1
|
Li H, Ishfaq S, Liang X, Wang R, Wei H, Guo W. A Novel CFEM Effector in Fusarium verticillioides Required for Virulence Involved in Plant Immunity Suppression and Fungal Cell Wall Integrity. Int J Mol Sci 2025; 26:4369. [PMID: 40362606 PMCID: PMC12072874 DOI: 10.3390/ijms26094369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Common in Fungal Extracellular Membrane (CFEM) effectors, a unique class of fungal-specific proteins, play critical roles in host-pathogen interactions. While CFEM proteins have been extensively characterized in phytopathogens, their presence and functions in Fusarium verticillioides remained unexplored. Here, we systematically identified 19 CFEM-containing proteins in F. verticillioides, among which FvCFEM12 exhibited secretory activity and plant infection-induced expression. Functional characterization revealed that FvCFEM12 suppressed Bax- and INF1-triggered cell death in Nicotiana benthamiana leaves. Furthermore, heterologous expression of FvCFEM12 in maize leaves using P. syringae strain D36E can compromise immune responses against bacterial pathogens. Deletion of FvCFEM12 impaired fungal virulence, altered hyphal morphology, and reduced cell wall stress tolerance. Interestingly, FvCFEM12 physically interacted with the maize wall-associated receptor kinase ZmWAK17ET, and targeted silencing of ZmWAK17 in maize enhanced susceptibility to F. verticillioides. Our findings revealed that FvCFEM12 is a dual-function effector that suppresses plant immunity and maintains fungal cell wall integrity, thereby orchestrating fungal pathogenicity at the host-pathogen interface.
Collapse
Affiliation(s)
- Huan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (H.L.); (S.I.); (X.L.); (R.W.)
| | - Shumila Ishfaq
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (H.L.); (S.I.); (X.L.); (R.W.)
| | - Xiaoyan Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (H.L.); (S.I.); (X.L.); (R.W.)
| | - Rui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (H.L.); (S.I.); (X.L.); (R.W.)
| | - Hailei Wei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (H.L.); (S.I.); (X.L.); (R.W.)
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750030, China
| |
Collapse
|
2
|
Wang Y, Gao J, Chen X, Huang Y, Wu Y, Zhu J, Li W. Effect of CFEM proteins on pathogenicity, patulin accumulation and host immunity of postharvest apple pathogens Penicillium expansum. Int J Food Microbiol 2025; 435:111180. [PMID: 40174320 DOI: 10.1016/j.ijfoodmicro.2025.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Penicillium expansum is a significant post-harvest pathogenic fungi on most pome fruits. Common fungal extracellular membrane (CFEM) proteins, as effectors, contribute to virulence and manipulate host immunity. However, the CFEM proteins in P. expansum have not been identified and functionally studied. In this study, we screened two P. expansum CFEM proteins, PeCFEM5 and PeCFEM8, whose expression was highly up-regulated during postharvest apple infection. Growth and pathogenicity of P. expansum were characterized by knockout and complementary of PeCFEM5 and PeCFEM8. Deletion of PeCFEM5 and PeCFEM8 resulted in changes in spore development and increased resistance to cell wall integrity stress. The lesion spots on apple and pear fruit inoculated with P. expansum gradually expanded and deepened in color. The ΔPeCFEM5 and ΔPeCFEM8 strains reduced lesion diameter on apple fruit by 47 % and 29 %, respectively, compared with the WT strains. Detection of patulin accumulation by high-performance liquid chromatography (HPLC) revealed that deletion of PeCFEM5 or PeCFEM8 suppressed patulin content in medium and apples, and patulin biosynthesis-related genes were down-regulated. The PeCFEM5 and PeCFEM8 were also confirmed as effector proteins capable of suppressing the cell death triggered by BAX and the expression of plant defense genes in Nicotiana benthamiana. Phytohormone ELISA assays showed that jasmonic acid levels were reduced, but salicylic acid levels were increased by transient expression of PeCFEM5 or PeCFEM8 in the host plant. These results indicate that PeCFEM5 and PeCFEM8 effectors are crucial for pathogenicity, patulin biogenesis, and modulating host plant immunity.
Collapse
Affiliation(s)
- Yanling Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jie Gao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanqi Huang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yurui Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jinfen Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wei Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
3
|
Su Q, Qi X, Li K, Zou W. The Role of Puccinia polysora Underw Effector PpEX in Suppressing Plant Defenses and Facilitating Pathogenicity. Int J Mol Sci 2025; 26:3159. [PMID: 40243911 PMCID: PMC11989160 DOI: 10.3390/ijms26073159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 04/18/2025] Open
Abstract
Puccinia polysora Underw, the pathogen that causes southern corn rust (SCR), delivers effectors to manipulate host immune responses. However, the mechanisms by which these effectors modulate host defenses are not well characterized. In this study, we found that the P. polysora effector PpEX is highly upregulated during infection. PpEX suppresses plant immune responses that are initiated by chitin, including the activation of mitogen-activated protein kinases (MAPKs) and the expression of pathogenesis-related (PR) genes. Maize plants transiently expressing PpEX exhibited higher pathogen infection rates, larger colony areas, and greater fungal biomass on their leaves compared to the control group. By employing TurboID proximity labeling technology coupled with mass spectrometry analysis, we discovered potential target proteins of PpEX in maize. The split-luciferase system enabled us to identify ZmMPK3, a component of the MAPK signaling pathway, as an interacting partner of PpEX among the candidate proteins. This interaction was subsequently confirmed by co-immunoprecipitation (Co-IP) experiments. Additionally, we verified that ZmMPK3 plays a positive role in regulating maize resistance to SCR. Thus, PpEX may function as a virulence effector that dampens plant PTI immunity by interacting with ZmMPK3 and impeding the MAPK signaling pathway.
Collapse
|
4
|
Sabelleck B, Deb S, Levecque SCJ, Freh M, Reinstädler A, Spanu PD, Thordal-Christensen H, Panstruga R. A powdery mildew core effector protein targets the host endosome tethering complexes HOPS and CORVET in barley. PLANT PHYSIOLOGY 2025; 197:kiaf067. [PMID: 39973312 PMCID: PMC12002017 DOI: 10.1093/plphys/kiaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Powdery mildew fungi are serious pathogens affecting many plant species. Their genomes encode extensive repertoires of secreted effector proteins that suppress host immunity. Here, we revised and analyzed the candidate secreted effector protein (CSEP) effectome of the powdery mildew fungus, Blumeria hordei (Bh). We identified seven putative effectors that are broadly conserved in powdery mildew species, suggesting that they are core effectors of these phytopathogens. We showed that one of these effectors, CSEP0214, interacts with the barley (Hordeum vulgare) vacuolar protein-sorting 18 (VPS18) protein, a shared component of the class C core vacuole/endosome tethering (CORVET) and homotypic fusion and protein-sorting (HOPS) endosomal tethering complexes that mediate fusion of early endosomes and multivesicular bodies, respectively, with the central vacuole. Overexpression of CSEP0214 and knockdown of either VPS18, HOPS-specific VPS41, or CORVET-specific VPS8 blocked the vacuolar pathway and the accumulation of the fluorescent vacuolar marker protein (SP)-RFP-AFVY in the endoplasmic reticulum. Moreover, CSEP0214 inhibited the interaction between VPS18 and VPS16, which are both shared components of CORVET as well as HOPS. Additionally, introducing CSEP0214 into barley leaf cells blocked the hypersensitive cell death response associated with resistance gene-mediated immunity, indicating that endomembrane trafficking is required for this process. CSEP0214 expression also prevented callose deposition in cell wall appositions at attack sites and encasements of fungal infection structures. Our results indicate that the powdery mildew core effector CSEP0214 is an essential suppressor of plant immunity.
Collapse
Affiliation(s)
- Björn Sabelleck
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sohini Deb
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Sophie C J Levecque
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Anja Reinstädler
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Section for Plant and Soil Sciences, University of Copenhagen, Frederiksberg C 1871 Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
5
|
Zhang X, Wang G, Chen B, Peng Y. The virulence contribution of the CFEM family genes of Beauveria bassiana is closely influenced by the external iron environment. Microbiol Spectr 2025; 13:e0309624. [PMID: 40116518 PMCID: PMC12054149 DOI: 10.1128/spectrum.03096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
The common in fungal extracellular membrane (CFEM) domain proteins represent characteristic fungal extracellular membrane proteins. The entomopathogenic fungus Beauveria bassiana contains 12 CFEM domain proteins involved in the generation of iron hunger response. However, many BbCFEM genes that infect insects do not promote fungal virulence. In this study, we systematically assessed the role of the BbCFEM family in fungal virulence under moderate iron concentrations and severe iron starvation (0.4 mM BPS) induced by body wall infection and injection infection. The results showed that the BbCFEM family members have different functions based on virulence, which is directly affected by external iron levels. Quantitative real-time reverse-transcription polymerase chain reaction preliminarily demonstrated that deletion of BbCFEM family genes significantly increased the expression levels of other family members. The increased expression levels compensated for the gene damage induced by the deletion of BbMFEM genes. In addition, the results showed that the BbCFEM gene participates in the initiation of fungal responses to cell wall stress and oxidative stress. These findings reveal the evolutionary strategies employed by pathogenic fungi to adapt to the environment and population reproduction. This study expands our understanding of the mechanism of this gene family of entomopathogenic fungi in infecting pests. IMPORTANCE The common in fungal extracellular membrane (CFEM) domain is a fungal extracellular membrane protein that can trap heme, which assists in fungal infection and colonization. Beauveria bassiana is an entomopathogenic fungus that is widely used to control pests. We systematically assessed the contribution of the BbCFEM family to B. bassiana's virulence under severe iron starvation and B. bassiana's growth and stress resistance under moderate iron levels. We found that the BbCFEM family members have different functions based on virulence with severe iron starvation, which also plays an important role in fungal responses to cell wall stress and oxidative stress. This study provides new insights into the genetic families of entomopathogenic fungi and the mechanisms by which they infect pests.
Collapse
Affiliation(s)
- Xu Zhang
- Collage of Plant Protection in Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guang Wang
- Collage of Plant Protection in Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Chen
- Collage of Plant Protection in Yunnan Agricultural University, Kunming, Yunnan, China
| | - YueJin Peng
- Collage of Plant Protection in Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Tagirdzhanova G, Scharnagl K, Sahu N, Yan X, Bucknell A, Bentham AR, Jégousse C, Ament-Velásquez SL, Onuț-Brännström I, Johannesson H, MacLean D, Talbot NJ. Complexity of the lichen symbiosis revealed by metagenome and transcriptome analysis of Xanthoria parietina. Curr Biol 2025; 35:799-817.e5. [PMID: 39889699 DOI: 10.1016/j.cub.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Lichens are composite, symbiotic associations of fungi, algae, and bacteria that result in large, anatomically complex organisms adapted to many of the world's most challenging environments. How such intricate, self-replicating lichen architectures develop from simple microbial components remains unknown because of their recalcitrance to experimental manipulation. Here, we report a metagenomic and metatranscriptomic analysis of the lichen Xanthoria parietina at different developmental stages. We identified 168 genomes of symbionts and lichen-associated microbes across the sampled thalli, including representatives of green algae, three different classes of fungi, and 14 bacterial phyla. By analyzing the occurrence of individual species across lichen thalli from diverse environments, we defined both substrate-specific and core microbial components of the lichen. Metatranscriptomic analysis of the principal fungal symbiont from three different developmental stages of a lichen, compared with axenically grown fungus, revealed differential gene expression profiles indicative of lichen-specific transporter functions, specific cell signaling, transcriptional regulation, and secondary metabolic capacity. Putative immunity-related proteins and lichen-specific structurally conserved secreted proteins resembling fungal pathogen effectors were also identified, consistent with a role for immunity modulation in lichen morphogenesis.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK; University & Jepson Herbaria, University of California, Berkeley, Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Neha Sahu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Angus Bucknell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Adam R Bentham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | | | - Ioana Onuț-Brännström
- Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala 752 36, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden; The Royal Swedish Academy of Sciences, Lilla Frescativägen 4A, Stockholm 114 18, Sweden
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK.
| |
Collapse
|
7
|
Godinho DP, Yanez RJR, Duque P. Pathogen-responsive alternative splicing in plant immunity. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00311-X. [PMID: 39701905 DOI: 10.1016/j.tplants.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Plant immunity involves a complex and finely tuned response to a wide variety of pathogens. Alternative splicing, a post-transcriptional mechanism that generates multiple transcripts from a single gene, enhances both the versatility and effectiveness of the plant immune system. Pathogen infection induces alternative splicing in numerous plant genes involved in the two primary layers of pathogen recognition: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). However, the mechanisms underlying pathogen-responsive alternative splicing are just beginning to be understood. In this article, we review recent findings demonstrating that the interaction between pathogen elicitors and plant receptors modulates the phosphorylation status of splicing factors, altering their function, and that pathogen effectors target components of the host spliceosome, controlling the splicing of plant immunity-related genes.
Collapse
Affiliation(s)
- Diogo P Godinho
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Romana J R Yanez
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Paula Duque
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
8
|
Hong T, Wang S, Luo Z, Ren Q, Wu D, Wang L, Bao Y, Yao W, Zhang M, Hu Q. Fusarium sacchari CFEM Proteins Suppress Host Immunity and Differentially Contribute to Virulence. Int J Mol Sci 2024; 25:12805. [PMID: 39684515 DOI: 10.3390/ijms252312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The pathogen Fusarium sacchari is responsible for the devastating pokkah boeng disease, which causes significant economic losses in sugarcane production. However, the mechanisms by which it affects plant immunity remain largely unknown. Common in Fungal Extracellular Membrane (CFEM) domain proteins have been implicated in fungal growth, infection processes, and pathogenicity. In this study, we identified three FsCFEM proteins (Fs08184, Fs10706, and Fs13617) that mediate the broad-spectrum suppression of the immune responses induced by typical effectors. A further analysis demonstrated that Fs08184, Fs10706, and Fs13617 suppressed host immunity through two potential iron-binding sites conserved in CFEM family members, characterized by Asp and Phe residues in Fs08184, Fs10706, and Fs13617. Additionally, the Asp and Phe residues within the iron-chelating site were necessary for the iron acquisition of F. sacchari and contributed to creating low-free-iron conditions at the interface of plant and pathogen interactions. It appeared that F. sacchari might employ Asp-Phe-type CFEM members to influence host iron homeostasis to suppress host immunity and to facilitate its successful colonization.
Collapse
Affiliation(s)
- Tianshu Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Shichao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Zhiyuan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qianqian Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Deng Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Liu H, Zhang W, He Q, Aikemu R, Xu H, Guo Z, Wang L, Li W, Wang G, Wang X, Guo W. Re-localization of a repeat-containing fungal effector by apoplastic protein Chitinase-like 1 blocks its toxicity. Nat Commun 2024; 15:10122. [PMID: 39578470 PMCID: PMC11584738 DOI: 10.1038/s41467-024-54470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
A fungal effector that is toxic to plant cells was identified in Verticillium dahliae. The effector contains a non-canonical Common in several Fungal Extracellular Membrane proteins (CFEM) domain, a tandem repeat region consisting of four 14-amino acid repeats rich in proline, and a C-terminal region, thus is designated V. dahliae tetrapeptide repeat protein (VdTRP). The membrane targeting of VdTRP is vital for its cell toxicity. CFEM mediates the membrane targeting and the tandem repeat region exerts the toxic function upon cell membrane. The chitinase-like 1 (CTL1), an essential apoplastic protein of cotton, can redirect VdTRP from cell membrane to apoplast. Transgenic cotton overexpressing CTL1 greatly enhances cotton resistance to V. dahliae without affecting cotton growth and development, implicating its potential application in breeding cotton with high wilt resistance. Our data demonstrates that genetic manipulation of effector target constitutes potential strategy for improving crop resistance to fungal pathogens.
Collapse
Affiliation(s)
- Hanqiao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinqfei He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reyila Aikemu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lu Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Zhang Q, Xu Q, Zhang N, Zhong T, Xing Y, Fan Z, Yan M, Xu M. A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease. MOLECULAR PLANT 2024; 17:1654-1671. [PMID: 39360383 DOI: 10.1016/j.molp.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Qianya Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Nan Zhang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China; Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong 510640, P.R. China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Yuexian Xing
- Institute of Maize Research, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, P.R. China
| | - Zhou Fan
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Mingzhu Yan
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
11
|
Li J, Li J, Cao L, Chen Q, Ding D, Kang L. An iron-binding protein of entomopathogenic fungus suppresses the proliferation of host symbiotic bacteria. MICROBIOME 2024; 12:202. [PMID: 39407320 PMCID: PMC11481751 DOI: 10.1186/s40168-024-01928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Entomopathogenic fungal infection-induced dysbiosis of host microbiota offers a window into understanding the complex interactions between pathogenic fungi and host symbionts. Such insights are critical for enhancing the efficacy of mycoinsecticides. However, the utilization of these interactions in pest control remains largely unexplored. RESULTS Here, we found that infection by the host-specialist fungus Metarhizium acridum alters the composition of the symbiotic microbiota and increases the dominance of some bacterial symbionts in locusts. Meanwhile, M. acridum also effectively limits the overgrowth of the predominant bacteria. Comparative transcriptomic screening revealed that the fungus upregulates the production of MaCFEM1, an iron-binding protein, in the presence of bacteria. This protein sequesters iron, thereby limiting its availability. Functionally, overexpression of MaCFEM1 in the fungus induces iron deprivation, which significantly suppresses bacterial growth. Conversely, MaCFEM1 knockout relieves the restriction on bacterial iron availability, resulting in iron reallocation. Upon ΔMaCFEM1 infection, some host bacterial symbionts proliferate uncontrollably, turning into opportunistic pathogens and significantly accelerating host death. CONCLUSIONS This study elucidates the critical role of pathogenic fungal-dominated iron allocation in mediating the shift of host microbes from symbiosis to pathogenicity. It also highlights a unique biocontrol strategy that jointly exploits pathogenic fungi and bacterial symbionts to increase host mortality. Video Abstract.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiujie Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lili Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qinghua Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Liu K, Wang X, Qi Y, Li Y, Shi Y, Ren Y, Wang A, Cheng P, Wang B. Effector Protein Serine Carboxypeptidase FgSCP Is Essential for Full Virulence in Fusarium graminearum and Is Involved in Modulating Plant Immune Responses. PHYTOPATHOLOGY 2024; 114:2131-2142. [PMID: 38831556 DOI: 10.1094/phyto-02-24-0068-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Fusarium head blight caused by Fusarium graminearum is a significant pathogen affecting wheat crops. During the infection process, effector proteins are secreted to modulate plant immunity and promote infection. The toxin deoxynivalenol is produced in infected wheat grains, posing a threat to human and animal health. Serine carboxypeptidases (SCPs) belong to the α/β hydrolase family of proteases and are widely distributed in plant and fungal vacuoles, as well as animal lysosomes. Research on SCPs mainly focuses on the isolation, purification, and production of a small number of fungi. The role of SCPs in plant secretion, growth and development, and stress resistance has also been extensively studied. However, their functions in F. graminearum, a fungal pathogen, remain relatively unknown. In this study, the biological functions of the FgSCP gene in F. graminearum were investigated. The study revealed that mutations in FgSCP affected the nutritional growth, sexual reproduction, and stress tolerance of F. graminearum. Furthermore, the deletion of FgSCP resulted in reduced pathogenicity and hindered the biosynthesis of deoxynivalenol. The upregulation of FgSCP expression 3 days after infection indicated its involvement in host invasion, possibly acting as a "smokescreen" to deceive the host and suppress the expression of host defensive genes. Subsequently, we confirmed the secretion ability of FgSCP and its ability to inhibit the cell death induced by INF1 in Nicotiana benthamiana cells, indicating its potential role as an effector protein in suppressing plant immune responses and promoting infection. In summary, we have identified FgSCP as an essential effector protein in F. graminearum, playing critical roles in growth, virulence, secondary metabolism, and host invasion.
Collapse
Affiliation(s)
- Kouhan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xintong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuzhe Qi
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research of China), Changchun, Jilin 136100, China
| | - Ying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifeng Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanyan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aolin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Hewezi T. Phytopathogens Reprogram Host Alternative mRNA Splicing. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:173-192. [PMID: 38691872 DOI: 10.1146/annurev-phyto-121423-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
14
|
Liu S, Bu Z, Zhang X, Chen Y, Sun Q, Wu F, Guo S, Zhu Y, Tan X. The new CFEM protein CgCsa required for Fe 3+ homeostasis regulates the growth, development, and pathogenicity of Colletotrichum gloeosporioides. Int J Biol Macromol 2024; 274:133216. [PMID: 38901513 DOI: 10.1016/j.ijbiomac.2024.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Secreted common fungal extracellular membrane (CFEM) domain proteins have been implicated in multiple biological functions in fungi. However, it is still largely unknown whether the ferric iron (Fe3+), as an important trace element, was involved with the biological function of CFEM proteins. In this study, a new CFEM protein CgCsa, with high expression levels at the early inoculation stage on peppers by Colletotrichum gloeosporioides was investigated. Deletion of the targeted gene CgCsa revealed multiple biological roles in hyphal growth restriction, highly reduced conidial yield, delayed conidial germination, abnormal appressorium with elongated bud tubes, and significantly reduced virulence of C. gloeosporioides. Moreover, in CgCsa mutants, the expression levels of four cell wall synthesis-related genes were downregulated, and cell membrane permeability and electrical conductivity were increased. Compared to the wild-type, the CgCsa mutants downregulated expressions of iron transport-related genes, in addition, its three-dimensional structure was capable binding with iron. Increase in the Fe3+ concentration in the culture medium partially recovered the functions of ΔCgCsa mutant. This is probably the first report to show the association between CgCsa and iron homeostasis in C. gloeosporioides. The results suggest an alternative pathway for controlling plant fungal diseases by deplete their trace elements.
Collapse
Affiliation(s)
- Sizhen Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China; Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xin Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Yue Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Qianlong Sun
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Fei Wu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Sheng Guo
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China; LongPing Branch, College of Biology, Hunan University, Changsha 410125, China.
| |
Collapse
|
15
|
Garai S, Raizada A, Kumar V, Sopory SK, Pareek A, Singla-Pareek SL, Kaur C. In silico analysis of fungal prion-like proteins for elucidating their role in plant-fungi interactions. Arch Microbiol 2024; 206:308. [PMID: 38896139 DOI: 10.1007/s00203-024-04040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Avi Raizada
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Vijay Kumar
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140306, Punjab, India.
| |
Collapse
|
16
|
Buttar ZA, Cheng M, Wei P, Zhang Z, Lv C, Zhu C, Ali NF, Kang G, Wang D, Zhang K. Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:1159. [PMID: 38674569 PMCID: PMC11053692 DOI: 10.3390/plants13081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
Collapse
Affiliation(s)
- Zeeshan Ali Buttar
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Mengquan Cheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Panqin Wei
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziwei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Chenjia Zhu
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Nida Fatima Ali
- Department of Plant Biotechnology, Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology, Islamabad 44000, Pakistan
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
17
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
18
|
Xu X, Shen G, Teng H, Zhao J, Xiao J, Guo L, Gao Y, Chen J, Wang X, Xiang W, Zhao J. Unravelling Species Diversity and Pathogenicity of Fusarium spp. Associated with Soybean Leaf and Root in Heilongjiang Province, China. PLANT DISEASE 2024; 108:852-856. [PMID: 37858971 DOI: 10.1094/pdis-08-23-1476-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Soybean (Glycine max L.) holds significant global importance and is extensively cultivated in Heilongjiang Province, China. Soybean can be infected by Fusarium species, causing root rot, seed decay, stem rot, and leaf blight. In 2021 to 2022, a field survey of soybean diseases was carried out in 11 regions of Heilongjiang Province, and 186 soybean leaves with leaf blight symptoms and 123 soybean roots with root rot symptoms were collected. Unexpectedly, a considerable number of Fusarium isolates were obtained not only from root samples but also from leaf samples. A total of 584 Fusarium isolates (416 from leaves and 168 from roots) were obtained and identified as 18 Fusarium species based on morphological features and multilocus phylogenetic analyses with tef1 and rpb2 sequences. Fusarium graminearum and Fusarium sp. 1 in FOSC were the dominant species within soybean leaf and root samples, respectively. Pathogenicity tests were conducted for all Fusarium isolates on both soybean leaves and roots. Results showed that F. graminearum, F. ipomoeae, F. citri, F. compactum, F. flagelliforme, F. acuminatum, and F. sporotrichioides were pathogenic to both soybean leaves and roots. F. solani, F. avenaceum, F. pentaseptatum, F. serpentinum, F. annulatum, and Fusarium sp. 1 in FOSC were pathogenic to soybean roots, not to leaves. To our knowledge, this is the first study to thoroughly investigate soybean-associated Fusarium populations in leaves and roots in Heilongjiang Province.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Guijin Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Haolin Teng
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junlei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Lifeng Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yuan Gao
- Heilongjiang Seed Industry Technical Service Center, Harbin 150008, P.R. China
| | - Jie Chen
- School of Forestry and Biotechnology, Zhejiang A and F University, Hangzhou, 311300, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
19
|
Feng L, Dong M, Huang Z, Wang Q, An B, He C, Wang Q, Luo H. CgCFEM1 Is Required for the Full Virulence of Colletotrichum gloeosporioides. Int J Mol Sci 2024; 25:2937. [PMID: 38474183 DOI: 10.3390/ijms25052937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Colletotrichum gloeosporioides is widely distributed and causes anthracnose on many crops, resulting in serious economic losses. Common fungal extracellular membrane (CFEM) domain proteins have been implicated in virulence and their interaction with the host plant, but their roles in C. gloeosporioides are still unknown. In this study, a CFEM-containing protein of C. gloeosporioides was identified and named as CgCFEM1. The expression levels of CgCFEM1 were found to be markedly higher in appressoria, and this elevated expression was particularly pronounced during the initial stages of infection in the rubber tree. Absence of CgCFEM1 resulted in impaired pathogenicity, accompanied by notable perturbations in spore morphogenesis, conidiation, appressorium development and primary invasion. During the process of appressorium development, the absence of CgCFEM1 enhanced the mitotic activity in both conidia and germ tubes, as well as compromised conidia autophagy. Rapamycin was found to basically restore the appressorium formation, and the activity of target of rapamycin (TOR) kinase was significantly induced in the CgCFEM1 knockout mutant (∆CgCFEM1). Furthermore, CgCFEM1 was proved to suppress chitin-triggered reactive oxygen species (ROS) accumulation and change the expression patterns of defense-related genes. Collectively, we identified a fungal effector CgCFEM1 that contributed to pathogenicity by regulating TOR-mediated conidia and appressorium morphogenesis of C. gloeosporioides and inhibiting the defense responses of the rubber tree.
Collapse
Affiliation(s)
- Liping Feng
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Meixia Dong
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhirui Huang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qian Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Bang An
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaozu He
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qiannan Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hongli Luo
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
20
|
John E, Chau MQ, Hoang CV, Chandrasekharan N, Bhaskar C, Ma LS. Fungal Cell Wall-Associated Effectors: Sensing, Integration, Suppression, and Protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:196-210. [PMID: 37955547 DOI: 10.1094/mpmi-09-23-0142-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The cell wall (CW) of plant-interacting fungi, as the direct interface with host plants, plays a crucial role in fungal development. A number of secreted proteins are directly associated with the fungal CW, either through covalent or non-covalent interactions, and serve a range of important functions. In the context of plant-fungal interactions many are important for fungal development in the host environment and may therefore be considered fungal CW-associated effectors (CWAEs). Key CWAE functions include integrating chemical/physical signals to direct hyphal growth, interfering with plant immunity, and providing protection against plant defenses. In recent years, a diverse range of mechanisms have been reported that underpin their roles, with some CWAEs harboring conserved motifs or functional domains, while others are reported to have novel features. As such, the current understanding regarding fungal CWAEs is systematically presented here from the perspective of their biological functions in plant-fungal interactions. An overview of the fungal CW architecture and the mechanisms by which proteins are secreted, modified, and incorporated into the CW is first presented to provide context for their biological roles. Some CWAE functions are reported across a broad range of pathosystems or symbiotic/mutualistic associations. Prominent are the chitin interacting-effectors that facilitate fungal CW modification, protection, or suppression of host immune responses. However, several alternative functions are now reported and are presented and discussed. CWAEs can play diverse roles, some possibly unique to fungal lineages and others conserved across a broad range of plant-interacting fungi. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Evan John
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Minh-Quang Chau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cuong V Hoang
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo UPM, 28223 Pozuelo de Alarcón, Spain
| | | | - Chibbhi Bhaskar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
21
|
Qiu C, Halterman D, Zhang H, Liu Z. Multifunctionality of AsCFEM6 and AsCFEM12 effectors from the potato early blight pathogen Alternaria solani. Int J Biol Macromol 2024; 257:128575. [PMID: 38048930 DOI: 10.1016/j.ijbiomac.2023.128575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Plant pathogens secrete fungal-specific common in several fungal extracellular membrane (CFEM) effectors to manipulate host immunity and contribute to their virulence. Little is known about effectors and their functions in Alternaria solani, the necrotrophic fungal pathogen causing potato early blight. To identify candidate CFEM effector genes, we mined A. solani genome databases. This led to the identification of 12 genes encoding CFEM proteins (termed AsCFEM1-AsCFEM12) and 6 of them were confirmed to be putative secreted effectors. In planta expression revealed that AsCFEM6 and AsCFEM12 have elicitor function that triggers plant defense response including cell death in different botanical families. Targeted gene disruption of AsCFEM6 and AsCFEM12 resulted in a change in spore development, significant reduction of virulence on potato and eggplant susceptible cultivars, increased resistance to fungicide stress, variation in iron acquisition and utilization, and the involvement in 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis pathway. Using maximum likelihood method, we found that positive selection likely caused the polymorphism within AsCFEM6 and AsCFEM12 homologs in different Alternaria spp. Site-directed mutagenesis analysis indicated that positive selection sites within their CFEM domains are required for cell death induction in Nicotiana benthamiana and are critical for response to abiotic stress in yeast. These results demonstrate that AsCFEM effectors possess additional functions beyond their roles in host plant immune response and pathogen virulence.
Collapse
Affiliation(s)
- Chaodong Qiu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Dennis Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
| | - Huajian Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China.
| | - Zhenyu Liu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, China.
| |
Collapse
|
22
|
Qiu P, Zheng B, Yuan H, Yang Z, Lindsey K, Wang Y, Ming Y, Zhang L, Hu Q, Shaban M, Kong J, Zhang X, Zhu L. The elicitor VP2 from Verticillium dahliae triggers defence response in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:497-511. [PMID: 37883523 PMCID: PMC10826990 DOI: 10.1111/pbi.14201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non-defoliating pathotype 1cd3-2 during the early response of cotton. Combined with analysis of the secretome during the V991-cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3-2-cotton interaction. Full-length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock-out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2-overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild-type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Zhaoguang Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | | | - Yan Wang
- College of Plant Protection, Nanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Department of Plant Breeding and GeneticsUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural SciencesUrumqiPeople's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| |
Collapse
|
23
|
Shang S, Liu G, Zhang S, Liang X, Zhang R, Sun G. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:82-97. [PMID: 37596985 PMCID: PMC10754009 DOI: 10.1111/pbi.14166] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
Colletotrichum fructicola causes a broad range of plant diseases worldwide and secretes many candidate proteinous effectors during infection, but it remains largely unknown regarding their effects in conquering plant immunity. Here, we characterized a novel effector CfEC12 that is required for the virulence of C. fructicola. CfEC12 contains a CFEM domain and is highly expressed during the early stage of host infection. Overexpression of CfEC12 suppressed BAX-triggered cell death, callose deposition and ROS burst in Nicotiana benthamiana. CfEC12 interacted with apple MdNIMIN2, a NIM1-interacting (NIMIN) protein that putatively modulates NPR1 activity in response to SA signal. Transient expression and transgenic analyses showed that MdNIMIN2 was required for apple resistance to C. fructicola infection and rescued the defence reduction in NbNIMIN2-silenced N. benthamiana, supporting a positive role in plant immunity. CfEC12 and MdNPR1 interacted with a common region of MdNIMIN2, indicating that CfEC12 suppresses the interaction between MdNIMIN2 and MdNPR1 by competitive target binding. In sum, we identified a fungal effector that targets the plant salicylic acid defence pathway to promote fungal infection.
Collapse
Affiliation(s)
- Shengping Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Guangli Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Song Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, Key Laboratory of Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Minishtry of Agriculture and Rural Affairs, and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
24
|
Huang Z, Zhou Y, Li H, Bao Y, Duan Z, Wang C, Powell CA, Wang K, Hu Q, Chen B, Zhang J, Zhang M, Yao W. Identification of common fungal extracellular membrane (CFEM) proteins in Fusarium sacchari that inhibit plant immunity and contribute to virulence. Microbiol Spectr 2023; 11:e0145223. [PMID: 37962343 PMCID: PMC10715082 DOI: 10.1128/spectrum.01452-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Common fungal extracellular membrane (CFEM) domain-containing protein has long been considered an essential effector, playing a crucial role in the interaction of pathogens and plant. Strategies aimed at understanding the pathogenicity mechanism of F. sacchari are eagerly anticipated to ultimately end the spread of pokkah boeng disease. Twenty FsCFEM proteins in the genome of F. sacchari have been identified, and four FsCFEM effector proteins have been found to suppress BCL2-associated X protein-triggered programmed cell death in N. benthamiana. These four effector proteins have the ability to enter plant cells and inhibit plant immunity. Furthermore, the expression of these four FsCFEM effector proteins significantly increases during the infection stage, with the three of them playing an essential role in achieving full virulence. These study findings provide a direction toward further exploration of the immune response in sugarcane. By applying these discoveries, we can potentially control the spread of disease through techniques such as host-induced gene silencing.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yuming Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Huixue Li
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | | | - Kai Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
- IRREC-IFAS, University of Florida, Fort Pierce, Florida, USA
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
- IRREC-IFAS, University of Florida, Fort Pierce, Florida, USA
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
- IRREC-IFAS, University of Florida, Fort Pierce, Florida, USA
| |
Collapse
|
25
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
26
|
Sabnam N, Hussain A, Saha P. The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microb Pathog 2023; 183:106276. [PMID: 37541554 DOI: 10.1016/j.micpath.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Cell death-inducing proteins (CDIPs) are some of the secreted effector proteins manifested by filamentous oomycetes and fungal pathogens to invade the plant tissue and facilitate infection. Along with their involvement in different developmental processes and virulence, CDIPs play a crucial role in plant-pathogen interactions. As the name implies, CDIPs cause necrosis and trigger localised cell death in the infected host tissues by the accumulation of higher concentrations of hydrogen peroxide (H2O2), oxidative burst, accumulation of nitric oxide (NO), and electrolyte leakage. They also stimulate the biosynthesis of defense-related phytohormones such as salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), as well as the expression of pathogenesis-related (PR) genes that are important in disease resistance. Altogether, the interactions result in the hypersensitive response (HR) in the host plant, which might confer systemic acquired resistance (SAR) in some cases against a vast array of related and unrelated pathogens. The CDIPs, due to their capability of inducing host resistance, are thus unique among the array of proteins secreted by filamentous plant pathogens. More interestingly, a few transgenic plant lines have also been developed expressing the CDIPs with added resistance. Thus, CDIPs have opened an interesting hot area of research. The present study critically reviews the current knowledge of major types of CDIPs identified across filamentous phytopathogens and their modes of action in the last couple of years. This review also highlights the recent breakthrough technologies in studying plant-pathogen interactions as well as crop improvement by enhancing disease resistance through CDIPs.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Pallabi Saha
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, United States; Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|