1
|
Klyosova E, Azarova I, Petrukhina I, Khabibulin R, Polonikov A. The rs2341471-G/G genotype of activating transcription factor 6 (ATF6) is the risk factor of type 2 diabetes in subjects with obesity or overweight. Int J Obes (Lond) 2024; 48:1638-1649. [PMID: 39134692 DOI: 10.1038/s41366-024-01604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Numerous studies have demonstrated that the onset of type 2 diabetes (T2D) is linked to the reduction in ß-cell mass caused by apoptosis, a process initiated by endoplasmic reticulum (ER) stress. The aim of this study was to investigate the associations between single nucleotide polymorphisms (SNPs) in the ATF6 gene (activating transcription factor 6), a key sensor of ER stress, and T2D susceptibility. METHODS The study involved 3229 unrelated individuals, including 1569 patients with T2D and 1660 healthy controls from Central Russia. Four functionally significant intronic SNPs, namely rs931778, rs90559, rs2341471, and rs7517862, were genotyped using the MassARRAY-4 system. RESULTS The rs2341471-G/G genotype of ATF6 was found to be associated with an increased risk of T2D (OR = 1.61, 95% CI 1.37-1.90, PFDR < 0.0001). However, a BMI-stratified analysis showed that this genotype and haplotypes CGGA and TAGA are associated with T2D risk exclusively in subjects with obesity or overweight (PFDR < 0.05). Despite these patients being found to have higher consumption of high-carbohydrate and high-calorie diets compared to normal-weight individuals (P < 0.0001), the influence of the rs7517862 polymorphism on T2D risk was observed independently of these dietary habits. Functional SNP annotation revealed the following: (1) the rs2341471-G allele is associated with increased ATF6 expression; (2) the SNP is located in a region exhibiting enhancer activity epigenetically regulated in pancreatic islets; (3) the rs2341471-G was predicted to create binding sites for 18 activating transcription factors that are part of gene-regulatory networks controlling glucose metabolism and maintaining proteostasis. CONCLUSIONS The present study revealed, for the first time, a strong association between the rs2341471-G/G ATF6 genotype and an increased risk of type 2 diabetes in people with obesity or overweight, regardless of known dietary risk factors. Further research is needed to support the potential of silencing the ATF6 gene as a means for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia
| | - Irina Petrukhina
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Ramis Khabibulin
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041, Kursk, Russia.
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041, Kursk, Russia.
| |
Collapse
|
2
|
Duquenne M, Deligia E, Folgueira C, Bourouh C, Caron E, Pfrieger F, Schwaninger M, Nogueiras R, Annicotte JS, Imbernon M, Prévot V. Tanycytic transcytosis inhibition disrupts energy balance, glucose homeostasis and cognitive function in male mice. Mol Metab 2024; 87:101996. [PMID: 39047908 PMCID: PMC11340606 DOI: 10.1016/j.molmet.2024.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES In Western society, high-caloric diets rich in fats and sugars have fueled the obesity epidemic and its related disorders. Disruption of the body-brain communication, crucial for maintaining glucose and energy homeostasis, arises from both obesogenic and genetic factors, leading to metabolic disorders. Here, we investigate the role of hypothalamic tanycyte shuttles between the pituitary portal blood and the third ventricle cerebrospinal fluid in regulating energy balance. METHODS We inhibited vesicle-associated membrane proteins (VAMP1-3)-mediated release in tanycytes by expressing the botulinum neurotoxin type B light chain (BoNT/B) in a Cre-dependent manner in tanycytes. This was achieved by injecting either TAT-Cre in the third ventricle or an AAV1/2 expressing Cre under the control of the tanycyte-specific promoter iodothyronine deiodinase 2 into the lateral ventricle of adult male mice. RESULTS In male mice fed a standard diet, targeted expression of BoNT/B in adult tanycytes blocks leptin transport into the mediobasal hypothalamus and results in normal-weight central obesity, including increased food intake, abdominal fat deposition, and elevated leptin levels but no marked change in body weight. Furthermore, BoNT/B expression in adult tanycytes promotes fatty acid storage, leading to glucose intolerance and insulin resistance. Notably, these metabolic disturbances occur despite a compensatory increase in insulin secretion, observed both in response to exogenous glucose boluses in vivo and in isolated pancreatic islets. Intriguingly, these metabolic alterations are associated with impaired spatial memory in BoNT/B-expressing mice. CONCLUSIONS These findings underscore the central role of tanycytes in brain-periphery communication and highlight their potential implication in the age-related development of type 2 diabetes and cognitive decline. Our tanycytic BoNT/B mouse model provides a robust platform for studying how these conditions progress over time, from prediabetic states to full-blown metabolic and cognitive disorders, and the mechanistic contribution of tanycytes to their development. The recognition of the impact of tanycytic transcytosis on hormone transport opens new avenues for developing targeted therapies that could address both metabolic disorders and their associated cognitive comorbidities, which often emerge or worsen with advancing age.
Collapse
Affiliation(s)
- Manon Duquenne
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Cintia Folgueira
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Cyril Bourouh
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Frank Pfrieger
- Centre National de la Recherche Scientifique, Universite de Strasbourg, Institut des Neurosciences Cellulaires et Integratives, 67000 Strasbourg, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
3
|
van Niekerk G, Coelmont L, Alpizar YA, Kelchtermans L, Broeckhoven E, Dallmeier K. GLP-1R agonist therapy and vaccine response: Neglected implications. Cytokine Growth Factor Rev 2024; 78:14-24. [PMID: 39025754 DOI: 10.1016/j.cytogfr.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as semaglutide (Ozempic®), have emerged as effective treatments for diabetes and weight management. However, recent evidence indicates that GLP-1R signalling influences various tissues, including the immune system. Notably, GLP-1 has a short half-life (< 5 minutes) and exists in the picomolar range, while GLP-1RAs like semaglutide have extended half-lives of several days and are administered at supraphysiological doses. This review explores the potential impact of these medications on vaccine efficacy. We examine evidence suggesting that GLP-1RAs may attenuate vaccine responses through direct effects on immune cells and modulation of other tissues. Additionally, we discuss how GLP-1R signalling may create a tolerogenic environment, potentially reducing vaccine immunogenicity. Given the widespread use of GLP-1RAs, it is crucial to understand their impact on immune responses and the translational implications for vaccination outcomes.
Collapse
Affiliation(s)
- Gustav van Niekerk
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lara Kelchtermans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Elias Broeckhoven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium.
| |
Collapse
|
4
|
Chen Y, Hao L, Cong J, Ji J, Dai Y, Xu L, Gong B. Transcriptomic analysis reveals the crosstalk between type 2 diabetes and chronic pancreatitis. Health Sci Rep 2024; 7:e2079. [PMID: 38690006 PMCID: PMC11058262 DOI: 10.1002/hsr2.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Background and Aims Mounting evidence highlights a strong association between chronic pancreatitis (CP) and type 2 diabetes (T2D), although the exact mechanism of interaction remains unclear. This study aimed to investigate the crosstalk genes and pathogenesis between CP and T2D. Methods Transcriptomic gene expression profiles of CP and T2D were extracted from Gene Expression Omnibus, respectively, and the common differentially expressed genes (DEGs) were subsequently identified. Further analysis, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction, transcription factors (TFs), microRNA (miRNAs), and candidate chemicals identification, was performed to explore the possible common signatures between the two diseases. Results In total, we acquired 281 common DEGs by interacting CP and T2D datasets, and identified 10 hub genes using CytoHubba. GO and KEGG analyses revealed that endoplasmic reticulum stress and mitochondrial dysfunction were closely related to these common DEGs. Among the shared genes, EEF2, DLD, RAB5A, and SLC30A9 showed promising diagnostic value for both diseases based on receiver operating characteristic curve and precision-recall curves. Additionally, we identified 16 key TFs and 16 miRNAs that were strongly correlated with the hub genes, which may serve as new molecular targets for CP and T2D. Finally, candidate chemicals that might become potential drugs for treating CP and T2D were screened out. Conclusion This study provides evidence that there are shared genes and pathological signatures between CP and T2D. The genes EEF2, DLD, RAB5A, and SLC30A9 have been identified as having the highest diagnostic efficiency and could be served as biomarkers for these diseases, providing new insights into precise diagnosis and treatment for CP and T2D.
Collapse
Affiliation(s)
- Youlan Chen
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lixiao Hao
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jun Cong
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jianmei Ji
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yancheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Xu
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Biao Gong
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Gastroenterology, Shuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
Jiang Y, Sun J, Chandrapala J, Majzoobi M, Brennan C, Zeng XA, Sun B. Current situation, trend, and prospects of research on functional components from by-products of baijiu production: A review. Food Res Int 2024; 180:114032. [PMID: 38395586 DOI: 10.1016/j.foodres.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| | - Jayani Chandrapala
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Charles Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083 Australia
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Fong SL, Kim N, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nat Commun 2024; 15:12. [PMID: 38195585 PMCID: PMC10776631 DOI: 10.1038/s41467-023-44186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024] Open
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Wei E Gordon
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biology, Menlo College, 1000 El Camino Real, Atherton, CA, 94027, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rachael Bradley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Alex Galazyuk
- Hearing Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | - Nancy B Simmons
- Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, NY, 10024, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lisa Noelle Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Oger F, Bourouh C, Friano ME, Courty E, Rolland L, Gromada X, Moreno M, Carney C, Rabhi N, Durand E, Amanzougarene S, Berberian L, Derhourhi M, Blanc E, Hannou SA, Denechaud PD, Benfodda Z, Meffre P, Fajas L, Kerr-Conte J, Pattou F, Froguel P, Pourcet B, Bonnefond A, Collombat P, Annicotte JS. β-Cell-Specific E2f1 Deficiency Impairs Glucose Homeostasis, β-Cell Identity, and Insulin Secretion. Diabetes 2023; 72:1112-1126. [PMID: 37216637 DOI: 10.2337/db22-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/01/2023] [Indexed: 05/24/2023]
Abstract
The loss of pancreatic β-cell identity has emerged as an important feature of type 2 diabetes development, but the molecular mechanisms are still elusive. Here, we explore the cell-autonomous role of the cell-cycle regulator and transcription factor E2F1 in the maintenance of β-cell identity, insulin secretion, and glucose homeostasis. We show that the β-cell-specific loss of E2f1 function in mice triggers glucose intolerance associated with defective insulin secretion, altered endocrine cell mass, downregulation of many β-cell genes, and concomitant increase of non-β-cell markers. Mechanistically, epigenomic profiling of the promoters of these non-β-cell upregulated genes identified an enrichment of bivalent H3K4me3/H3K27me3 or H3K27me3 marks. Conversely, promoters of downregulated genes were enriched in active chromatin H3K4me3 and H3K27ac histone marks. We find that specific E2f1 transcriptional, cistromic, and epigenomic signatures are associated with these β-cell dysfunctions, with E2F1 directly regulating several β-cell genes at the chromatin level. Finally, the pharmacological inhibition of E2F transcriptional activity in human islets also impairs insulin secretion and the expression of β-cell identity genes. Our data suggest that E2F1 is critical for maintaining β-cell identity and function through sustained control of β-cell and non-β-cell transcriptional programs. ARTICLE HIGHLIGHTS β-Cell-specific E2f1 deficiency in mice impairs glucose tolerance. Loss of E2f1 function alters the ratio of α- to β-cells but does not trigger β-cell conversion into α-cells. Pharmacological inhibition of E2F activity inhibits glucose-stimulated insulin secretion and alters β- and α-cell gene expression in human islets. E2F1 maintains β-cell function and identity through control of transcriptomic and epigenetic programs.
Collapse
Affiliation(s)
- Frédérik Oger
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Cyril Bourouh
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Marika Elsa Friano
- INSERM, CNRS, Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
| | - Emilie Courty
- INSERM, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Laure Rolland
- INSERM, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Xavier Gromada
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Maeva Moreno
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Charlène Carney
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Emmanuelle Durand
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Souhila Amanzougarene
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Lionel Berberian
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Mehdi Derhourhi
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Etienne Blanc
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Sarah Anissa Hannou
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | | | | | | | - Lluis Fajas
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Julie Kerr-Conte
- INSERM, U1190 - EGID, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - François Pattou
- INSERM, U1190 - EGID, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Philippe Froguel
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
- Department of Metabolism, Hammersmith Hospital, Imperial College London, London, U.K
| | - Benoit Pourcet
- INSERM, U1011 - EGID, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| | - Amélie Bonnefond
- INSERM, U1283 - UMR8199 - European Genomic Institute for Diabetes (EGID), CNRS, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
- Department of Metabolism, Hammersmith Hospital, Imperial College London, London, U.K
| | - Patrick Collombat
- INSERM, CNRS, Institut de Biologie Valrose, Université Côte d'Azur, Nice, France
| | - Jean-Sébastien Annicotte
- INSERM, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, CHU Lille, Université de Lille, Lille, France
| |
Collapse
|
8
|
Oger F, Moreno M, Derhourhi M, Thiroux B, Berberian L, Bourouh C, Durand E, Amanzougarene S, Badreddine A, Blanc E, Molendi-Coste O, Pineau L, Pasquetti G, Rolland L, Carney C, Bornaque F, Courty E, Gheeraert C, Eeckhoute J, Dombrowicz D, Kerr-Conte J, Pattou F, Staels B, Froguel P, Bonnefond A, Annicotte JS. Pharmacological HDAC inhibition impairs pancreatic β-cell function through an epigenome-wide reprogramming. iScience 2023; 26:107231. [PMID: 37496675 PMCID: PMC10366467 DOI: 10.1016/j.isci.2023.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Histone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic β cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic β-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments. We observed that TSA alters insulin secretion associated with β-cell specific transcriptome programming in both mouse and human β-cell lines, as well as on human pancreatic islets. We also demonstrated that this alternative β-cell transcriptional program in response to HDAC inhibition is related to an epigenome-wide remodeling at both promoters and enhancers. Our data indicate that HDAC activity could be required to protect against loss of β-cell identity with unsuitable expression of genes associated with alternative cell fates.
Collapse
Affiliation(s)
- Frédérik Oger
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Maeva Moreno
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Mehdi Derhourhi
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Bryan Thiroux
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Lionel Berberian
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Cyril Bourouh
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Emmanuelle Durand
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Souhila Amanzougarene
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Alaa Badreddine
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Etienne Blanc
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Olivier Molendi-Coste
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Laurent Pineau
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Gianni Pasquetti
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - Laure Rolland
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Charlène Carney
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
| | - Florine Bornaque
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Emilie Courty
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Céline Gheeraert
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - David Dombrowicz
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Julie Kerr-Conte
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - François Pattou
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190 - EGID, F-59000 Lille, France
| | - Bart Staels
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Philippe Froguel
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, F-59000 Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jean-Sébastien Annicotte
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 – RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| |
Collapse
|
9
|
High-Throughput Quantitative Screening of Glucose-Stimulated Insulin Secretion and Insulin Content Using Automated MALDI-TOF Mass Spectrometry. Cells 2023; 12:cells12060849. [PMID: 36980190 PMCID: PMC10047017 DOI: 10.3390/cells12060849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disorder characterized by loss of pancreatic β-cell function, decreased insulin secretion and increased insulin resistance, that affects more than 537 million people worldwide. Although several treatments are proposed to patients suffering from T2D, long-term control of glycemia remains a challenge. Therefore, identifying new potential drugs and targets that positively affect β-cell function and insulin secretion remains crucial. Here, we developed an automated approach to allow the identification of new compounds or genes potentially involved in β-cell function in a 384-well plate format, using the murine β-cell model Min6. By using MALDI-TOF mass spectrometry, we implemented a high-throughput screening (HTS) strategy based on the automation of a cellular assay allowing the detection of insulin secretion in response to glucose, i.e., the quantitative detection of insulin, in a miniaturized system. As a proof of concept, we screened siRNA targeting well-know β-cell genes and 1600 chemical compounds and identified several molecules as potential regulators of insulin secretion and/or synthesis, demonstrating that our approach allows HTS of insulin secretion in vitro.
Collapse
|