1
|
Siracusa LR, Park E, Liu E, Baker AJ. Prolonged loss of nuclear HMGB1 in neurons following modeled TBI and implications for long-term genetic health. Brain Res 2025; 1855:149559. [PMID: 40081516 DOI: 10.1016/j.brainres.2025.149559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Under normal physiological conditions high mobility group box protein 1 (HMGB1) stabilizes chromatin, controls transcription, and contributes to DNA repair. Cellular stress or injury results in HMGB1 release from the nucleus acting as a proinflammatory cytokine. The objective of this study was to characterize the temporal progression of nuclear HMGB1 loss up to one week following modeled TBI in 250 g male rats and correlate these changes with the response of DNA damage proteins. HMGB1 was present in the cytoplasm and absent from the nucleus of neurons within 6 h of injury. Quantitative immunohistochemistry and Western blot analysis showed a significant decrease in nuclear HMGB1 expression at 6 and 24 h post-injury compared to controls. Approximately 20 % of neurons were lacking nuclear HMGB1 expression at 7 days post-injury. Cells which were negative for nuclear HMGB1 expression labelled positive for HIF1α, PARP, and γH2AX, indicators of oxidative stress and DNA damage. Nuclear HIF1α expression was detected at 6 h after injury. Nuclear expression of HIF1α, PARP, and γH2AX was observed at 7 days post-injury, suggesting activation of oxidative stress response mechanisms and DNA damage repair pathways. The temporal changes in HMGB1 translocation in conjunction with expression of DNA damage markers suggest a relationship between injury-induced HMGB1 loss in neurons and subsequent DNA damage. These results highlight a potential injury response mechanism with long-term implications in relation to genetic health of surviving neurons.
Collapse
Affiliation(s)
- Laura R Siracusa
- Institute of Medical Sciences, University of Toronto, Toronto, Canada; St. Michael's Hospital, Unity Health Toronto, Canada.
| | - Eugene Park
- St. Michael's Hospital, Unity Health Toronto, Canada
| | - Elaine Liu
- St. Michael's Hospital, Unity Health Toronto, Canada
| | - Andrew J Baker
- Institute of Medical Sciences, University of Toronto, Toronto, Canada; St. Michael's Hospital, Unity Health Toronto, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
3
|
Won JP, Lee HG, Yoon HJ, Seo HG. Biochanin A-mediated anti-ferroptosis is associated with reduction of septic kidney injury. Life Sci 2024; 358:123124. [PMID: 39396639 DOI: 10.1016/j.lfs.2024.123124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
AIMS This study aimed to investigate the therapeutic potential of biochanin A in a sepsis associated- acute kidney injury (SA-AKI) mouse model induced by lipopolysaccharide (LPS). MAIN METHODS Male BALB/C mice (n = 7 per group) were injected with biochanin A (40 mg/kg, i.p.) or ferrostatin-1 (5 mg/kg, i.p.) in the presence or absence of LPS (10 mg/kg, i.p.). Survival rates were monitored twice a day for up to 2 weeks. Morphologic and functional changes in kidney tissue were assessed by H&E staining and by analyzing of levels of blood-urea nitrogen (BUN) and creatinine (CR) in serum, respectively. Kidney epithelial cell death was analyzed by TUNEL staining, Prussian blue staining, iron quantification, lipid peroxide quantification, and glutathione quantification. Anti-ferroptosis mechanism of biochanin A was analyzed by RNA sequencing in mouse embryonic fibroblast cells. KEY FINDINGS Biochanin A increased the survival rate of septic mice and inhibited the secretion of high mobility group box 1, an important inflammatory mediator in sepsis. Biochanin A inhibited LPS-induced kidney damage by suppressing dilatation and kidney tubular epithelial cell death. Furthermore, serum levels of BUN and CR were reduced in biochanin A-treated endotoxemic mice. Biochanin A inhibited the accumulation of iron and lipid peroxide and prevented glutathione depletion in the kidney tissue. Also, nine genes associated with the anti-ferroptosis effects of biochanin A were identified by RNA sequencing analysis. SIGNIFICANCE The present study suggests that biochanin A is an effective inhibitor of ferroptosis, representing a potential treatment or prophylactic for sepsis-related disorders such as SA-AKI.
Collapse
Affiliation(s)
- Jun Pil Won
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Jun Yoon
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Leikina E, Whitlock JM, Melikov K, Zhang W, Bachmann MP, Chernomordik L. Formation of multinucleated osteoclasts depends on an oxidized species of cell surface-associated La protein. eLife 2024; 13:RP98665. [PMID: 39356057 PMCID: PMC11446546 DOI: 10.7554/elife.98665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells - generated by an increased number of cell fusion events - have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La's unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.
Collapse
Affiliation(s)
- Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jarred M Whitlock
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Wendy Zhang
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Michael P Bachmann
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University DresdenDresdenGermany
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR)DresdenGermany
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University DresdenDresdenGermany
| | - Leonid Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
5
|
Leikina E, Whitlock JM, Melikov K, Zhang W, Bachmann MP, Chernomordik LV. FORMATION OF MULTINUCLEATED OSTEOCLASTS DEPENDS ON AN OXIDIZED SPECIES OF CELL SURFACE ASSOCIATED LA PROTEIN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592254. [PMID: 38903088 PMCID: PMC11188106 DOI: 10.1101/2024.05.02.592254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells - generated by an increased number of cell fusion events - have higher resorptive activity. We find that osteoclast fusion and bone-resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La's unique regulatory role in osteoclast multinucleation and function is controlled by a ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.
Collapse
Affiliation(s)
- Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jarred M. Whitlock
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy Zhang
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- Institute of Immunology, Medical Faculty Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany
- University Cancer Center (UCC), Tumor Immunology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, 01307 Dresden, Germany
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Li Y, Pan K, Gao Y, Li J, Zang Y, Li X. Deconvoluting nitric oxide-protein interactions with spatially resolved multiplex imaging. Chem Sci 2024; 15:6562-6571. [PMID: 38699271 PMCID: PMC11062118 DOI: 10.1039/d4sc00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Simultaneous imaging of nitric oxide (NO) and its proximal proteins should facilitate the deconvolution of NO-protein interactions. While immunostaining is a primary assay to localize proteins in non-genetically manipulated samples, NO imaging probes with immunostaining-compatible signals remain unexplored. Herein, probe NOP-1 was developed with an NO-triggered proximal protein labeling capacity and fluorogenic signals. The trick is to fuse the native chemical ligation of acyl benzotriazole with the protein-conjugation-induced fluorogenic response of Si-rhodamine fluorophore. NOP-1 predominantly existed in the non-fluorescent spirocyclic form. Yet, its acyl o-phenylenediamine moiety was readily activated by NO into acyl benzotriazole to conjugate proximal proteins, providing a fluorogenic response and translating the transient cellular NO signal into a permanent stain compatible with immunostaining. NOP-1 was utilized to investigate NO signaling in hypoglycemia-induced neurological injury, providing direct evidence of NO-induced apoptosis during hypoglycemia. Mechanistically, multiplex imaging revealed the overlap of cellular NOP-1 fluorescence with immunofluorescence for α-tubulin and NO2-Tyr. Importantly, α-tubulin was resolved from NOP-1 labeled proteins. These results suggest that NO played a role in hypoglycemia-induced apoptosis, at least in part, through nitrating α-tubulin. This study fills a crucial gap in current imaging probes, providing a valuable tool for unraveling the complexities of NO signaling in biological processes.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
| | - Kaijun Pan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Yanan Gao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
| | - Jia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Yi Zang
- Lingang Laboratory Shanghai 201203 China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medical, Chinese Academy of Sciences Shanghai 201203 China
| | - Xin Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Street Hangzhou 310058 China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University Jiashan 314100 China
| |
Collapse
|
7
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
8
|
Choi YK. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int J Mol Sci 2024; 25:4465. [PMID: 38674050 PMCID: PMC11050730 DOI: 10.3390/ijms25084465] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia stabilizes hypoxia-inducible factors (HIFs), facilitating adaptation to hypoxic conditions. Appropriate hypoxia is pivotal for neurovascular regeneration and immune cell mobilization. However, in central nervous system (CNS) injury, prolonged and severe hypoxia harms the brain by triggering neurovascular inflammation, oxidative stress, glial activation, vascular damage, mitochondrial dysfunction, and cell death. Diminished hypoxia in the brain improves cognitive function in individuals with CNS injuries. This review discusses the current evidence regarding the contribution of severe hypoxia to CNS injuries, with an emphasis on HIF-1α-mediated pathways. During severe hypoxia in the CNS, HIF-1α facilitates inflammasome formation, mitochondrial dysfunction, and cell death. This review presents the molecular mechanisms by which HIF-1α is involved in the pathogenesis of CNS injuries, such as stroke, traumatic brain injury, and Alzheimer's disease. Deciphering the molecular mechanisms of HIF-1α will contribute to the development of therapeutic strategies for severe hypoxic brain diseases.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Ye J, Gao S, Liu Z, Chen X, He J, Hu Z. The HMGB1-RAGE axis in nucleus accumbens facilitates cocaine-induced conditioned place preference via modulating microglial activation. Brain Behav 2024; 14:e3457. [PMID: 38450910 PMCID: PMC10918599 DOI: 10.1002/brb3.3457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Jian Ye
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuang‐Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Departments of NeurosurgeryThird Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong ProvinceChina
| | - Zi‐Cun Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xi Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jin‐Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhuang‐Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei ProvinceWuhanChina
- The Research Center for Depression, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
10
|
Meng X, Na R, Peng X, Li H, Ouyang W, Zhou W, You X, Li Y, Pu X, Zhang K, Xia J, Wang J, Tang H, Zhuang G, Peng Z. Musashi-2 potentiates colorectal cancer immune infiltration by regulating the post-translational modifications of HMGB1 to promote DCs maturation and migration. Cell Commun Signal 2024; 22:117. [PMID: 38347600 PMCID: PMC10863188 DOI: 10.1186/s12964-024-01495-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.
Collapse
Affiliation(s)
- Xiaole Meng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Xiamen Clinical Research Center for Cancer Therapy; Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Risi Na
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hui Li
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wanxin Ouyang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenting Zhou
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xuting You
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yuhuan Li
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Pu
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ke Zhang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Huamei Tang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Guohong Zhuang
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhihai Peng
- Organ Transplantation Institute of Xiamen University; Xiamen Human Organ Transplantation Quality Control Center; Xiamen Key Laboratory of Regeneration Medicine; Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Organ Transplantation Clinical Medical Center of Xiamen University; Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
11
|
Dai Q, Qing X, Jiang W, Wang S, Liu S, Liu X, Huang F, Zhao H. Aging aggravates liver fibrosis through downregulated hepatocyte SIRT1-induced liver sinusoidal endothelial cell dysfunction. Hepatol Commun 2024; 8:e0350. [PMID: 38126919 PMCID: PMC10749712 DOI: 10.1097/hc9.0000000000000350] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Aging increases the susceptibility to chronic liver diseases and hastens liver fibrosis deterioration, but the underlying mechanisms remain partially understood. The aim of this study was to investigate the effect of aging and chronic liver diseases on hepatocyte Sirtuin 1 (SIRT1) and LSECs and their contribution to liver fibrosis pathogeneses. METHODS Young (8-12 wk) and aged (18-20 mo) mice were subjected to carbon tetrachloride-induced liver fibrosis. Primary HSCs and LSECs were isolated and cocultured for in vitro experiments. Liver tissues and blood samples from healthy controls and patients with liver fibrosis were analyzed. RESULTS Downregulated hepatocytes SIRT1 in aged mice increased high mobility group box 1 acetylation, cytoplasmic translocation, and extracellular secretion, causing LSECs dysfunction by means of the toll-like receptor 4/AK strain transforming (AKT)/endothelial nitric oxide synthase pathway, ultimately activating HSCs and increasing susceptibility to liver injury and fibrosis. Adeno-associated virus-mediated overexpression of SIRT1 in hepatocytes suppressed the abovementioned alterations and attenuated carbon tetrachloride-induced liver injury and fibrosis in liver fibrosis mice, and there were no significant differences in liver injury and fibrosis indicators between young and aged mice after SIRT1 overexpression treatment. In vitro experiments demonstrated that SIRT1 overexpression and endothelial nitric oxide synthase agonist YC-1 improved LSECs function and inhibited HSCs activation, mediated by nitric oxide. Similarly, downregulated hepatocytes SIRT1 and LSECs dysfunction were observed in the livers of aged individuals compared to young individuals and were more pronounced in aged patients with liver fibrosis. CONCLUSIONS Aging aggravates liver fibrosis through downregulated hepatocytes SIRT1-induced LSECs dysfunction, providing a prospective curative approach for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Jiang
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shouwen Wang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shengsheng Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
12
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
13
|
Liu T, Li Q, Jin Q, Yang L, Mao H, Qu P, Guo J, Zhang B, Ma F, Wang Y, Peng L, Li P, Zhan Y. Targeting HMGB1: A Potential Therapeutic Strategy for Chronic Kidney Disease. Int J Biol Sci 2023; 19:5020-5035. [PMID: 37781525 PMCID: PMC10539693 DOI: 10.7150/ijbs.87964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
High-mobility group protein box 1 (HMGB1) is a member of a highly conserved high-mobility group protein present in all cell types. HMGB1 plays multiple roles both inside and outside the cell, depending on its subcellular localization, context, and post-translational modifications. HMGB1 is also associated with the progression of various diseases. Particularly, HMGB1 plays a critical role in CKD progression and prognosis. HMGB1 participates in multiple key events in CKD progression by activating downstream signals, including renal inflammation, the onset of persistent fibrosis, renal aging, AKI-to-CKD transition, and important cardiovascular complications. More importantly, HMGB1 plays a distinct role in the chronic pathophysiology of kidney disease, which differs from that in acute lesions. This review describes the regulatory role of HMGB1 in renal homeostasis and summarizes how HMGB1 affects CKD progression and prognosis. Finally, some promising therapeutic strategies for the targeted inhibition of HMGB1 in improving CKD are summarized. Although the application of HMGB1 as a therapeutic target in CKD faces some challenges, a more in-depth understanding of the intracellular and extracellular regulatory mechanisms of HMGB1 that underly the occurrence and progression of CKD might render HMGB1 an attractive therapeutic target for CKD.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Qu
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Zhang
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|