1
|
Klümper N, Cox A, Sjödahl G, Roghmann F, Bolenz C, Hartmann A, Grünwald V, Faltas BM, Hölzel M, Eckstein M. Pre-treatment metastatic biopsy: a step towards precision oncology for urothelial cancer. Nat Rev Urol 2025; 22:256-267. [PMID: 39472646 DOI: 10.1038/s41585-024-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 05/10/2025]
Abstract
Early metastatic spread and clonal expansion of individual mutations result in a heterogeneous tumour landscape in metastatic urothelial cancer (mUC). Substantial molecular heterogeneity of common drug targets, such as membranous NECTIN4, FGFR3 mutations, PDL1 or immune phenotypes, has been documented between primary and metastatic tumours. However, translational and clinical studies frequently do not account for such heterogeneity and often investigate primary tumour samples that might not be representative in patients with mUC. We propose this as a potential factor for why many biomarkers for mUC have failed to be integrated into clinical practice. Fresh pre-treatment metastatic biopsies enable the capturing of prevailing tumour biology in real time. The characterization of metastatic tumour samples can improve response prediction to immunotherapy, the anti-NECTIN4 antibody-drug conjugate enfortumab vedotin and the FGFR inhibitor erdafitinib. Routine metastatic biopsy can thus improve the precision of identifying driver druggable alterations, thus improving treatment selection for patients with mUC.
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany.
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| | - Alexander Cox
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
| | - Gottfrid Sjödahl
- Department of Translational Medicine, Division of Urological Research, Lund University, Lund, Sweden
| | - Florian Roghmann
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Christian Bolenz
- Department of Urology and Paediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Viktor Grünwald
- Clinic for Internal Medicine (Tumour Research) and Clinic for Urology, Interdisciplinary Genitourinary Oncology at the West-German Cancer Center, Essen University Hospital, Essen, Germany
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Chu CE, Chen Z, Whiting K, Ostrovnaya I, Lenis AT, Clinton TN, Rammal R, Ozcan GG, Akbulut D, Basar M, Chen JF, Chen YB, Gopalan A, Fine SW, Tickoo SK, Arcila M, Brannon AR, Berger MF, Cha EK, Goh AC, Donahue TF, Bajorin DF, Teo MY, Rosenberg JE, Iyer G, Pietzak EJ, Bochner BH, Reuter VE, Sarungbam J, Solit DB, Al-Ahmadie H. Clinical Outcomes, Genomic Heterogeneity, and Therapeutic Considerations Across Histologic Subtypes of Urothelial Carcinoma. Eur Urol 2025:S0302-2838(25)00210-6. [PMID: 40288936 DOI: 10.1016/j.eururo.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND AND OBJECTIVE Divergent differentiation and histologic subtypes are common findings in urothelial carcinoma (UC). Clinically relevant genomic alterations and oncogenic drivers of individual subtypes remain poorly defined. We characterized surgical outcomes and the genomic landscape of UC with aberrant histology (UCAH), with a focus on biomarkers and targetable alterations. METHODS The clinical cohort comprised 3052 patients who underwent radical cystectomy (RC) with or without neoadjuvant chemotherapy. Targeted exon sequencing was performed for a genomic cohort of 1060 bladder tumors from RC or transurethral resection specimens. We characterized the frequency of oncogenic mutations and targetable alterations, and the tumor mutational burden (TMB) of each subtype. We defined the clonal relatedness of morphologically distinct regions of tumors with mixed histology. KEY FINDINGS AND LIMITATIONS Patients with plasmacytoid, micropapillary, sarcomatoid, or mixed-histology tumors had worse cancer-specific survival than patients with pure urothelial histology. ERBB2, FGFR3, and PTEN alterations were most frequent in micropapillary, nested/squamous, and sarcomatoid UC, respectively. TMB was highest in plasmacytoid, neuroendocrine, and micropapillary tumors. Regions of mixed histology had shared clonal origins, but exceptions were observed. The retrospective design and potential for selection bias are limitations of our study. CONCLUSIONS AND CLINICAL IMPLICATIONS UCAH tumors have distinct patterns of genomic alterations, which may be targetable via novel therapies and have implications for clinical trial inclusion. Biomarker-driven systemic therapy should be explored in patients with histologic subtypes that are associated with worse clinical outcomes.
Collapse
Affiliation(s)
- Carissa E Chu
- Department of Urology, University of California, San Francisco, CA, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Ziyu Chen
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karissa Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew T Lenis
- Department of Urology, Columbia University, New York, NY, USA
| | - Timothy N Clinton
- Department of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rayan Rammal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gamze Gokturk Ozcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilara Akbulut
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Merve Basar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jie-Fu Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene K Cha
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Alvin C Goh
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Timothy F Donahue
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Min Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene J Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Bernard H Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Victor E Reuter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Lindskrog SV, Strandgaard T, Nordentoft I, Galsky MD, Powles T, Agerbæk M, Jensen JB, Alix-Panabières C, Dyrskjøt L. Circulating tumour DNA and circulating tumour cells in bladder cancer - from discovery to clinical implementation. Nat Rev Urol 2025:10.1038/s41585-025-01023-9. [PMID: 40234713 DOI: 10.1038/s41585-025-01023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Liquid biopsies, indicating the sampling of body fluids rather than solid-tissue biopsies, have the potential to revolutionize cancer care through personalized, noninvasive disease detection and monitoring. Circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) are promising blood-based biomarkers in bladder cancer. Results from several studies have shown the clinical potential of ctDNA and CTCs in bladder cancer for prognostication, treatment-response monitoring, and early detection of minimal residual disease and disease recurrence. Following successful clinical trial evaluation, assessment of ctDNA and CTCs holds the potential to transform the therapeutic pathway for patients with bladder cancer - potentially in combination with the analysis of urinary tumour DNA - through tailored treatment guidance and optimized disease surveillance.
Collapse
Affiliation(s)
- Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Matthew D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mads Agerbæk
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Laboratory, Site Unique de Biology, University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Bartolomucci A, Nobrega M, Ferrier T, Dickinson K, Kaorey N, Nadeau A, Castillo A, Burnier JV. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis Oncol 2025; 9:84. [PMID: 40122951 PMCID: PMC11930993 DOI: 10.1038/s41698-025-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a dynamic biomarker in cancer, as evidenced by its increasing integration into clinical practice. Carrying tumor specific characteristics, ctDNA can be used to inform treatment selection, monitor response, and identify drug resistance. In this review, we provide a comprehensive, up-to-date summary of ctDNA in monitoring treatment response with a focus on lung, colorectal, and breast cancers, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Monyse Nobrega
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alberto Castillo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Jin K, Xu J, Zhang L, Liu Z, Su X, Xu Z, Ding Y, Liu H, Chang Y, Xu L, Wang Z, Zhu Y, Xu J. TERT promoter mutations or protein overexpression define an aggressive subset with favourable immunotherapeutic response in advanced urothelial carcinoma. BMJ ONCOLOGY 2025; 4:e000586. [PMID: 40099003 PMCID: PMC11911668 DOI: 10.1136/bmjonc-2024-000586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Objective Telomerase reverse transcriptase (TERT) gene promoter mutation (TPM) is a key non-coding somatic alteration in urothelial carcinoma (UC) that plays a critical role in telomerase activation. Despite its importance, the prognostic value of TPM has shown mixed results in previous studies. Methods and analysis This study included 155 UC patients from two local clinical centres and 1652 patients from four public datasets, along with matched clinical annotation. Immunohistochemistry of TERT and immune-related markers was performed on tissue microarrays, and transcriptomic and genomic data were analysed to evaluate immune microenvironment characteristics and mutational profiles associated with TPM. We assessed the association of TPM or TERT overexpression (OE) with clinical outcomes, genomics and immunological profiles across tumour stages. Results In early-stage UC, TPM or TERT OE was not significantly associated with patient outcomes. However, in advanced urothelial carcinoma (aUC), TPM or TERT OE was linked to markedly worse overall survival (OS) and a poor response to platinum-based chemotherapy. Notably, despite this unfavourable prognosis, these patients exhibited a more favourable response to anti-PD-1/PD-L1 immunotherapy. aUC with TPM or TERT OE was characterised by an immune-evasive microenvironment, including infiltration of exhausted CD8+ T cells and elevated PD-1 and PD-L1 expression. Furthermore, genomic analysis further revealed a higher APOBEC mutational signature and a lower clock-like mutational signature in aUC with TPM or TERT OE. Conclusion In this retrospective study, TPM or TERT OE identifies a more aggressive subset of patients with poor OS and an immune-evasive microenvironment but a better response to immunotherapy in aUC.
Collapse
Affiliation(s)
- Kaifeng Jin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lingkai Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yawei Ding
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Venetis K, Frascarelli C, Bielo LB, Cursano G, Adorisio R, Ivanova M, Mane E, Peruzzo V, Concardi A, Negrelli M, D'Ercole M, Porta FM, Zhan Y, Marra A, Trapani D, Criscitiello C, Curigliano G, Guerini-Rocco E, Fusco N. Mismatch repair (MMR) and microsatellite instability (MSI) phenotypes across solid tumors: A comprehensive cBioPortal study on prevalence and prognostic impact. Eur J Cancer 2025; 217:115233. [PMID: 39827722 DOI: 10.1016/j.ejca.2025.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Mismatch repair deficiency (MMR-d) and microsatellite instability (MSI) are prognostic and predictive biomarkers in oncology. Current testing for MMR/MSI relies on immunohistochemistry (IHC) for MMR proteins and molecular assays for MSI detection. This combined diagnostic strategy, however, lacks tumor specificity and does not account for gene variants. This study provides an in-depth analysis of MMR mutations frequency, spectrum, and distribution in solid tumors. Data from 23,893 patients across 11 tumor types, using 66 publicly available studies, were analyzed. MMR-mutated (MMR-m) status was defined by alterations in MLH1, PMS2, MSH2, and/or MSH6; MSI was assessed by MSIsensor. Cases with indeterminate labelling were excluded. Survival was analyzed using the Kaplan-Meier method. Among 19,353 tumors, 949 MMR variants were identified, comprising 432 pathogenic and 517 variants of unknown significance (VUS), as defined by OncoKB. MSH6 mutations were the most frequent (n = 279, 29.4 %), followed by MSH2 (n = 198, 20.9 %), MLH1 (n = 187, 19.7 %), and PMS2 (n = 161, 16.9 %). MMR-m cases were more frequent in endometrial (EC, 20.5 %), colorectal (CRC, 8.2 %), bladder (BLCA, 8.7 %), and gastroesophageal cancers (GEC, 5.4 %). Pathogenic mutations were more common than non-pathogenic in EC, CRC, and GEC (p < 0.001, p = 0.01, p = 0.32, respectively). MMR-m status was not associated with MSI in 247 (48.9 %) cases, including 67 (13.2 %) with pathogenic mutations. The highest concordance between MMR-m and MSI was observed in CRC (65.7 %), EC (91.2 %), and GEC (69.6 %), while the lowest in pancreatic (0.2 %) and lung cancers (0.1 %). MMR-m GECs showed improved overall survival compared to MMR-wt (p = 0.009), a relationship not observed in other tumor types. This study demonstrates that the MMR spectrum is extremely hetoerogeneous in solid tumors, highliting the need for comprehensive and tumor-specific testing strategies.
Collapse
Affiliation(s)
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Riccardo Adorisio
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Virginia Peruzzo
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Concardi
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Marianna D'Ercole
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Pichler R, van Creij NCH, Subiela JD, Cimadamore A, Caño-Velasco J, Tully KH, Mori K, Contieri R, Afferi L, Mari A, Soria F, Del Giudice F, D'Elia C, Mayr R, Mertens LS, Pyrgidis N, Moschini M, Gallioli A. Biological and therapeutic implications of FGFR alterations in urothelial cancer: A systematic review from non-muscle-invasive to metastatic disease. Actas Urol Esp 2025:501719. [PMID: 39955055 DOI: 10.1016/j.acuroe.2025.501719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/21/2024] [Indexed: 02/17/2025]
Abstract
FGFR3 mutations are among the most frequent genomic alterations in urothelial cancer (UC) being mainly associated with the luminal papillary (LumP) subtype. With the establishment of fibroblast growth factor receptor (FGFR) inhibitors, the treatment of UC is now shifting more and more towards personalized medicine. A systematic review using Medline and scientific meeting records was carried out according to the Preferred Reporting Items for Systematic Review and Meta-analyses guidelines to assess the potential role of FGFR inhibitors in combination with additional therapies for the management of UC. Ongoing trials were identified via a systematic search on ClinicalTrials.gov. A total of eleven full-text papers, ten congress abstracts, and 5 trials on ClinicalTrials.gov were identified. Following the BLC2001 and THOR study, erdafitinib is the only approved FGFR1-4 inhibitor for metastatic UC with susceptible FGFR2/3 alterations following platinum-based chemotherapy. According to the THOR data of cohort 2, erdafitinib should not be recommended in patients who are eligible for and have not received prior immune checkpoint inhibitors (ICIs). One phase 3 trial is currently evaluating the intravesical device system (TAR210) in FGFR-altered intermediate non-muscle invasive bladder cancer (MoonRISe-1). Preclinical evidence suggests that combination-based approaches could be considered to improve the efficacy of FGFR inhibitors in patients with UC. Nine phase 1b/2 trials are focusing on the combination of FGFR inhibitors with ICIs, chemotherapy, or enfortumab vedotin. In metastatic disease, some preliminary analyses have reported promising results from these combinations (e.g. NORSE and FORT-2 trial). However, no phase 3 trial is terminated, so there is currently no level 1 evidence with long-term outcomes to support the combination of FGFR inhibitors with ICIs, chemotherapy, or targeted therapies. A better understanding of the different mechanisms of action to inhibit FGFR signaling pathways, optimal patient selection and treatment approaches is still needed.
Collapse
Affiliation(s)
- R Pichler
- Servicio de Urología, Universidad Médica de Innsbruck, Innsbruck, Austria.
| | - N C H van Creij
- Servicio de Urología, Universidad Médica de Innsbruck, Innsbruck, Austria
| | - J D Subiela
- Servicio de Urología, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, Spain
| | - A Cimadamore
- Instituto de Anatomía Patológica, Departamento de Medicina, Universidad de Údine, Údine, Italy
| | - J Caño-Velasco
- Servicio de Urología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - K H Tully
- Servicio de Urología y Neurourología, Marien Hospital Herne, Universidad Rhur de Bochum, Herne, Germany
| | - K Mori
- Servicio de Urología, Facultad de Medicina de la Universidad Jikei, Tokio, Japan
| | - R Contieri
- Servicio de Urología, Instituto Oncológico de los Países Bajos, Ámsterdam, Netherlands; Departmento de Ciencias Biomédicas, Universidad Humanitas, Milán, Italy
| | - L Afferi
- Servicio de Urología, Fundación Puigvert, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - A Mari
- Unidad de Urología Oncológica Mínimamente Invasiva Robótica y Andrológica, Hospital Careggi, Universidad de Florencia, Florencia, Italy
| | - F Soria
- Servicio de Urología, Departamento de Ciencias Quirúrgicas, Hospital Molinette, Universidad de Turín, Turín, Italy
| | - F Del Giudice
- Departamento de Ciencias Urológicas y Materno-Infantiles, Hospital Policlínico Umberto I, Universidad Sapienza de Roma, Roma, Italy
| | - C D'Elia
- Servicio de Urología, Hospital Central de Bolzano, Bolzano, Italy
| | - R Mayr
- Servicio de Urología, Centro Médico St. Josef, Universidad de Regensburg, Regensburg, Germany
| | - L S Mertens
- Servicio de Urología, Instituto Oncológico de los Países Bajos, Ámsterdam, Netherlands
| | - N Pyrgidis
- Servicio de Urología, Hospital Universitario LMU Múnich, Múnich, Germany
| | - M Moschini
- Servicio de Urología, IRCCS Hospital San Raffaele, Universidad Vita-Salute San Raffaele, Milán, Italy
| | - A Gallioli
- Servicio de Urología, Fundación Puigvert, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Sekino Y, Nakahara H, Ikeda K, Kobatake K, Kohada Y, Tasaka R, Takemoto K, Miyamoto S, Kitano H, Goto K, Goriki A, Hieda K, Hinata N. The Gender-Biased Differential Effect of KDM6A Mutation on Immune Therapy in Urothelial Carcinoma: A Public Database Study. Cancers (Basel) 2025; 17:356. [PMID: 39941725 PMCID: PMC11816370 DOI: 10.3390/cancers17030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: It is said that genes that escape from X chromosome inactivation (XCI) contribute to gender differences. We analyzed the prognostic role of these genes and identified a gender-biased difference in prognosis according to KDM6A mutation in the immune therapy cohort (IMvigor 210). We also investigate the gender-biased differential effect of KDM6A mutation in several public databases of urothelial carcinoma (UC). Methods: We used AACR GENIE, The Cancer Genome Atlas, International Cancer Genome Consortium, several public databases related to immune therapy, chemotherapy, and BCG treatment. We studied the gender-biased prognostic role of KDM6A mutation in several cohorts and the association between KDM6A mutation and immune-related fractions according to gender. Results: The expression of KDM6A was higher in females than in males in several cohorts. Mutation of KDM6A was observed in about 20-25% of the patients. The rate of KDM6A mutation was higher in females than in males in several cohorts. Kaplan-Meier analysis revealed a gender-biased difference in prognosis between patients with KDM6A mutations and those with the wild-type KDM6A in several cohorts, including the immune therapy cohort. The rate of immune-inflamed type was higher in males than in females in the patients with KDM6A mutation in the IMvigor 210 and UC-GENOME studies. Single-sample Gene Set Enrichment Analysis showed that CD8+ cells and type 1 IFN response fractions and APC co-inhibition fraction were higher in the male than female patients with KDM6A mutation. Similar findings were observed in other immune-related studies (UC-GENOME). Conclusions: The effect of KDM6A mutation on immune therapy varied according to gender, and the status of KDM6A mutation may be a promising biomarker in immune therapy in UC.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Kohei Kobatake
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Yuki Kohada
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Ryo Tasaka
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Kenshiro Takemoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Shunsuke Miyamoto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Hiroyuki Kitano
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Akihiro Goriki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Keisuke Hieda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (K.I.); (K.K.); (Y.K.); (R.T.); (K.T.); (S.M.); (H.K.); (K.G.); (A.G.); (K.H.); (N.H.)
| |
Collapse
|
9
|
Benjamin DJ, Mita AC. FGFR-Altered Urothelial Carcinoma: Resistance Mechanisms and Therapeutic Strategies. Target Oncol 2025; 20:1-11. [PMID: 39690380 DOI: 10.1007/s11523-024-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Fibroblast growth factor receptor (FGFR) 2/3 alterations have been implicated in tumorigenesis in several malignancies, including urothelial carcinoma. Several FGFR inhibitors have been studied or are in development, and erdafitinib is the sole inhibitor to achieve regulatory approval. Given the rapidly evolving treatment landscape for advanced urothelial carcinoma, including regulatory approvals and withdrawals, determining the most appropriate treatment strategies and sequencing for FGFR-altered urothelial carcinoma is becoming increasing critical. However, the clinical efficacy of FGFR inhibitors is limited by acquired resistance similar to that seen with other tyrosine kinase inhibitors. Additional challenges to the clinical use of FGFR inhibitors include treatment-related adverse events and the financial costs associated with treatment. In this review, we describe known mechanisms of FGFR inhibitor resistance, including gatekeeper mutations, domain mutations, and the development of new mutations. In addition, we discuss management strategies, including ongoing clinical trials evaluating FGFR inhibitors, antibody-drug conjugates, and combination therapies with immune checkpoint inhibitors that may provide additional treatment options for localized and metastatic urothelial carcinoma.
Collapse
Affiliation(s)
- David J Benjamin
- Hoag Family Cancer Institute, 1 Hoag Drive, Building 41, Newport Beach, CA, 92663, USA.
| | - Alain C Mita
- Hoag Family Cancer Institute, 1 Hoag Drive, Building 41, Newport Beach, CA, 92663, USA
| |
Collapse
|
10
|
Zhang W, Zhang J, Zhang J, Chu J, Zhang Z. Novel combination therapy using recombinant oncolytic adenovirus silk hydrogel and PD-L1 inhibitor for bladder cancer treatment. J Nanobiotechnology 2024; 22:638. [PMID: 39420389 PMCID: PMC11487847 DOI: 10.1186/s12951-024-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Recombinant oncolytic adenovirus offers a novel and promising cancer treatment approach, but its standalone efficacy remains limited. This study investigates a combination treatment strategy by co-administering recombinant oncolytic Adv-loaded silk hydrogel with a PD-L1 inhibitor for patients with bladder cancer to enhance treatment outcomes. Bladder cancer tissues from mice were collected and subjected to single-cell sequencing, identifying CRB3 as a key gene in malignant cells. Differential expression and functional enrichment analyses were performed, validating CRB3's inhibitory role through in vitro experiments showing suppression of bladder cancer cell proliferation, migration, and invasion. Recombinant oncolytic adenoviruses encoding CRB3 and GM-CSF were constructed and encapsulated in silk hydrogel to enhance drug loading and release efficiency. In vivo experiments demonstrated that the nano-composite hydrogel significantly inhibited tumor growth and increased immune infiltration in tumor tissues. Co-administration of adenovirus silk hydrogel (Adv-CRB3@gel) with a PD-L1 inhibitor significantly enhanced T-cell infiltration and tumor killing. The combination of recombinant oncolytic Adv-loaded nano-composite hydrogel encoding CRB3 and GM-CSF with a PD-L1 inhibitor improves bladder cancer treatment outcomes by effectively recruiting T cells, providing a novel therapeutic strategy.
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jianqiang Zhang
- Department of Urology, The First People's Hospital of Nanning, Nanning, Guangxi, China
- Department of Urology, Ruikang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi, China
| | - Jingwei Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jing Chu
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China.
- Department of Urology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China.
| | - Zhenxing Zhang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.
| |
Collapse
|
11
|
Karasawa H, Yasumizu Y, Kosaka T, Shimoi T, Oya M. Efficacy of trametinib in a metastatic urothelial carcinoma patient with a BRAF mutation. IJU Case Rep 2024; 7:375-378. [PMID: 39224677 PMCID: PMC11366432 DOI: 10.1002/iju5.12759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction BRAF mutations in bladder cancer are rare. MEK inhibitors have excellent clinical benefits in the treatment of melanoma. Case presentation A 60-year-old male was diagnosed with muscle-invasive bladder cancer and underwent total cystectomy and ileal conduit diversion. Despite 4 cycles of gemcitabine and cisplatin chemotherapy and 3 courses of pembrolizumab, the left obturator lymph node enlarged. Cancer multi-gene panel testing confirmed the BRAF G469A mutation and trametinib was recommended. Three months after the initiation of trametinib (2 mg, qd), the left obturator lymph node shrank by more than 50%. The disease has remained stable for more than 18 months. Conclusion The present case indicates the potential of trametinib to treat mBUC patients with the BRAF G469A mutation in this setting.
Collapse
Affiliation(s)
| | - Yota Yasumizu
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Takeo Kosaka
- Department of UrologyKeio University School of MedicineTokyoJapan
| | - Tatsunori Shimoi
- Department of Breast and Medical OncologyNational Cancer HospitalTokyoJapan
| | - Mototsugu Oya
- Department of UrologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
12
|
Tang X, Berger MF, Solit DB. Precision oncology: current and future platforms for treatment selection. Trends Cancer 2024; 10:781-791. [PMID: 39030146 DOI: 10.1016/j.trecan.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024]
Abstract
Genomic profiling of hundreds of cancer-associated genes is now a component of routine cancer care. DNA sequencing can identify mutations, mutational signatures, and structural alterations predictive of therapy response and assess for heritable cancer risk, but it has been less useful for identifying predictive biomarkers of sensitivity to cytotoxic chemotherapies, antibody drug conjugates, and immunotherapies. The clinical adoption of molecular profiling platforms such as RNA sequencing better suited to identifying those patients most likely to respond to immunotherapies and drug combinations will be critical to expanding the benefits of precision oncology. This review discusses the potential advantages of innovative molecular and functional profiling platforms designed to replace or complement targeted DNA sequencing and the major hurdles to their clinical adoption.
Collapse
Affiliation(s)
- Xinran Tang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Scholtes MP, van Leenders GJLH, Robbrecht DGJ, Boormans JL, Zuiverloon TCM. Are primary tumors suitable for biomarker-guided treatment of metastatic urothelial cancer? Transl Androl Urol 2024; 13:1341-1345. [PMID: 39280671 PMCID: PMC11399036 DOI: 10.21037/tau-24-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/26/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Mathijs P Scholtes
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Debbie G J Robbrecht
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Barbour JA, Ou T, Yang H, Fang H, Yue NC, Zhu X, Wong-Brown MW, Wong YT, Bowden NA, Wu S, Wong JWH. ERCC2 mutations alter the genomic distribution pattern of somatic mutations and are independently prognostic in bladder cancer. CELL GENOMICS 2024; 4:100627. [PMID: 39096913 PMCID: PMC11406173 DOI: 10.1016/j.xgen.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Excision repair cross-complementation group 2 (ERCC2) encodes the DNA helicase xeroderma pigmentosum group D, which functions in transcription and nucleotide excision repair. Point mutations in ERCC2 are putative drivers in around 10% of bladder cancers (BLCAs) and a potential positive biomarker for cisplatin therapy response. Nevertheless, the prognostic significance directly attributed to ERCC2 mutations and its pathogenic role in genome instability remain poorly understood. We first demonstrated that mutant ERCC2 is an independent predictor of prognosis in BLCA. We then examined its impact on the somatic mutational landscape using a cohort of ERCC2 wild-type (n = 343) and mutant (n = 39) BLCA whole genomes. The genome-wide distribution of somatic mutations is significantly altered in ERCC2 mutants, including T[C>T]N enrichment, altered replication time correlations, and CTCF-cohesin binding site mutation hotspots. We leverage these alterations to develop a machine learning model for predicting pathogenic ERCC2 mutations, which may be useful to inform treatment of patients with BLCA.
Collapse
Affiliation(s)
- Jayne A Barbour
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tong Ou
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haocheng Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hu Fang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Institute of Biomedical Data, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Noel C Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle W Wong-Brown
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Yuen T Wong
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - Nikola A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Song Wu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China; Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
15
|
Su L, Yan Y, Ma B, Zhao S, Cui Z. GIHP: Graph convolutional neural network based interpretable pan-specific HLA-peptide binding affinity prediction. Front Genet 2024; 15:1405032. [PMID: 39050251 PMCID: PMC11266168 DOI: 10.3389/fgene.2024.1405032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Accurately predicting the binding affinities between Human Leukocyte Antigen (HLA) molecules and peptides is a crucial step in understanding the adaptive immune response. This knowledge can have important implications for the development of effective vaccines and the design of targeted immunotherapies. Existing sequence-based methods are insufficient to capture the structure information. Besides, the current methods lack model interpretability, which hinder revealing the key binding amino acids between the two molecules. To address these limitations, we proposed an interpretable graph convolutional neural network (GCNN) based prediction method named GIHP. Considering the size differences between HLA and short peptides, GIHP represent HLA structure as amino acid-level graph while represent peptide SMILE string as atom-level graph. For interpretation, we design a novel visual explanation method, gradient weighted activation mapping (Grad-WAM), for identifying key binding residues. GIHP achieved better prediction accuracy than state-of-the-art methods across various datasets. According to current research findings, key HLA-peptide binding residues mutations directly impact immunotherapy efficacy. Therefore, we verified those highlighted key residues to see whether they can significantly distinguish immunotherapy patient groups. We have verified that the identified functional residues can successfully separate patient survival groups across breast, bladder, and pan-cancer datasets. Results demonstrate that GIHP improves the accuracy and interpretation capabilities of HLA-peptide prediction, and the findings of this study can be used to guide personalized cancer immunotherapy treatment. Codes and datasets are publicly accessible at: https://github.com/sdustSu/GIHP.
Collapse
Affiliation(s)
- Lingtao Su
- Shandong University of Science and Technology, Qingdao, China
| | - Yan Yan
- Shandong Guohe Industrial Technology Research Institute Co. Ltd., Jinan, China
| | - Bo Ma
- Qingdao UNIC Information Technology Co. Ltd., Qingdao, China
| | - Shiwei Zhao
- Shandong University of Science and Technology, Qingdao, China
| | - Zhenyu Cui
- Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Papadimitriou MA, Pilala KM, Panoutsopoulou K, Levis P, Kotronopoulos G, Kanaki Z, Loules G, Zamanakou M, Linardoutsos D, Sideris DC, Stravodimos K, Klinakis A, Scorilas A, Avgeris M. CDKN2A copy number alteration in bladder cancer: Integrative analysis in patient-derived xenografts and cancer patients. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200818. [PMID: 38966038 PMCID: PMC11223115 DOI: 10.1016/j.omton.2024.200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | | | - Dimitrios Linardoutsos
- First Department of Propaedeutic Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry – Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, Athens, Greece
| |
Collapse
|
17
|
Gerke MB, Jansen CS, Bilen MA. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers (Basel) 2024; 16:2280. [PMID: 38927984 PMCID: PMC11201475 DOI: 10.3390/cancers16122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
CtDNA is emerging as a non-invasive clinical detection method for several cancers, including genitourinary (GU) cancers such as prostate cancer, bladder cancer, and renal cell carcinoma (RCC). CtDNA assays have shown promise in early detection of GU cancers, providing prognostic information, assessing real-time treatment response, and detecting residual disease and relapse. The ease of obtaining a "liquid biopsy" from blood or urine in GU cancers enhances its potential to be used as a biomarker. Interrogating these "liquid biopsies" for ctDNA can then be used to detect common cancer mutations, novel genomic alterations, or epigenetic modifications. CtDNA has undergone investigation in numerous clinical trials, which could address clinical needs in GU cancers, for instance, earlier detection in RCC, therapeutic response prediction in castration-resistant prostate cancer, and monitoring for recurrence in bladder cancers. The utilization of liquid biopsy for ctDNA analysis provides a promising method of advancing precision medicine within the field of GU cancers.
Collapse
Affiliation(s)
- Margo B. Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
| | - Caroline S. Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Álvarez N, Martín A, Dorado S, Colmenares R, Rufián L, Rodríguez M, Giménez A, Carneros L, Sanchez R, Carreño G, Rapado I, Heredia Y, Martínez-López J, Barrio S, Ayala R. Detection of minimal residual disease in acute myeloid leukemia: evaluating utility and challenges. Front Immunol 2024; 15:1252258. [PMID: 38938565 PMCID: PMC11210172 DOI: 10.3389/fimmu.2024.1252258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
This study discusses the importance of minimal residual disease (MRD) detection in acute myeloid leukemia (AML) patients using liquid biopsy and next-generation sequencing (NGS). AML prognosis is based on various factors, including genetic alterations. NGS has revealed the molecular complexity of AML and helped refine risk stratification and personalized therapies. The long-term survival rates for AML patients are low, and MRD assessment is crucial in predicting prognosis. Currently, the most common methods for MRD detection are flow cytometry and quantitative PCR, but NGS is being incorporated into clinical practice due to its ability to detect genomic aberrations in the majority of AML patients. Typically, bone marrow samples are used for MRD assessment, but using peripheral blood samples or liquid biopsies would be less invasive. Leukemia originates in the bone marrow, along with the cfDNA obtained from peripheral blood. This study aimed to assess the utility of cell-free DNA (cfDNA) from peripheral blood samples for MRD detection in AML patients. A cohort of 20 AML patients was analyzed using NGS, and a correlation between MRD assessment by cfDNA and circulating tumor cells (CTCs) in paired samples was observed. Furthermore, a higher tumor signal was detected in cfDNA compared to CTCs, indicating greater sensitivity. Challenges for the application of liquid biopsy in MRD assessment were discussed, including the selection of appropriate markers and the sensitivity of certain markers. This study emphasizes the potential of liquid biopsy using cfDNA for MRD detection in AML patients and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Noemí Álvarez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Alejandro Martín
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Sara Dorado
- Altum Sequencing Co., Madrid, Spain
- Computational Science Department, Carlos III University, Madrid, Spain
| | - Rafael Colmenares
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Laura Rufián
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Margarita Rodríguez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Alicia Giménez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Laura Carneros
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Ricardo Sanchez
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Gonzalo Carreño
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
| | | | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Santiago Barrio
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain
- Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Tolmeijer SH, van Wilpe S, Geerlings MJ, von Rhein D, Smilde TJ, Kloots ISH, Westdorp H, Coskuntürk M, Oving IM, van Ipenburg JA, van der Heijden AG, Hofste T, Weiss MM, Schalken JA, Gerritsen WR, Ligtenberg MJL, Mehra N. Early On-treatment Circulating Tumor DNA Measurements and Response to Immune Checkpoint Inhibitors in Advanced Urothelial Cancer. Eur Urol Oncol 2024; 7:282-291. [PMID: 37673768 DOI: 10.1016/j.euo.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) can induce durable disease control in metastatic urothelial cancer (mUC), but only 20-25% of patients respond. Early identification of a nondurable response will improve management strategies. OBJECTIVE To investigate whether on-treatment circulating tumor DNA (ctDNA) measurements can predict ICI responsiveness in mUC patients. DESIGN, SETTING, AND PARTICIPANTS This study consists of a discovery cohort of 40 mUC patients and a prospective multicenter validation cohort of 16 mUC patients. Plasma cell-free DNA was collected at baseline and after 3 and 6 wk on ICIs. The ctDNA levels were calculated from targeted sequencing. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Outcome measurements were progression-free survival (PFS), overall survival (OS), and nondurable response (PFS ≤6 mo). Relationships with ctDNA were assessed using Cox regression. Changes in ctDNA level at 3 and 6 wk were categorized by an increase or decrease relative to baseline. RESULTS AND LIMITATIONS In the discovery cohort, ctDNA was detected in 37/40 (93%) of patients at baseline. A ctDNA increase was observed in 12/15 (80%) and ten of 12 (83%) patients with a nondurable response at 3 and 6 wk, respectively. Of patients with a durable response (PFS >6 mo), 94% showed a decrease. A ctDNA increase at 3 wk was associated with shorter PFS (hazard ratio [HR] 7.8, 95% confidence interval [CI] 3.1-19.5) and OS (HR 8.0, 95% CI 3.0-21.0), independent of clinical prognostic variables. Similar results were observed at 6 wk. The 3-wk association with PFS was validated in a prospective cohort (HR 7.5, 95% CI 1.3-42.6). Limitations include the limited number of patients. CONCLUSIONS Early changes in ctDNA levels are strongly linked to the duration of ICI benefit in mUC and may contribute to timely therapy modifications. PATIENT SUMMARY Benefit from immunotherapy can be predicted after only 3 wk of treatment by investigating cancer DNA in blood. This could help in timely therapy changes for urothelial cancer patients with limited benefit from immunotherapy.
Collapse
Affiliation(s)
- Sofie H Tolmeijer
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje J Geerlings
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel von Rhein
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tineke J Smilde
- Department of Medical Oncology, Jeroen Bosch Ziekenhuis, 's-Hertogenbosch, The Netherlands
| | - Iris S H Kloots
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harm Westdorp
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mustafa Coskuntürk
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irma M Oving
- Department of Medical Oncology, Ziekenhuisgroep Twente, Almelo, The Netherlands
| | - Jolique A van Ipenburg
- Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antoine G van der Heijden
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Hofste
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan M Weiss
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A Schalken
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Winald R Gerritsen
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Wang AJY, Yan C, Reike MJ, Black PC, Contreras-Sanz A. A systematic review of nanocarriers for treatment of urologic cancers. Urol Oncol 2024; 42:75-101. [PMID: 38161104 DOI: 10.1016/j.urolonc.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Nanocarriers (NCs) are a form of nanotechnology widely investigated in cancer treatment to improve the safety and efficacy of systemic therapies by increasing tumor specificity. Numerous clinical trials have explored the use of NCs in urologic cancers since the approval of the first NCs for cancer treatment over 20 years ago. The objective of this systematic review is to examine the effectiveness and safety of NCs in treating urological cancers. This paper summarizes the state of the field by investigating peer-reviewed, published results from 43 clinical trials involving the use of NCs in bladder, prostate, and kidney cancer patients with a focus on safety and efficacy data. Among the 43 trials, 16 were phase I, 20 phase II, and 4 phase I/II. No phase III trials have been reported. While both novel and classic NCs have been explored in urologic cancers, NCs already approved for the treatment of other cancers were more widely represented. Trials in prostate cancer and mixed trials involving both urologic and non-urologic cancer patients were the most commonly reported trials. Although NCs have demonstrable efficacy with adequate safety in non-urologic cancer patient populations, current clinical stage NC options appear to be less beneficial in the urologic cancer setting. For example, nab-paclitaxel and liposomal doxorubicin have proven ineffective in the treatment of urologic cancers despite successes in other cancers. However, several ongoing pre-clinical studies using targeted and locally applied improved NCs may eventually improve their utility.
Collapse
Affiliation(s)
- Amy J Y Wang
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Yan
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Moritz J Reike
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C Black
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada..
| | - Alberto Contreras-Sanz
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada..
| |
Collapse
|
21
|
Pezzicoli G, Ciciriello F, Musci V, Minei S, Biasi A, Ragno A, Cafforio P, Rizzo M. Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:585. [PMID: 38674231 PMCID: PMC11052409 DOI: 10.3390/medicina60040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The clinical management of metastatic urothelial carcinoma (mUC) is undergoing a major paradigm shift; the integration of immune checkpoint inhibitors (ICIs) and antibody-drug conjugates (ADCs) into the mUC therapeutic strategy has succeeded in improving platinum-based chemotherapy outcomes. Given the expanding therapeutic armamentarium, it is crucial to identify efficacy-predictive biomarkers that can guide an individual patient's therapeutic strategy. We reviewed the literature data on mUC genomic alterations of clinical interest, discussing their prognostic and predictive role. In particular, we explored the role of the fibroblast growth factor receptor (FGFR) family, epidermal growth factor receptor 2 (HER2), mechanistic target of rapamycin (mTOR) axis, DNA repair genes, and microsatellite instability. Currently, based on the available clinical data, FGFR inhibitors and HER2-directed ADCs are effective therapeutic options for later lines of biomarker-driven mUC. However, emerging genomic data highlight the opportunity for earlier use and/or combination with other drugs of both FGFR inhibitors and HER2-directed ADCs and also reveal additional potential drug targets that could change mUC management.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Silvia Minei
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Antonello Biasi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
22
|
Huelster HL, Gould B, Schiftan EA, Camperlengo L, Davaro F, Rose KM, Soupir AC, Jia S, Zheng T, Sexton WJ, Pow-Sang J, Spiess PE, Daniel Grass G, Wang L, Wang X, Vosoughi A, Necchi A, Meeks JJ, Faltas BM, Du P, Li R. Novel Use of Circulating Tumor DNA to Identify Muscle-invasive and Non-organ-confined Upper Tract Urothelial Carcinoma. Eur Urol 2024; 85:283-292. [PMID: 37802683 DOI: 10.1016/j.eururo.2023.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Optimal patient selection for neoadjuvant chemotherapy prior to surgical extirpation is limited by the inaccuracy of contemporary clinical staging methods in high-risk upper tract urothelial carcinoma (UTUC). OBJECTIVE To investigate whether the detection of plasma circulating tumor DNA (ctDNA) can predict muscle-invasive (MI) and non-organ-confined (NOC) UTUC. DESIGN, SETTING, AND PARTICIPANTS Plasma cell-free DNA was prospectively collected from chemotherapy-naïve, high-risk UTUC patients undergoing surgical extirpation and sequenced using a 152-gene panel and low-pass whole-genome sequencing. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS To test for concordance, whole-exome sequencing was performed on matching tumor samples. The performance of ctDNA for predicting MI/NOC UTUC was summarized using the area under a receiver-operating curve, and a variant count threshold for predicting MI/NOC disease was determined by maximizing Youden's J statistic. Kaplan-Meier methods estimated survival, and Mantel-Cox log-rank testing assessed the association between preoperative ctDNA positivity and clinical outcomes. RESULTS AND LIMITATIONS Of 30 patients enrolled prospectively, 14 were found to have MI/NOC UTUC. At least one ctDNA variant was detected from 21/30 (70%) patients, with 52% concordance with matching tumor samples. Detection of at least two panel-based molecular alterations yielded 71% sensitivity at 94% specificity to predict MI/NOC UTUC. Imposing this threshold in combination with a plasma copy number burden score of >6.5 increased sensitivity to 79% at 94% specificity. Furthermore, the presence of ctDNA was strongly prognostic for progression-free survival (PFS; 1-yr PFS 69% vs 100%, p < 0.001) and cancer-specific survival (CSS; 1-yr CSS 56% vs 100%, p = 0.016). CONCLUSIONS The detection of plasma ctDNA prior to extirpative surgery was highly predictive of MI/NOC UTUC and strongly prognostic of PFS and CSS. Preoperative ctDNA demonstrates promise as a biomarker for selecting patients to undergo neoadjuvant chemotherapy prior to nephroureterectomy. PATIENT SUMMARY Here, we show that DNA from upper tract urothelial tumors can be detected in the blood prior to surgical removal of the kidney or ureter. This circulating tumor DNA can be used to predict that upper tract urothelial carcinoma is invasive into the muscular lining of the urinary tract and may help identify those patients who could benefit from chemotherapy prior to surgery.
Collapse
Affiliation(s)
- Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Elizabeth A Schiftan
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lucia Camperlengo
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Facundo Davaro
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alex C Soupir
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Julio Pow-Sang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Necchi
- Department of GU Medical Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Joshua J Meeks
- Departments of Urology and Biochemistry, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pan Du
- Predicine Inc., Hayward, CA, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
23
|
Ashley S, Choudhury A, Hoskin P, Song Y, Maitre P. Radiotherapy in metastatic bladder cancer. World J Urol 2024; 42:47. [PMID: 38244091 PMCID: PMC10799782 DOI: 10.1007/s00345-023-04744-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 01/22/2024] Open
Abstract
PURPOSE To review available and emerging evidence of radiotherapy for symptom management and disease control in metastatic bladder cancer. METHODS A literature search and subsequent cross-referencing were carried out for articles in the PubMed and Scopus databases using terms 'radiotherapy' OR 'palliative radiation therapy' with 'metastatic bladder cancer' OR 'advanced bladder cancer' between 1990 and 2023, excluding articles with no English translation. RESULTS Palliative radiotherapy is an effective and accessible treatment for the alleviation of haematuria and pain due to the primary and metastatic disease. With growing recognition of oligometastatic disease state at diagnosis, response, or progression, radiotherapy can consolidate response by ablating residual or resistant lesions. Experience with other primary cancers supports positive impact of radiotherapy on disease control, quality of life, and survival in oligometastatic stage, without significant adverse effects. Alongside immune checkpoint inhibitors, fibroblast growth receptor inhibitors, and antibody-drug conjugates, the immunomodulatory potential of radiotherapy is being explored in combination with these systemic therapies for metastatic bladder cancer. CONCLUSION Radiotherapy is an effective, safe, and accessible treatment modality for palliation as well as disease control in various clinical settings of metastatic bladder cancer. Its role in oligometastatic stage in combination with systemic therapy is expected to expand with emerging evidence.
Collapse
Affiliation(s)
- Sophie Ashley
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Peter Hoskin
- The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - YeePei Song
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Priyamvada Maitre
- The Christie NHS Foundation Trust, Manchester, United Kingdom.
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Ernest Borges Road, Parel, Mumbai, India.
| |
Collapse
|
24
|
Carrasco R, Ingelmo-Torres M, Oriola J, Roldán FL, Rodríguez-Carunchio L, Herranz S, Mellado B, Alcaraz A, Izquierdo L, Mengual L. Assessment of aggressive bladder cancer mutations in plasma cell-free DNA. Front Oncol 2023; 13:1270962. [PMID: 38098507 PMCID: PMC10720633 DOI: 10.3389/fonc.2023.1270962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background and aims The spatial and temporal genetic heterogeneity of bladder cancer (BC) makes challenging to find specific drivers of metastatic disease, thus preventing to determine those BC patients at high risk of tumor progression. Our aim was to identify DNA mutations providing aggressive behavior to bladder tumors and analyze them in patients' cell-free DNA (cfDNA) during their follow-up after radical cystectomy (RC) in order to monitor tumor evolution. Methods Six BC patients who underwent RC and presented disease progression during their follow-up were included. Next-generation sequencing was used to determine somatic mutations in several primary tumor and metastatic specimens from each patient. Shared DNA mutations between primary bladder tumor and metastatic sites were identified in cfDNA samples through droplet digital PCR. Results Besides BC genetic heterogeneity, specific mutations in at least one of these genes -TERT, ATM, RB1, and FGFR3- were found in primary tumors and their metastases in all patients. These mutations were also identified in the patients' cfDNA at different follow-up time points. Additionally, the dynamic changes of these mutations in cfDNA allowed us to determine tumor evolution in response to treatment. Conclusion The analysis of BC mutations associated with poor prognosis in plasma cfDNA could be a valuable tool to monitor tumor evolution, thus improving the clinical management of BC patients.
Collapse
Affiliation(s)
- Raquel Carrasco
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mercedes Ingelmo-Torres
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Josep Oriola
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Fiorella L. Roldán
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | | | - Sandra Herranz
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Begoña Mellado
- Servei d’Oncologia Mèdica, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antonio Alcaraz
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Laura Izquierdo
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Lourdes Mengual
- Laboratori i Servei d’Urologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Genètica i tumors urològics, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
25
|
Guercio BJ, Sarfaty M, Teo MY, Ratna N, Duzgol C, Funt SA, Lee CH, Aggen DH, Regazzi AM, Chen Z, Lattanzi M, Al-Ahmadie HA, Brannon AR, Shah R, Chu C, Lenis AT, Pietzak E, Bochner BH, Berger MF, Solit DB, Rosenberg JE, Bajorin DF, Iyer G. Clinical and Genomic Landscape of FGFR3-Altered Urothelial Carcinoma and Treatment Outcomes with Erdafitinib: A Real-World Experience. Clin Cancer Res 2023; 29:4586-4595. [PMID: 37682528 PMCID: PMC11233068 DOI: 10.1158/1078-0432.ccr-23-1283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Erdafitinib is the only FDA-approved targeted therapy for FGFR2/3-altered metastatic urothelial cancer. We characterized the genetic landscape of FGFR-altered urothelial carcinoma and real-world clinical outcomes with erdafitinib, including on-treatment genomic evolution. EXPERIMENTAL DESIGN Prospectively collected clinical data were integrated with institutional genomic data to define the landscape of FGFR2/3-altered urothelial carcinoma. To identify mechanisms of erdafitinib resistance, a subset of patients underwent prospective cell-free (cf) DNA assessment. RESULTS FGFR3 alterations predictive of erdafitinib sensitivity were identified in 39% (199/504) of patients with non-muscle invasive, 14% (75/526) with muscle-invasive, 43% (81/187) with localized upper tract, and 26% (59/228) with metastatic specimens. One patient had a potentially sensitizing FGFR2 fusion. Among 27 FGFR3-altered cases with a primary tumor and metachronous metastasis, 7 paired specimens (26%) displayed discordant FGFR3 status. Erdafitinib achieved a response rate of 40% but median progression-free and overall survival of only 2.8 and 6.6 months, respectively (n = 32). Dose reductions (38%, 12/32) and interruptions (50%, 16/32) were common. Putative resistance mutations detected in cfDNA involved TP53 (n = 5), AKT1 (n = 1), and second-site FGFR3 mutations (n = 2). CONCLUSIONS FGFR3 mutations are common in urothelial carcinoma, whereas FGFR2 alterations are rare. Discordance of FGFR3 mutational status between primary and metastatic tumors occurs frequently and raises concern over sequencing archival primary tumors to guide patient selection for erdafitinib therapy. Erdafitinib responses were typically brief and dosing was limited by toxicity. FGFR3, AKT1, and TP53 mutations detected in cfDNA represent putative mechanisms of acquired erdafitinib resistance.
Collapse
Affiliation(s)
- Brendan J Guercio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Michal Sarfaty
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Min Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Neha Ratna
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cihan Duzgol
- Commonwealth Radiology Associates, Andover, Massachusetts
| | - Samuel A Funt
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Chung-Han Lee
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - David H Aggen
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Ashley M Regazzi
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Rose Brannon
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronak Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carissa Chu
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew T Lenis
- Department of Urology, Columbia University Irving Medical Center, New York, New York
| | - Eugene Pietzak
- Weill Cornell Medical College, New York, New York
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard H Bochner
- Weill Cornell Medical College, New York, New York
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
26
|
Katims AB, Gaffney C, Firouzi S, Yip W, Aulitzky A, Pietzak EJ, Donat SM, Bochner BH, Donahue TF, Herr HW, Dalbagni G, Al-Ahmadie H, Kim K, Solit DB, Lin O, Coleman JA. Feasibility and tissue concordance of genomic sequencing of urinary cytology in upper tract urothelial carcinoma. Urol Oncol 2023; 41:433.e19-433.e24. [PMID: 37640571 PMCID: PMC11177811 DOI: 10.1016/j.urolonc.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND There is limited ability to accurately diagnose and clinically stage patients with upper tract urothelial carcinoma (UTUC). The most easily available and widely used urinary biomarker is urine cytology, which evaluates cellular material yet lacks sensitivity. We sought to assess the feasibility of performing next-generation sequencing (NGS) on urine cytology specimens from patients with UTUC and evaluate the genomic concordance with tissue from primary tumor. METHODS In this retrospective study, we identified 48 patients with a diagnosis of UTUC treated at Memorial Sloan Kettering Cancer Center (MSK) between 2019 and 2022 who had banked or fresh urine samples. A convenience cohort of matching, previously sequenced tumor tissue was used when available. Urine specimens were processed and the residual material, including precipitated cell-free DNA, was sequenced using our tumor-naïve, targeted exome sequencing platform that evaluates 505 cancer-related genes (MSK-IMPACT). The primary outcome was at least 1 detectable mutation in urinary cytology specimens. The secondary outcome was concordance to matched tissue (using ANOVA or Chi-Square, as indicated). RESULTS Genomic sequencing was successful for 45 (94%) of the 48 urinary cytology patient samples. The most common mutations identified were TERT (62.2%), KMT2D (46.7%), and FGFR3 (35.6%). All patients with negative urine cytology and low-grade tissue had successful cytology sequencing. Thirty-six of the 45 patients had matching tumor tissue available; concordance to matched tissue was 55% overall (131 of the total 238 oncogenic or likely oncogenic somatic mutations identified). However, in 94.4% (n = 34/36) of patients, the cytology had at least 1 shared mutation with tissue. Eleven (30.6%) patients had 100% concordance between cytology and tissue. CONCLUSIONS Sequencing urinary specimens from selective UTUC cytology is feasible in nearly all patients with UTUC. Prospective studies are underway to investigate a clinical role for this promising technology.
Collapse
Affiliation(s)
- Andrew B Katims
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Christopher Gaffney
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sanaz Firouzi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wesley Yip
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andreas Aulitzky
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eugene J Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - S Machele Donat
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bernard H Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy F Donahue
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Harry W Herr
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Guido Dalbagni
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kwanghee Kim
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David B Solit
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Oscar Lin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
27
|
Aggen DH, Chu CE, Rosenberg JE. Scratching the Surface: NECTIN-4 as a Surrogate for Enfortumab Vedotin Resistance. Clin Cancer Res 2023; 29:1377-1380. [PMID: 36749325 PMCID: PMC10106381 DOI: 10.1158/1078-0432.ccr-22-3882] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
Clinical data with enfortumab vedotin (EV) suggest that most bladder cancers overexpress NECTIN-4. A recent article shows that NECTIN-4 membranous expression changes with progression to metastatic disease and that low NECTIN-4 expression in metastatic biopsies is potentially associated with EV resistance. These data argue for incorporation of NECTIN-4 expression into future biomarker strategies. See related article by Klümper et al., p. 1496.
Collapse
Affiliation(s)
- David H. Aggen
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carissa E. Chu
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jonathan E. Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|