1
|
Okuda DT, Moog TM, McCreary M, Shan K, Zubkow K, Newton BD, Smith AD, Patel MA, Burgess KW, Lebrun-Frénay C. Dynamic Expansion and Contraction of Multiple Sclerosis T2-Weighted Hyperintense Lesions Are Present below the Threshold of Visual Perception. AJNR Am J Neuroradiol 2025; 46:443-450. [PMID: 39151959 PMCID: PMC11878956 DOI: 10.3174/ajnr.a8453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND PURPOSE The study of T2-weighted hyperintense lesions resulting from autoimmune inflammatory injury and associated volumes within the CNS remains fundamental to the diagnosis and disease surveillance of MS. We investigated the dynamic changes of individual T2-weighted hyperintense MS lesions on MRI and hypothesized that variations may be present below the threshold of visual perception when evaluating longitudinal data. MATERIALS AND METHODS A retrospective study was performed of people with MS, incorporating data from 3 consecutive MRI time points acquired within a single academic center. All included MRI studies lacked formal imaging interpretations of newly enlarging or contracting T2-weighted hyperintensities. Well-defined, noncoalescing, individual T2-weighted hyperintense lesions were targeted. A total of 8-12 lesions were randomly selected in a blinded fashion at MRI time point 1 and 3D lesion volumes were followed over MRI time points 2 and 3. The impact of treatment on lesion expansion and relationship to brain MRI advancement, patient-reported progression of disease, and physician-identified progression was also studied. RESULTS The study cohort comprised 115 people (81 (70.4%) women; mean disease duration of 9.36 years [standard deviation: 7.72 years]) who were primarily White (79.1%). A total of 1426 focal T2-weighted hyperintense MS lesions were identified on MRI time point 1 and longitudinally followed over MRI time points 2 and 3. In the evaluation of raw changes in individual T2-weighted hyperintense lesion volumes from MRI time point 1 to MRI time point 2, a similar number of individuals were observed with predominantly expanding (49/115; 42.6%) or contracting (51/115; 44.3%) lesions. However, most lesions expanded in volume (48/115; 41.7%) versus those that contracted (45/115; 39.1%) when evaluating MRI time point 3 to time point 1. Those individuals not on active treatment had a 67.15% reduction in the odds of more individual lesions predominantly contracting in volume relative to those on low-efficacy disease modifying therapy treatment (95% CI = [-83.89% to -33.01%], P = .0008) and 74.02% reduction relative to high-efficacy treatment individuals (95% CI = [-87.37% to -46.56%], P < .0001). CONCLUSIONS Dynamic changes in T2-weighted hyperintense lesions are abundant, occurring below the threshold of visual perception and are present more frequently in untreated individuals.
Collapse
Affiliation(s)
- Darin T Okuda
- From the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
- Peter O'Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tatum M Moog
- From the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
- Peter O'Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Morgan McCreary
- From the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
- Peter O'Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Shan
- School of Medicine (K.S.), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kasia Zubkow
- Division of Neurology (K.Z.), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Braeden D Newton
- Division of Neurosurgery (B.D.N.), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexander D Smith
- School of Medicine (A.D.S), Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Mahi A Patel
- From the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
- Peter O'Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Katy W Burgess
- From the Department of Neurology, Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
- Peter O'Donnell Jr. Brain Institute (D.T.O., T.M.M., M.M., M.A.P., K.W.B.), The University of Texas Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
2
|
Wang X, Wu S, Yang H, Bao Y, Li Z, Gan C, Deng Y, Cao J, Li X, Wang Y, Ren C, Yang Z, Zhao Z. Intravascular delivery of an ultraflexible neural electrode array for recordings of cortical spiking activity. Nat Commun 2024; 15:9442. [PMID: 39487147 PMCID: PMC11530632 DOI: 10.1038/s41467-024-53720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Although intracranial neural electrodes have significantly contributed to both fundamental research and clinical treatment of neurological diseases, their implantation requires invasive surgery to open craniotomies, which can introduce brain damage and disrupt normal brain functions. Recent emergence of endovascular neural devices offers minimally invasive approaches for neural recording and stimulation. However, existing endovascular neural devices are unable to resolve single-unit activity in large animal models or human patients, impeding a broader application as neural interfaces in clinical practice. Here, we present the ultraflexible implantable neural electrode as an intravascular device (uFINE-I) for recording brain activity at single-unit resolution. We successfully implanted uFINE-Is into the sheep occipital lobe by penetrating through the confluence of sinuses and recorded both local field potentials (LFPs) and multi-channel single-unit spiking activity under spontaneous and visually evoked conditions. Imaging and histological analysis revealed minimal tissue damage and immune response. The uFINE-I provides a practical solution for achieving high-resolution neural recording with minimal invasiveness and can be readily transferred to clinical settings for future neural interface applications such as brain-machine interfaces (BMIs) and the treatment of neurological diseases.
Collapse
Affiliation(s)
- Xingzhao Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shun Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hantao Yang
- Shanghai Geriatric Medical Center, Shanghai, China
- Zhongshan Hospital, Shanghai, China
| | - Yu Bao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- Fudan University, Shanghai, China
| | - Changchun Gan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Junyan Cao
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xue Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yun Wang
- Zhongshan Hospital, Shanghai, China
- Fudan University, Shanghai, China
| | - Chi Ren
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | | | - Zhengtuo Zhao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Pons C, Mazade R, Jin J, Dul M, Alonso JM. OPTICAL BLUR AFFECTS DIFFERENTLY ON AND OFF VISUAL PATHWAYS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618707. [PMID: 39484435 PMCID: PMC11526864 DOI: 10.1101/2024.10.17.618707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The human eye has a crystalline lens that focuses retinal images at the point of fixation. Outside this fixation region, images are distorted by optical blur, which increases light scatter and reduces the spatial resolution and contrast processed by neuronal pathways. The spectacle lenses that humans use for optical correction also minify or magnify the images, affecting neuronal surround suppression in visual processing. Because light and dark stimuli are processed with ON and OFF pathways that have different spatial resolution, contrast sensitivity and surround suppression, optical blur and image magnification should affect differently the two pathways and the perception of lights and darks. Our results provide support for this prediction in cats and humans. We demonstrate that optical blur expands ON receptive fields while shrinking OFF receptive fields, as expected from the expansion of light stimuli and shrinkage of dark stimuli with light scatter. Spectacle-induced image magnification also shrinks OFF more than ON receptive fields, as expected from the stronger surround suppression in OFF than ON pathways. Optical blur also decreases the population response of OFF more than ON pathways, consistent with the different effects of light scatter on dark and light stimuli and the ON-OFF pathway differences in contrast sensitivity. Based on these results, we conclude that optical blur and image magnification reduce the receptive field sizes and cortical responses of OFF more than ON pathways, making the ON-OFF response balance a reliable signal to optimize the size and quality of the retinal image.
Collapse
Affiliation(s)
- Carmen Pons
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Reece Mazade
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA
| | - Mitchell Dul
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA
- Lead contact
| |
Collapse
|
4
|
Dresp-Langley B, Reeves AJ. Environmental Lighting Conditions, Phenomenal Contrast, and the Conscious Perception of Near and Far. Brain Sci 2024; 14:966. [PMID: 39451980 PMCID: PMC11505859 DOI: 10.3390/brainsci14100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Recent evidence in systems neuroscience suggests that lighting conditions affect the whole chain of brain processing, from retina to high-level cortical networks, for perceptual and cognitive function. Here, visual adaptation levels to three different environmental lighting conditions, (1) darkness, (2) daylight, and (3) prolonged exposure to very bright light akin to sunlight, were simulated in lab to investigate the effects of light adaptation levels on classic cases of subjective contrast, assimilation, and contrast-induced relative depth in achromatic, i.e., ON-OFF pathway mediated visual configurations. METHODS After adaptation/exposure to a given lighting condition, configurations were shown in grouped and ungrouped conditions in random order to healthy young humans in computer-controlled two-alternative forced-choice procedures that consisted of deciding, as quickly as possible, which of two background patterns in a given configuration of achromatic contrast appeared lighter, or which of two foreground patterns appeared to stand out in front, as if it were nearer to the observer. RESULTS We found a statistically significant effect of the adaptation levels on the consciously perceived subjective contrast (F(2,23) = 20.73; p < 0.001) and the relative depth (F(2,23) = 12.67; p < 0.001), a statistically significant interaction between the adaptation levels and the grouping factor (F(2,23) = 4.73; p < 0.05) on subjective contrast, and a statistically significant effect of the grouping factor on the relative depth (F(2,23) = 13.71; p < 0.01). CONCLUSIONS Visual adaption to different lighting conditions significantly alters the conscious perception of contrast and assimilation, classically linked to non-linear functional synergies between ON and OFF processing channels in the visual brain, and modulates the repeatedly demonstrated effectiveness of luminance contrast as a depth cue; the physically brighter pattern regions in the configurations are no longer consistently perceived as nearer to a conscious observer under daylight and extreme bright light adapted (rod-saturated) conditions.
Collapse
Affiliation(s)
- Birgitta Dresp-Langley
- Centre National de la Recherche Scientifique, UMR 7357, Strasbourg University, 67000 Strasbourg, France
| | - Adam J. Reeves
- Psychology Department, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
5
|
Longcore T, Villanueva SAMB, Nguyen-Ngo K, Ghiani CA, Harrison B, Colwell CS. Relative importance of intensity and spectrum of artificial light at night in disrupting behavior of a nocturnal rodent. J Exp Biol 2024; 227:jeb247235. [PMID: 38873751 PMCID: PMC11418196 DOI: 10.1242/jeb.247235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.
Collapse
Affiliation(s)
- Travis Longcore
- UCLA Institute of the Environment and Sustainability, 619 Charles E. Young Drive East, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| | - Sophia Anne Marie B. Villanueva
- UCLA Department of Integrative Biology and Physiology, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, USA
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kyle Nguyen-Ngo
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Cristina A. Ghiani
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
- UCLA Department of Pathology and Laboratory Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA
| | - Benjamin Harrison
- Korrus, Inc., 837 North Spring Street, Suite 103, Los Angeles, CA 90012, USA
| | - Christopher S. Colwell
- UCLA Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Olianezhad F, Jin J, Najafian S, Pons C, Mazade R, Kremkow J, Alonso JM. Binocular receptive-field construction in the primary visual cortex. Curr Biol 2024; 34:2474-2486.e5. [PMID: 38772362 DOI: 10.1016/j.cub.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
ON and OFF thalamic afferents from the two eyes converge in the primary visual cortex to form binocular receptive fields. The receptive fields need to be diverse to sample our visual world but also similar across eyes to achieve binocular fusion. It is currently unknown how the cortex balances these competing needs between receptive-field diversity and similarity. Our results demonstrate that receptive fields in the cat visual cortex are binocularly matched with exquisite precision for retinotopy, orientation/direction preference, orientation/direction selectivity, response latency, and ON-OFF polarity/structure. Specifically, the average binocular mismatches in retinotopy and ON-OFF structure are tightly restricted to 1/20 and 1/5 of the average receptive-field size but are still large enough to generate all types of binocular disparity tuning. Based on these results, we conclude that cortical receptive fields are binocularly matched with the high precision needed to facilitate binocular fusion while allowing restricted mismatches to process visual depth.
Collapse
Affiliation(s)
- Farzaneh Olianezhad
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA
| | - Sohrab Najafian
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carmen Pons
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA; Neurological Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Reece Mazade
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA; Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jens Kremkow
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA; Neuroscience Research Center, Charité - Universitätsmedizin, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY Optometry, New York, NY 10036, USA.
| |
Collapse
|
7
|
Nivinsky Margalit S, Slovin H. Encoding luminance surfaces in the visual cortex of mice and monkeys: difference in responses to edge and center. Cereb Cortex 2024; 34:bhae165. [PMID: 38652553 DOI: 10.1093/cercor/bhae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Luminance and spatial contrast provide information on the surfaces and edges of objects. We investigated neural responses to black and white surfaces in the primary visual cortex (V1) of mice and monkeys. Unlike primates that use their fovea to inspect objects with high acuity, mice lack a fovea and have low visual acuity. It thus remains unclear whether monkeys and mice share similar neural mechanisms to process surfaces. The animals were presented with white or black surfaces and the population responses were measured at high spatial and temporal resolution using voltage-sensitive dye imaging. In mice, the population response to the surface was not edge-dominated with a tendency to center-dominance, whereas in monkeys the response was edge-dominated with a "hole" in the center of the surface. The population response to the surfaces in both species exhibited suppression relative to a grating stimulus. These results reveal the differences in spatial patterns to luminance surfaces in the V1 of mice and monkeys and provide evidence for a shared suppression process relative to grating.
Collapse
Affiliation(s)
- Shany Nivinsky Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Poudel S, Jin J, Rahimi-Nasrabadi H, Dellostritto S, Dul MW, Viswanathan S, Alonso JM. Contrast Sensitivity of ON and OFF Human Retinal Pathways in Myopia. J Neurosci 2024; 44:e1487232023. [PMID: 38050109 PMCID: PMC10860621 DOI: 10.1523/jneurosci.1487-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
The human visual cortex processes light and dark stimuli with ON and OFF pathways that are differently modulated by luminance contrast. We have previously demonstrated that ON cortical pathways have higher contrast sensitivity than OFF cortical pathways and the difference increases with luminance range (defined as the maximum minus minimum luminance in the scene). Here, we demonstrate that these ON-OFF cortical differences are already present in the human retina and that retinal responses measured with electroretinography are more affected by reductions in luminance range than cortical responses measured with electroencephalography. Moreover, we show that ON-OFF pathway differences measured with electroretinography become more pronounced in myopia, a visual disorder that elongates the eye and blurs vision at far distance. We find that, as the eye axial length increases across subjects, ON retinal pathways become less responsive, slower in response latency, less sensitive, and less effective and slower at driving pupil constriction. Based on these results, we conclude that myopia is associated with a deficit in ON pathway function that decreases the ability of the retina to process low contrast and regulate retinal illuminance in bright environments.
Collapse
Affiliation(s)
- Sabina Poudel
- Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036
| | - Hamed Rahimi-Nasrabadi
- Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036
| | - Stephen Dellostritto
- Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036
| | - Mitchell W Dul
- Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036
| | - Suresh Viswanathan
- Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, State University of New York College of Optometry, New York, New York 10036
| |
Collapse
|
9
|
Dai W, Wang T, Li Y, Yang Y, Zhang Y, Kang J, Wu Y, Yu H, Xing D. Dynamic Recruitment of the Feedforward and Recurrent Mechanism for Black-White Asymmetry in the Primary Visual Cortex. J Neurosci 2023; 43:5668-5684. [PMID: 37487737 PMCID: PMC10401654 DOI: 10.1523/jneurosci.0168-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes. In a cortical column, we found that black-white asymmetry starts at the input layer and becomes more pronounced in the output layer. We also found distinct dynamics of black-white asymmetry between the output layer and the input layer. Specifically, black responses dominate in all layers after stimulus onset. After stimulus offset, black and white responses are balanced in the input layer, but black responses still dominate in the output layer. Compared with that in the input layer, the rebound response in the output layer is significantly suppressed. The relative suppression strength evoked by white stimuli is notably stronger and depends on the location within the ON-OFF cortical map. A model with delayed and polarity-selective cortical suppression explains black-white asymmetry in the output layer, within which prominent recurrent connections are identified by Granger causality analysis. In addition to black-white asymmetry in response strength, the interlaminar differences in spatial receptive field varied dynamically. Our findings suggest that the feedforward and recurrent mechanisms are dynamically recruited for the generation of black-white asymmetry in V1.SIGNIFICANCE STATEMENT Black-white asymmetry is universal and essential in visual information processing, yet the neural substrates for cortical black-white asymmetry remain unknown. Leveraging V1 laminar recordings, we provided the first laminar pattern of black-white asymmetry in cat V1 and found distinct dynamics of black-white asymmetry between the output layer and the input layer. Comparing black-white asymmetry across three visual hierarchies, the LGN, V1 input layer, and V1 output layer, we demonstrated that the feedforward and recurrent mechanisms are dynamically recruited for the generation of cortical black-white asymmetry. Our findings not only enhance our understanding of laminar processing within a cortical column but also elucidate how feedforward connections and recurrent connections interact to shape neuronal response properties.
Collapse
Affiliation(s)
- Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jian Kang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Poudel S, Rahimi-Nasrabadi H, Jin J, Najafian S, Alonso JM. Differences in visual stimulation between reading and walking and implications for myopia development. J Vis 2023; 23:3. [PMID: 37014657 PMCID: PMC10080958 DOI: 10.1167/jov.23.4.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/11/2023] [Indexed: 04/05/2023] Open
Abstract
Visual input plays an important role in the development of myopia (nearsightedness), a visual disorder that blurs vision at far distances. The risk of myopia progression increases with the time spent reading and decreases with outdoor activity for reasons that remain poorly understood. To investigate the stimulus parameters driving this disorder, we compared the visual input to the retina of humans performing two tasks associated with different risks of myopia progression, reading and walking. Human subjects performed the two tasks while wearing glasses with cameras and sensors that recorded visual scenes and visuomotor activity. When compared with walking, reading black text in white background reduced spatiotemporal contrast in central vision and increased it in peripheral vision, leading to a pronounced reduction in the ratio of central/peripheral strength of visual stimulation. It also made the luminance distribution heavily skewed toward negative dark contrast in central vision and positive light contrast in peripheral vision, decreasing the central/peripheral stimulation ratio of ON visual pathways. It also decreased fixation distance, blink rate, pupil size, and head-eye coordination reflexes dominated by ON pathways. Taken together with previous work, these results support the hypothesis that reading drives myopia progression by understimulating ON visual pathways.
Collapse
Affiliation(s)
- Sabina Poudel
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Hamed Rahimi-Nasrabadi
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Sohrab Najafian
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, USA
| |
Collapse
|
11
|
Luminance Contrast Shifts Dominance Balance between ON and OFF Pathways in Human Vision. J Neurosci 2023; 43:993-1007. [PMID: 36535768 PMCID: PMC9908321 DOI: 10.1523/jneurosci.1672-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Human vision processes light and dark stimuli in visual scenes with separate ON and OFF neuronal pathways. In nature, stimuli lighter or darker than their local surround have different spatial properties and contrast distributions (Ratliff et al., 2010; Cooper and Norcia, 2015; Rahimi-Nasrabadi et al., 2021). Similarly, in human vision, we show that luminance contrast affects the perception of lights and darks differently. At high contrast, human subjects of both sexes locate dark stimuli faster and more accurately than light stimuli, which is consistent with a visual system dominated by the OFF pathway. However, at low contrast, they locate light stimuli faster and more accurately than dark stimuli, which is consistent with a visual system dominated by the ON pathway. Luminance contrast was strongly correlated with multiple ON/OFF dominance ratios estimated from light/dark ratios of performance errors, missed targets, or reaction times (RTs). All correlations could be demonstrated at multiple eccentricities of the central visual field with an ON-OFF perimetry test implemented in a head-mounted visual display. We conclude that high-contrast stimuli are processed faster and more accurately by OFF pathways than ON pathways. However, the OFF dominance shifts toward ON dominance when stimulus contrast decreases, as expected from the higher-contrast sensitivity of ON cortical pathways (Kremkow et al., 2014; Rahimi-Nasrabadi et al., 2021). The results highlight the importance of contrast polarity in visual field measurements and predict a loss of low-contrast vision in humans with ON pathway deficits, as demonstrated in animal models (Sarnaik et al., 2014).SIGNIFICANCE STATEMENT ON and OFF retino-thalamo-cortical pathways respond differently to luminance contrast. In both animal models and humans, low contrasts drive stronger responses from ON pathways, whereas high contrasts drive stronger responses from OFF pathways. We demonstrate that these ON-OFF pathway differences have a correlate in human vision. At low contrast, humans locate light targets faster and more accurately than dark targets but, as contrast increases, dark targets become more visible than light targets. We also demonstrate that contrast is strongly correlated with multiple light/dark ratios of visual performance in central vision. These results provide a link between neuronal physiology and human vision while emphasizing the importance of stimulus polarity in measurements of visual fields and contrast sensitivity.
Collapse
|