 0.56 h, respectively. Oral 13C4SA was absorbed and distributed quickly (bioavailability, 1.5%) at a dose of 100 mg/kg. In addition, 13C4SA exposure was the highest in the liver, followed by brown adipose tissue, white adipose tissue, and the kidneys. This is the first report on the pharmacokinetics of succinic acid after a single dose in mice, and these results could provide a foundation for selecting dosing regimens for efficacy studies.
Collapse
Affiliation(s)
- Yonghwan Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34114, Republic of Korea
| | - Jin Sook Song
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sunjoo Ahn
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34114, Republic of Korea
- Correspondence: ; Tel.: +82-42-860-7170
| |
Collapse
|