1
|
Cheng Z, Sun Y, Shen Y, Wu X, Pan L, Wu H, Bai Y, Zhao C, Ma J, Huang W. A single mutation at position 214 of influenza B hemagglutinin enhances cross-neutralization. Emerg Microbes Infect 2025; 14:2467770. [PMID: 39960410 PMCID: PMC11849025 DOI: 10.1080/22221751.2025.2467770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
High variability of influenza B virus (IBV) hemagglutinin (HA) impairs the cross- neutralization ability of vaccines, leading to reduce efficacy. We identified significant differences in cross-neutralization between IBV strains B/Wyoming/06/2014 and B/Brisbane/60/2008, which differ in only three amino acid residues. The 214 T point mutation was found to dramatically enhance cross-neutralization (>10-fold). Antibody-based reverse validation also revealed that this mutation significantly increased the neutralization capacity (500-62,500-fold). Furthermore, monitoring revealed that the mutation rate at this site has reached its highest level in nearly 20 years, with a prevalence exceeding 80% in sequences submitted from certain regions. Our findings provide new evidence for the selection of vaccine strains with improved cross- neutralization effects, which will aid the development of broad-spectrum vaccines by modifying minimal antigenic epitopes.
Collapse
Affiliation(s)
- Ziqi Cheng
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yeqing Sun
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yanru Shen
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Xi Wu
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Ling Pan
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Hao Wu
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Yunbo Bai
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccines, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Rosado VC, Adams L, Yousif AS, Sangesland M, Ronsard L, Okonkwo V, McCarthy C, Alexander C, Irvine D, Lingwood D. A modular protocol for virosome display of subunit vaccine antigens. STAR Protoc 2025; 6:103610. [PMID: 39891914 PMCID: PMC11834092 DOI: 10.1016/j.xpro.2025.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025] Open
Abstract
Antigen array increases B cell receptor (BCR) triggering and the titer of antibodies elicited by subunit vaccines. Here, we present a protocol for multivalent antigen display by synthetic virosomes: preformed liposomes bearing glycoprotein spike proteins from enveloped viruses. We describe how to customize lipid stoichiometry within preformed liposomes and attach user-defined antigens via covalent and/or non-covalent interactions. In addition to generating vaccine research tools, this protocol demonstrates how two-dimensional membrane array resolves and activates exceptionally weak but critical virus-receptor interactions.
Collapse
Affiliation(s)
- Victoria C Rosado
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Lindsey Adams
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Ashraf S Yousif
- University of Virginia, School of Medicine, Beirne B. Carter Center for Immunology Research, 345 Crispell Dr., Charlottesville, VA 22908, USA
| | - Maya Sangesland
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Larance Ronsard
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Vintus Okonkwo
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Caitlin McCarthy
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Caroline Alexander
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA
| | - Darrell Irvine
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Lingwood
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 600 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Castro KM, Ayardulabi R, Wehrle S, Cui H, Georgeon S, Schmidt J, Xiao S, Seraj N, Harshbarger W, Mallett CP, Vassilev V, Saelens X, Correia BE. Structure-based Design of Chimeric Influenza Hemagglutinins to Elicit Cross-group Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628867. [PMID: 40027756 PMCID: PMC11870435 DOI: 10.1101/2024.12.17.628867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Antigenic variability among influenza virus strains poses a significant challenge to developing broadly protective, long-lasting vaccines. Current annual vaccines target specific strains, requiring accurate prediction for effective neutralization. Despite sequence diversity across phylogenetic groups, the hemagglutinin (HA) head domain's structure remains highly conserved. Utilizing this conservation, we designed cross-group chimeric HAs that combine antigenic surfaces from distant strains. By structure-guided transplantation of receptor-binding site (RBS) residues, we displayed an H3 RBS on an H1 HA scaffold. These chimeric immunogens elicit cross-group polyclonal responses capable of neutralizing both base and distal strains. Additionally, the chimeras integrate heterotrimeric immunogens, enhancing modular vaccine design. This approach enables the inclusion of diverse strain segments to generate broad polyclonal responses. In the future, such modular immunogens may serve as tools for evaluating immunodominance and refining immunization strategies, offering potential to bridge and enhance immune responses in individuals with pre-existing immunity. This strategy holds promise for advancing universal influenza vaccine development.
Collapse
|
4
|
Norizwan JAM, Tan WS. Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100317. [PMID: 39717209 PMCID: PMC11665419 DOI: 10.1016/j.crmicr.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains. To address current limitations, new strategies are being sought, with great emphasis given on exploiting IAV's conserved antigens for vaccine development, and by using different vaccine technologies to enhance immunogenicity and expedite vaccine production. Among these technologies, there are growing pre-clinical and clinical studies involving virus-like particles (VLPs), as they are capable to display multiple conserved IAV antigens and augment their immune responses. In this review, we outline recent findings involving broadly effective IAV antigens and strategies to display these antigens on VLPs. Current production systems for IAV VLP vaccines are comprehensively reviewed. Pain-free methods for administration of IAV VLP vaccines through intranasal and transdermal routes, as well as the mechanisms in stimulating immune responses are discussed in detail. The future perspectives of VLPs in IAV vaccine development are discussed, particularly concerning their potentials in overcoming current immunological limitations of IAV vaccines, and their inherent advantages in exploring intranasal vaccination studies. We also propose avenues to expedite VLP vaccine production, as we envision that there will be more clinical trials involving IAV VLP vaccines, leading to commercialization of these vaccines in the near future.
Collapse
Affiliation(s)
- Jaffar Ali Muhamad Norizwan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Deng Y, Tang M, Ross TM, Schmidt AG, Chakraborty AK, Lingwood D. Repeated vaccination with homologous influenza hemagglutinin broadens human antibody responses to unmatched flu viruses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24303943. [PMID: 38585939 PMCID: PMC10996724 DOI: 10.1101/2024.03.27.24303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The on-going diversification of influenza virus necessicates annual vaccine updating. The vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific neutralizing activity, predicting that sequential immunization with the same HA strain will boost antibodies with narrow coverage. However, repeated vaccination with homologous SARS-CoV-2 vaccine eventually elicits neutralizing activity against highly unmatched variants, questioning this immunological premise. We evaluated a longitudinal influenza vaccine cohort, where each year the subjects received the same, novel H1N1 2009 pandemic vaccine strain. Repeated vaccination gradually enhanced receptor-blocking antibodies (HAI) to highly unmatched H1N1 strains within individuals with no initial memory recall against these historical viruses. An in silico model of affinity maturation in germinal centers integrated with a model of differentiation and expansion of memory cells provides insight into the mechanisms underlying these results and shows how repeated exposure to the same immunogen can broaden the antibody response against diversified targets.
Collapse
|
6
|
Hauser B, Sangesland M, Lam EC, St Denis KJ, Sheehan ML, Vu ML, Cheng AH, Sordilla S, Lamson DT, Almawi AW, Balazs AB, Lingwood D, Schmidt AG. Heterologous Sarbecovirus Receptor Binding Domains as Scaffolds for SARS-CoV-2 Receptor Binding Motif Presentation. ACS Infect Dis 2024; 10:553-561. [PMID: 38281136 PMCID: PMC10862550 DOI: 10.1021/acsinfecdis.3c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center on targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potent neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake
M. Hauser
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maya Sangesland
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Evan C. Lam
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kerri J. St Denis
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maegan L. Sheehan
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Mya L. Vu
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Agnes H. Cheng
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Sophia Sordilla
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Dana Thornlow Lamson
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ahmad W. Almawi
- Center
for Molecular Interactions, Department of Biological Chemistry and
Molecular Pharmacology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Alejandro B. Balazs
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Daniel Lingwood
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Aaron G. Schmidt
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Ellis D, Dosey A, Boyoglu-Barnum S, Park YJ, Gillespie R, Syeda H, Hutchinson GB, Tsybovsky Y, Murphy M, Pettie D, Matheson N, Chan S, Ueda G, Fallas JA, Carter L, Graham BS, Veesler D, Kanekiyo M, King NP. Antigen spacing on protein nanoparticles influences antibody responses to vaccination. Cell Rep 2023; 42:113552. [PMID: 38096058 PMCID: PMC10801709 DOI: 10.1016/j.celrep.2023.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Immunogen design approaches aim to control the specificity and quality of antibody responses elicited by next-generation vaccines. Here, we use computational protein design to generate a nanoparticle vaccine platform based on the receptor-binding domain (RBD) of influenza hemagglutinin (HA) that enables precise control of antigen conformation and spacing. HA RBDs are presented as either monomers or native-like closed trimers that are connected to the underlying nanoparticle by a rigid linker that is modularly extended to precisely control antigen spacing. Nanoparticle immunogens with decreased spacing between trimeric RBDs elicit antibodies with improved hemagglutination inhibition and neutralization potency as well as binding breadth across diverse H1 HAs. Our "trihead" nanoparticle immunogen platform provides insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used in next-generation vaccines against influenza and other viruses.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geoffrey B Hutchinson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nick Matheson
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jorge A Fallas
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Puente-Massaguer E, Vasilev K, Beyer A, Loganathan M, Francis B, Scherm MJ, Arunkumar GA, González-Domínguez I, Zhu X, Wilson IA, Coughlan L, Sun W, Palese P, Krammer F. Chimeric hemagglutinin split vaccines elicit broadly cross-reactive antibodies and protection against group 2 influenza viruses in mice. SCIENCE ADVANCES 2023; 9:eadi4753. [PMID: 37703367 PMCID: PMC10499326 DOI: 10.1126/sciadv.adi4753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Seasonal influenza virus vaccines are effective when they are well matched to circulating strains. Because of antigenic drift/change in the immunodominant hemagglutinin (HA) head domain, annual vaccine reformulations are necessary to maintain a match with circulating strains. In addition, seasonal vaccines provide little to no protection against newly emerging pandemic strains. Sequential vaccination with chimeric HA (cHA) constructs has been proven to direct the immune response toward the immunosubdominant but more conserved HA stalk domain. In this study, we show that immunization with group 2 cHA split vaccines in combination with the CpG 1018 adjuvant elicits broadly cross-reactive antibodies against all group 2 HAs, as well as systemic and local antigen-specific T cell responses. Antibodies elicited after sequential vaccination are directed to conserved regions of the HA such as the stalk and the trimer interface and also to the N2 neuraminidase (NA). Immunized mice were fully protected from challenge with a broad panel of influenza A viruses.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirill Vasilev
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Annika Beyer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin Francis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J. Scherm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Ronsard L, Yousif AS, Nait Mohamed FA, Feldman J, Okonkwo V, McCarthy C, Schnabel J, Caradonna T, Barnes RM, Rohrer D, Lonberg N, Schmidt A, Lingwood D. Engaging an HIV vaccine target through the acquisition of low B cell affinity. Nat Commun 2023; 14:5249. [PMID: 37640732 PMCID: PMC10462694 DOI: 10.1038/s41467-023-40918-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Low affinity is common for germline B cell receptors (BCR) seeding development of broadly neutralizing antibodies (bnAbs) that engage hypervariable viruses, including HIV. Antibody affinity selection is also non-homogenizing, insuring the survival of low affinity B cell clones. To explore whether this provides a natural window for expanding human B cell lineages against conserved vaccine targets, we deploy transgenic mice mimicking human antibody diversity and somatic hypermutation (SHM) and immunize with simple monomeric HIV glycoprotein envelope immunogens. We report an immunization regimen that focuses B cell memory upon the conserved CD4 binding site (CD4bs) through both conventional affinity maturation and reproducible expansion of low affinity BCR clones with public patterns in SHM. In the latter instance, SHM facilitates target acquisition by decreasing binding strength. This suggests that permissive B cell selection enables the discovery of antibody epitopes, in this case an HIV bnAb site.
Collapse
Affiliation(s)
- Larance Ronsard
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Ashraf S Yousif
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Faez Amokrane Nait Mohamed
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Jared Feldman
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Vintus Okonkwo
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Caitlin McCarthy
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Julia Schnabel
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Timothy Caradonna
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Ralston M Barnes
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA, 94063-2478, USA
| | - Daniel Rohrer
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA, 94063-2478, USA
| | - Nils Lonberg
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA, 94063-2478, USA
| | - Aaron Schmidt
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Lingwood
- The Ragon Institute of Mass General, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Hauser BM, Sangesland M, Lam EC, Denis KJS, Sheehan ML, Vu ML, Cheng AH, Balazs AB, Lingwood D, Schmidt AG. Heterologous sarbecovirus receptor binding domains as scaffolds for SARS-CoV-2 receptor binding motif presentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554179. [PMID: 37662405 PMCID: PMC10473630 DOI: 10.1101/2023.08.21.554179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center upon targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potently neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake M. Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | | | - Mya L. Vu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Agnes H. Cheng
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Ellis D, Dosey A, Boyoglu-Barnum S, Park YJ, Gillespie R, Syeda H, Tsybovsky Y, Murphy M, Pettie D, Matheson N, Chan S, Ueda G, Fallas JA, Carter L, Graham BS, Veesler D, Kanekiyo M, King NP. Antigen spacing on protein nanoparticles influences antibody responses to vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541980. [PMID: 37292995 PMCID: PMC10245855 DOI: 10.1101/2023.05.23.541980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immunogen design approaches aim to control the specificity and quality of antibody responses to enable the creation of next-generation vaccines with improved potency and breadth. However, our understanding of the relationship between immunogen structure and immunogenicity is limited. Here we use computational protein design to generate a self-assembling nanoparticle vaccine platform based on the head domain of influenza hemagglutinin (HA) that enables precise control of antigen conformation, flexibility, and spacing on the nanoparticle exterior. Domain-based HA head antigens were presented either as monomers or in a native-like closed trimeric conformation that prevents exposure of trimer interface epitopes. These antigens were connected to the underlying nanoparticle by a rigid linker that was modularly extended to precisely control antigen spacing. We found that nanoparticle immunogens with decreased spacing between closed trimeric head antigens elicited antibodies with improved hemagglutination inhibition (HAI) and neutralization potency as well as binding breadth across diverse HAs within a subtype. Our "trihead" nanoparticle immunogen platform thus enables new insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used to generate next-generation vaccines against influenza and other viruses.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
- These authors contributed equally: Daniel Ellis and Annie Dosey
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- These authors contributed equally: Daniel Ellis and Annie Dosey
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nick Matheson
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jorge A. Fallas
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Yang L, Caradonna TM, Schmidt AG, Chakraborty AK. Mechanisms that promote the evolution of cross-reactive antibodies upon vaccination with designed influenza immunogens. Cell Rep 2023; 42:112160. [PMID: 36867533 PMCID: PMC10184763 DOI: 10.1016/j.celrep.2023.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/18/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Immunogens that elicit broadly neutralizing antibodies targeting the conserved receptor-binding site (RBS) on influenza hemagglutinin may serve as candidates for a universal influenza vaccine. Here, we develop a computational model to interrogate antibody evolution by affinity maturation after immunization with two types of immunogens: a heterotrimeric "chimera" hemagglutinin that is enriched for the RBS epitope relative to other B cell epitopes and a cocktail composed of three non-epitope-enriched homotrimers of the monomers that comprise the chimera. Experiments in mice find that the chimera outperforms the cocktail for eliciting RBS-directed antibodies. We show that this result follows from an interplay between how B cells engage these antigens and interact with diverse helper T cells and requires T cell-mediated selection of germinal center B cells to be a stringent constraint. Our results shed light on antibody evolution and highlight how immunogen design and T cells modulate vaccination outcomes.
Collapse
Affiliation(s)
- Leerang Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|