1
|
Paz M, Moratorio G. Deep mutational scanning and CRISPR-engineered viruses: tools for evolutionary and functional genomics studies. mSphere 2025:e0050824. [PMID: 40272173 DOI: 10.1128/msphere.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Recent advancements in synthetic biology and sequencing technologies have revolutionized the ability to manipulate viral genomes with unparalleled precision. This review focuses on two powerful methodologies: deep mutational scanning and CRISPR-based genome editing, that enable comprehensive mutagenesis and detailed functional characterization of viral proteins. These approaches have significantly deepened our understanding of the molecular determinants driving viral evolution and adaptation. Furthermore, we discuss how these advances provide transformative insights for future vaccine development and therapeutic strategies.
Collapse
Affiliation(s)
- Mercedes Paz
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
- Center for Innovation in Epidemiological Surveillance, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Ma F, Wang W, Wang M, Zhang W, Zhang S, Wilson G, Sa Y, Zhang Y, Chen G, Ma X. Fluorescence paper sensor meets magnetic affinity chromatography: discovering potent neuraminidase inhibitors in herbal medicines. Anal Bioanal Chem 2025; 417:1819-1832. [PMID: 39890624 DOI: 10.1007/s00216-025-05761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Given the inherent complexity of natural medicines, finding a straightforward and efficient method for identifying active ingredients remains a significant challenge, yet it is of paramount importance. Influenza virus neuraminidase (NA), a primary target for anti-influenza drug development, plays a crucial role in the infection process, making it essential to develop rapid and facile methods for screening NA inhibitors. Herein, we developed a novel and efficient analytical technique for the identification of NA inhibitors from complex herbal medicines by integrating dual sensing with affinity chromatography. This approach simplifies the experimental process and highlights the benefits of being quicker, more sensitive, and cost-effective. Regarding the biosensing section, the innovative concept of a 4-methylumbelliferyl-N-acetylneuraminic acid-NA-based fluorescence paper sensor strategy enables the rapid detection of NA inhibitors in complex herbal samples. In affinity chromatography, bioactive compounds were precisely captured, separated, and identified. The efficacy and reliability of the developed method were confirmed using both negative and positive controls. Then, the method was applied to screen for NA inhibitors in 20 different herbal medicines. The results revealed that Bupleurum chinense DC. exhibited the most pronounced inhibitory effect on NA. Subsequent analysis utilizing affinity chromatography identified three bioactive compounds, namely saikosaponin a, saikosaponin d, and baicalin, as the active agents responsible for this inhibitory effect, with IC50 values of 177.3 μM, 262.9 μM, and 241.4 μM, respectively. Molecular docking studies further indicated that these three bioactive compounds exhibit a strong binding affinity with NA. This research provides novel insights into the screening of enzyme inhibitors within herbal medicines.
Collapse
Affiliation(s)
- Fen Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weibiao Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Mei Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Weiman Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Shuxian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Gidion Wilson
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yuping Sa
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Yue Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China
| | - Guoning Chen
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China.
| | - Xueqin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750001, China.
| |
Collapse
|
3
|
Bakhache W, Symonds-Orr W, McCormick L, Dolan PT. Deep mutation, insertion and deletion scanning across the Enterovirus A proteome reveals constraints shaping viral evolution. Nat Microbiol 2025; 10:158-168. [PMID: 39609576 PMCID: PMC11726453 DOI: 10.1038/s41564-024-01871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
Insertions and deletions (InDels) are essential to protein evolution. In RNA viruses, InDels contribute to the emergence of viruses with new phenotypes, including altered host engagement and tropism. However, the tolerance of viral proteins for InDels has not been extensively studied. Here, we conduct deep mutational scanning to map and quantify the mutational tolerance of a complete viral proteome to insertion, deletion and substitution. We engineered approximately 45,000 insertions, 6,000 deletions and 41,000 amino acid substitutions across the nearly 2,200 coding positions of the Enterovirus A71 proteome, quantifying their effects on viral fitness by population sequencing. The vast majority of InDels are lethal to the virus, tolerated at only a few hotspots. Some of these hotspots overlap with sites of host recognition and immune engagement, suggesting tolerance at these sites reflects the important role InDels have played in the past phenotypic diversification of Enterovirus A.
Collapse
Affiliation(s)
- William Bakhache
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA
| | - Walker Symonds-Orr
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA
| | - Lauren McCormick
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA
- Department of Biology, University of Oxford, Oxford, UK
| | - Patrick T Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA.
| |
Collapse
|
4
|
Tian Y, Deng Z, Chuai Z, Li C, Chang L, Sun F, Cao R, Yu H, Xiao R, Lu S, Xu Y, Yang P. A combination influenza mRNA vaccine candidate provided broad protection against diverse influenza virus challenge. Virology 2024; 596:110125. [PMID: 38805804 DOI: 10.1016/j.virol.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Influenza viruses present a significant threat to global health. The production of a universal vaccine is considered essential due to the ineffectiveness of current seasonal influenza vaccines against mutant strains. mRNA technology offers new prospects in vaccinology, with various candidates for different infectious diseases currently in development and testing phases. In this study, we encapsulated a universal influenza mRNA vaccine. The vaccine encoded influenza hemagglutinin (HA), nucleoprotein (NP), and three tandem repeats of matrix protein 2 (3M2e). Twice-vaccinated mice exhibited strong humoral and cell-mediated immune responses in vivo. Notably, these immune responses led to a significant reduction in viral load of the lungs in challenged mice, and also conferred protection against future wild-type H1N1, H3N2, or H5N1 influenza virus challenges. Our findings suggest that this mRNA-universal vaccine strategy for influenza virus may be instrumental in mitigating the impact of future influenza pandemics.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Mice
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Antibodies, Viral/immunology
- Mice, Inbred BALB C
- mRNA Vaccines/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Female
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Cross Protection/immunology
- Viral Load
- Lung/virology
- Lung/immunology
- Humans
- Viroporin Proteins
Collapse
Affiliation(s)
- Yuying Tian
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Zhuoya Deng
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhengran Chuai
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Cong Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Liangzheng Chang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fang Sun
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Rui Cao
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hongyu Yu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ruixue Xiao
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shuai Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Xu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China; School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
5
|
Bakhache W, Orr W, McCormick L, Dolan PT. Uncovering Structural Plasticity of Enterovirus A through Deep Insertional and Deletional Scanning. RESEARCH SQUARE 2024:rs.3.rs-3835307. [PMID: 38410474 PMCID: PMC10896406 DOI: 10.21203/rs.3.rs-3835307/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Insertions and deletions (InDels) are essential sources of novelty in protein evolution. In RNA viruses, InDels cause dramatic phenotypic changes contributing to the emergence of viruses with altered immune profiles and host engagement. This work aimed to expand our current understanding of viral evolution and explore the mutational tolerance of RNA viruses to InDels, focusing on Enterovirus A71 (EV-A71) as a prototype for Enterovirus A species (EV-A). Using newly described deep InDel scanning approaches, we engineered approximately 45,000 insertions and 6,000 deletions at every site across the viral proteome, quantifying their effects on viral fitness. As a general trend, most InDels were lethal to the virus. However, our screen reproducibly identified a set of InDel-tolerant regions, demonstrating our ability to comprehensively map tolerance to these mutations. Tolerant sites highlighted structurally flexible and mutationally plastic regions of viral proteins that avoid core structural and functional elements. Phylogenetic analysis on EV-A species infecting diverse mammalian hosts revealed that the experimentally-identified hotspots overlapped with sites of InDels across the EV-A species, suggesting structural plasticity at these sites is an important function for InDels in EV speciation. Our work reveals the fitness effects of InDels across EV-A71, identifying regions of evolutionary capacity that require further monitoring, which could guide the development of Enterovirus vaccines.
Collapse
Affiliation(s)
- William Bakhache
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA
| | - Walker Orr
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA
| | - Lauren McCormick
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA
- Department of Biology, University of Oxford, Oxford, UK
| | - Patrick T. Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, NIH-NIAID Division of Intramural Research, Bethesda, MD, USA
| |
Collapse
|
6
|
Notin P, Kollasch AW, Ritter D, van Niekerk L, Paul S, Spinner H, Rollins N, Shaw A, Weitzman R, Frazer J, Dias M, Franceschi D, Orenbuch R, Gal Y, Marks DS. ProteinGym: Large-Scale Benchmarks for Protein Design and Fitness Prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570727. [PMID: 38106144 PMCID: PMC10723403 DOI: 10.1101/2023.12.07.570727] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Predicting the effects of mutations in proteins is critical to many applications, from understanding genetic disease to designing novel proteins that can address our most pressing challenges in climate, agriculture and healthcare. Despite a surge in machine learning-based protein models to tackle these questions, an assessment of their respective benefits is challenging due to the use of distinct, often contrived, experimental datasets, and the variable performance of models across different protein families. Addressing these challenges requires scale. To that end we introduce ProteinGym, a large-scale and holistic set of benchmarks specifically designed for protein fitness prediction and design. It encompasses both a broad collection of over 250 standardized deep mutational scanning assays, spanning millions of mutated sequences, as well as curated clinical datasets providing high-quality expert annotations about mutation effects. We devise a robust evaluation framework that combines metrics for both fitness prediction and design, factors in known limitations of the underlying experimental methods, and covers both zero-shot and supervised settings. We report the performance of a diverse set of over 70 high-performing models from various subfields (eg., alignment-based, inverse folding) into a unified benchmark suite. We open source the corresponding codebase, datasets, MSAs, structures, model predictions and develop a user-friendly website that facilitates data access and analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ada Shaw
- Applied Mathematics, Harvard University
| | | | | | - Mafalda Dias
- Centre for Genomic Regulation, Universitat Pompeu Fabra
| | | | | | - Yarin Gal
- Computer Science, University of Oxford
| | | |
Collapse
|
7
|
Li Y, Arcos S, Sabsay KR, te Velthuis AJW, Lauring AS. Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein. J Virol 2023; 97:e0132923. [PMID: 37882522 PMCID: PMC10688322 DOI: 10.1128/jvi.01329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The influenza virus polymerase is important for adaptation to new hosts and, as a determinant of mutation rate, for the process of adaptation itself. We performed a deep mutational scan of the polymerase basic 1 (PB1) protein to gain insights into the structural and functional constraints on the influenza RNA-dependent RNA polymerase. We find that PB1 is highly constrained at specific sites that are only moderately predicted by the global structure or larger domain. We identified a number of beneficial mutations, many of which have been shown to be functionally important or observed in influenza virus' natural evolution. Overall, our atlas of PB1 mutations and their fitness impacts serves as an important resource for future studies of influenza replication and evolution.
Collapse
Affiliation(s)
- Yuan Li
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Arcos
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly R. Sabsay
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, USA
| | | | - Adam S. Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Wei L, Wang X, Zhou H. Interaction among inflammasome, PANoptosise, and innate immune cells in infection of influenza virus: Updated review. Immun Inflamm Dis 2023; 11:e997. [PMID: 37773712 PMCID: PMC10521376 DOI: 10.1002/iid3.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Influenza virus (IV) is a leading cause of respiratory tract infections, eliciting responses from key innate immune cells such as Macrophages (MQs), Neutrophils, and Dendritic Cells (DCs). These cells employ diverse mechanisms to combat IV, with Inflammasomes playing a pivotal role in viral infection control. Cellular death mechanisms, including Pyroptosis, Apoptosis, and Necroptosis (collectively called PANoptosis), significantly contribute to the innate immune response. METHODS In this updated review, we delve into the intricate relationship between PANoptosis and Inflammasomes within innate immune cells (MQs, Neutrophils, and DCs) during IV infections. We explore the strategies employed by IV to evade these immune defenses and the consequences of unchecked PANoptosis and inflammasome activation, including the potential development of severe complications such as cytokine storms and tissue damage. RESULTS Our analysis underscores the interplay between PANoptosis and Inflammasomes as a critical aspect of the innate immune response against IV. We provide insights into IV's various mechanisms to subvert these immune pathways and highlight the importance of understanding these interactions to develop effective antiviral medications. CONCLUSION A comprehensive understanding of the dynamic interactions between PANoptosis, Inflammasomes, and IV is essential for advancing our knowledge of innate immune responses to viral infections. This knowledge will be invaluable in developing targeted antiviral therapies to combat IV and mitigate potential complications, including cytokine storms and tissue damage.
Collapse
Affiliation(s)
- Li Wei
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Xufang Wang
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Huifei Zhou
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| |
Collapse
|