1
|
Hickman HD, Moutsopoulos NM. Viral infection and antiviral immunity in the oral cavity. Nat Rev Immunol 2025; 25:235-249. [PMID: 39533045 DOI: 10.1038/s41577-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
Individual tissues have distinct antiviral properties garnered through various mechanisms, including physical characteristics, tissue-resident immune cells and commensal organisms. Although the oral mucosa has long been appreciated as a critical barrier tissue that is exposed to a continuous barrage of pathogens, many fundamental aspects of the antiviral immune response in this tissue remain unknown. Several viral pathogens, such as herpesviruses and human papillomaviruses, have been acknowledged both historically and at present for infections in the oral cavity that result in substantial clinical burden. However, recent viral outbreaks, including those with SARS-CoV-2 and mpox, featured oral symptoms even though these viruses are not generally considered oral pathogens. Ensuing studies have shown that the oral cavity is an important locale for viral infection and potential transmission of newly emergent or re-emergent pathogens, highlighting the need for an increased understanding of the mechanisms of antiviral immunity at this site. In this Review, we provide a broad overview of antiviral immune responses in the oral cavity and discuss common viral infections and their manifestations in the oral mucosa. In addition, we present current mouse models for the study of oral viral infections.
Collapse
Affiliation(s)
- Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Myers JA, Reilly SP, Brossay L. Tissue-resident NK cells do their own glandscaping. J Exp Med 2025; 222:e20242253. [PMID: 39751179 PMCID: PMC11697971 DOI: 10.1084/jem.20242253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In this issue of JEM, Sparano et al. (https://doi.org/10.1084/jem.20240930) present compelling evidence that salivary gland trNK cells originate from cNK cells and are developmentally distinct from ILC1 cells. Mechanistically, they demonstrate that continuous autocrine TGF-β signaling drives salivary gland tissue residency and works in synergy with IL-15 to enhance Hobit-dependent cytotoxicity.
Collapse
Affiliation(s)
- Jacob A. Myers
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Shanelle P. Reilly
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Laurent Brossay
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Hoytema van Konijnenburg DP, Nigrovic PA, Zanoni I. Regional specialization within the mammalian respiratory immune system. Trends Immunol 2024; 45:871-891. [PMID: 39438172 PMCID: PMC11560516 DOI: 10.1016/j.it.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The respiratory tract is exposed to infection from inhaled pathogens, including viruses, bacteria, and fungi. So far, a comprehensive assessment that integrates common and distinct aspects of the immune response along different areas of the respiratory tract has been lacking. Here, we discuss key recent findings regarding anatomical, functional, and microbial factors driving regional immune adaptation in the mammalian respiratory system, how they differ between mice and humans, and the similarities and differences with the gastrointestinal tract. We demonstrate that, under evolutionary pressure, mammals evolved spatially organized immune defenses that vary between the upper and lower respiratory tract. Overall, we propose that the functional specialization of the immune response along the respiratory tract has fundamental implications for the management of infectious or inflammatory diseases.
Collapse
Affiliation(s)
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital, and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
McClure FA, Wemyss K, Cox JR, Bridgeman HM, Prise IE, King JI, Jaigirdar S, Whelan A, Jones GW, Grainger JR, Hepworth MR, Konkel JE. Th17-to-Tfh plasticity during periodontitis limits disease pathology. J Exp Med 2024; 221:e20232015. [PMID: 38819409 PMCID: PMC11143381 DOI: 10.1084/jem.20232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.
Collapse
Affiliation(s)
- Flora A. McClure
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joshua R. Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Hayley M. Bridgeman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ian E. Prise
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - James I. King
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Shafqat Jaigirdar
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Annie Whelan
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Gareth W. Jones
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew R. Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joanne E. Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Malmqvist S, Clark R, Johannsen G, Johannsen A, Boström EA, Lira-Junior R. Immune cell composition and inflammatory profile of human peri-implantitis and periodontitis lesions. Clin Exp Immunol 2024; 217:173-182. [PMID: 38616555 PMCID: PMC11239561 DOI: 10.1093/cei/uxae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024] Open
Abstract
Peri-implantitis (PI) and periodontitis (PD) are common oral inflammatory diseases, which seem to exhibit critical differences in some of their molecular features. Thus, we assessed the immune cell composition of PI and PD lesions and the corresponding inflammatory profile in soft tissues and crevicular fluid. PI, PD, and control patients were recruited (n = 62), and soft tissue biopsies were collected during surgery. Crevicular fluid around implant or tooth was collected. The proportions of major immune cell populations in tissues were analyzed by flow cytometry, and the inflammatory profile in tissue and crevicular fluid by a multiplex immunoassay. No significant difference was seen between PI and PD lesions in the proportions of immune cells. PI tissues showed an increased frequency of B cells in comparison with control tissues, along with higher levels of IL-1β, TNF-α, IL-4, and BAFF in tissue and crevicular fluid. Moreover, TNF-α, IL-17A, and BAFF were higher in PI tissues, but not in PD, than in control tissues. The immune cell composition did not differ significantly between PI and PD, but an enhanced inflammatory profile was seen in PI tissue. PI lesions were enriched in B cells, and displayed increased levels of IL-1β, TNF-α, IL-4, and BAFF in both tissue and crevicular fluid.
Collapse
Affiliation(s)
- Sebastian Malmqvist
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reuben Clark
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Johannsen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annsofi Johannsen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth A Boström
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Orofacial Medicine, Folktandvården Stockholms Län AB, Stockholm, Sweden
| | - Ronaldo Lira-Junior
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Costa-da-Silva AC, Villapudua CU, Hoffman MP, Aure MH. Immunomodulation of salivary gland function due to cancer therapy. Oral Dis 2024:10.1111/odi.14972. [PMID: 38696474 PMCID: PMC11530405 DOI: 10.1111/odi.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Functional salivary glands (SG) are essential for maintaining oral health, and salivary dysfunction is a persistent major clinical challenge. Several cancer therapies also have off-target effects leading to SG dysfunction. Recent advances highlight the role of SG immune populations in homeostasis, dysfunction and gland regeneration. Here, we review what is known about SG immune populations during development and postnatal homeostasis. We summarize recent findings of immune cell involvement in SG dysfunction following cancer treatments such as irradiation (IR) for head and neck cancers, immune transplant leading to graft-versus-host-disease (GVHD) and immune checkpoint inhibitor (ICI) treatment. The role of immune cells in SG in both homeostasis and disease, is an emerging field of research that may provide important clues to organ dysfunction and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ana C. Costa-da-Silva
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carlos U. Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marit H. Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Cennamo N, Bencivenga D, Annunziata M, Arcadio F, Stampone E, Piccirillo A, Della Ragione F, Zeni L, Guida L, Borriello A. Plasmon resonance biosensor for interleukin-1β point-of-care determination: A tool for early periodontitis diagnosis. iScience 2024; 27:108741. [PMID: 38269096 PMCID: PMC10805648 DOI: 10.1016/j.isci.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Among pro-inflammatory cytokines, Interleukin-1β is crucially involved in several inflammatory-based diseases and even cancer. Increased Interleukin-1β levels in oral fluids have been proposed as an early marker of periodontitis, a broadly diffused chronic inflammatory condition of periodontal-supporting tissues, leading eventually to tooth loss. We describe the development of a portable surface-plasmon-resonance-based optical fiber probe suitably coated with an anti-Interleukin-1β antibody monolayer. A pico-nanomolar linear range of determination was obtained in both buffer solution and saliva with a rapid (3 min) incubation and high selectivity in presence of interferents. Higher Interleukin-1β concentration in the saliva of a periodontitis patient compared to a healthy control was determined. These measurements were validated by an automated ELISA system. Our results sustain the potential applicability of the proposed SPR-POF as diagnostic point-of-care device for real-time monitoring of salivary Interleukin-1β, that can support early detection of oral inflammatory-based pathologies and rapid and timely therapeutic decisions.
Collapse
Affiliation(s)
- Nunzio Cennamo
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Angelantonio Piccirillo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma, 9, Aversa, CE 81031, Italy
| | - Luigi Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, via De Crecchio, 6 80138 Naples, Italy
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via De Crecchio, 7 80138 Naples, Italy
| |
Collapse
|