1
|
Gu Y, He W, Li W, Cai J, Wang Z, Li K, Qin G, Gu X, Lin X, Ma L, Xiao X, Hou Y, Luo T. Arctiin, a lignan compound, enhances adipose tissue browning and energy expenditure by activating the adenosine A 2A receptor. Mol Med 2025; 31:188. [PMID: 40369420 PMCID: PMC12079995 DOI: 10.1186/s10020-025-01249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The activation of brown adipose tissue (BAT) or the browning of white adipose tissue (WAT) represents a promising therapeutic strategy for obesity. Arctiin (ARC), a lignan compound known for its anti-inflammatory, anti-tumor, and hypoglycemic properties, has not been fully elucidated regarding its effects and mechanisms on obesity. METHODS In the present study, we established both high-fat diet-induced obese mouse models and mature adipocyte cultures to comprehensively investigate the therapeutic effects of ARC on obesity. Systemic energy metabolism and thermogenic capacity were assessed through metabolic cage monitoring and cold stimulation tests. Histopathological alterations in adipose tissues were examined using hematoxylin and eosin (H&E) staining, while key gene expression in adipocytes was determined by Western blotting (WB), immunohistochemistry, and immunofluorescence staining. To further elucidate the molecular mechanisms underlying ARC's anti-obesity effects, we employed an integrated approach combining network pharmacology analysis, molecular docking simulations, cellular thermal shift assay (CETSA), and WB to identify potential molecular targets and delineate the associated signaling pathways modulated by ARC treatment. RESULTS In diet-induced obese mice, ARC administration at doses of 20 and 60 mg/kg/day ameliorated metabolic dysfunction through enhanced WAT browning and increased energy expenditure. In C3H10T1/2-induced adipocytes, ARC upregulated the protein expression of uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and other brown-specific marker genes, promoting mitochondrial function and browning of adipocytes. Mechanistically, our findings suggest that ARC may promote adipocyte browning via the A2AR-cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway. CONCLUSION In summary, ARC exerts protective effects against obesity by promoting the browning of white adipocytes and holds promise as a potentially beneficial therapeutic agent for the treatment of obesity.
Collapse
Affiliation(s)
- Yuanfeng Gu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Wenjun He
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Wenxuan Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jingshu Cai
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhuyun Wang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Kemeng Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Guangcheng Qin
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojie Gu
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaojing Lin
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Li Ma
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yi Hou
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Laboratory of Traditional Chinese Medicine, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Ting Luo
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Wu Y, Wang C, Tian XY. Protocol for inducing beige adipocytes in white adipose tissue of mouse using cold exposure and CL316,243 injection. STAR Protoc 2025; 6:103337. [PMID: 39817914 PMCID: PMC11783104 DOI: 10.1016/j.xpro.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/20/2024] [Accepted: 09/03/2024] [Indexed: 01/18/2025] Open
Abstract
White adipose tissue (WAT) beiging holds significant therapeutic potential for combating obesity. Here, we present a protocol for inducing beige WAT in mice using both cold exposure and CL316,243 treatment. We describe steps for intraperitoneal injection, and subcutaneous WAT (sWAT) isolation, dissection, and fixation. We then detail procedures for histology, whole-mount immunofluorescence (IF) staining, and extracting RNA and protein. This protocol can be used for subsequent analysis to explore the mechanisms governing beige WAT induction in experimental settings, particularly the evaluation of angiogenesis. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Yalan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| | - Chenguang Wang
- School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518071, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Ma N, Liu P, Li N, Hu Y, Kang L. Exploring the pharmacological mechanisms for alleviating OSA: Adenosine A2A receptor downregulation of the PI3K/Akt/HIF‑1 pathway (Review). Biomed Rep 2025; 22:21. [PMID: 39720297 PMCID: PMC11668141 DOI: 10.3892/br.2024.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is the most common type of sleep apnea, which leads to episodes of intermittent hypoxia due to obstruction of the upper airway. A key feature of OSA is the upregulation and stabilization of hypoxia-inducible factor 1 (HIF-1), a crucial metabolic regulator that facilitates rapid adaptation to changes in oxygen availability. Adenosine A2A receptor (A2AR), a major adenosine receptor, regulates HIF-1 under hypoxic conditions, exerting anti-inflammatory properties and affecting lipid metabolism. The present study explored the roles of A2AR in OSA regulation, specifically focusing on its effects via the PI3K/Akt/HIF-1 pathway. The findings enhance our understanding the pharmacological potential of A2AR in OSA management and suggest future research directions in exploring its clinical applications.
Collapse
Affiliation(s)
- Nini Ma
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Peijie Liu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Ning Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Yushi Hu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| | - Liang Kang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 641418, P.R. China
| |
Collapse
|
4
|
Yildiz R, Ganbold K, Sparman NZR, Rajbhandari P. Immune Regulatory Crosstalk in Adipose Tissue Thermogenesis. Compr Physiol 2025; 15:e70001. [PMID: 39921241 DOI: 10.1002/cph4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Brown adipose tissue (BAT) and thermogenic beige fat within white adipose tissue (WAT), collectively known as adaptive thermogenic fat, dissipate energy as heat, offering promising therapeutic potential to combat obesity and metabolic disorders. The specific biological functions of these fat depots are determined by their unique interaction with the microenvironments, composed of immune cells, endothelial cells, pericytes, and nerve fibers. Immune cells residing in these depots play a key role in regulating energy expenditure and systemic energy homeostasis. The dynamic microenvironment of thermogenic fat depots is essential for maintaining tissue health and function. Immune cells infiltrate both BAT and beige WAT, contributing to their homeostasis and activation through intricate cellular communications. Emerging evidence underscores the importance of various immune cell populations in regulating thermogenic adipose tissue, though many remain undercharacterized. This review provides a comprehensive overview of the immune cells that regulate adaptive thermogenesis and their complex interactions within the adipose niche, highlighting their potential to influence metabolic health and contribute to therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
Homan EA, Gilani A, Rubio-Navarro A, Johnson MA, Schaepkens OM, Cortada E, Pereira de Lima R, Stoll L, Lo JC. Complement 3a receptor 1 on macrophages and Kupffer cells is not required for the pathogenesis of metabolic dysfunction-associated steatotic liver disease. eLife 2025; 13:RP100708. [PMID: 39773465 PMCID: PMC11709426 DOI: 10.7554/elife.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.
Collapse
Affiliation(s)
- Edwin A Homan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Maya A Johnson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Odin M Schaepkens
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Eric Cortada
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Renan Pereira de Lima
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - James C Lo
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
6
|
Wang HY, Peng XM, Yang M, Weng Y, Yang X, Zhan D, Ning Q, Luo XP, Chen Y. C5aR1-positive adipocytes mediate non-shivering thermogenesis in neonatal mice. iScience 2024; 27:111261. [PMID: 39758991 PMCID: PMC11700647 DOI: 10.1016/j.isci.2024.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/25/2024] [Accepted: 10/23/2024] [Indexed: 01/07/2025] Open
Abstract
Brown adipose tissue (BAT) plays an important role in maintaining body temperature in newborn mammals; however, its mechanisms remain poorly understood. Here, we report the identification of a special population of brown adipose tissue-derived stromal cells (ASCs) in neonatal mice that highly express CD45 and can be differentiated into adipocytes with lower thermogenic ability. These CD45+ adipocytes also characteristically contained complement C5a receptor 1(C5aR1) on the cell membrane. C5ar1 deficiency in BAT resulted in an apparent immaturity of adipocytes and cold intolerance in neonatal mice. Mechanistically, loss of C5aR1 in these CD45+ brown adipocytes caused an increase in the secretion of plate factor four (PF4) from these cells, suppressing the maturity of neighboring brown adipocytes. Overall, our results indicated that the accumulation of C5aR1 positive brown adipocyte in neonatal BAT is essential for thermoregulation in newborn mice, which unveiled the regulatory mechanism of BAT-mediated thermogenesis in newborns.
Collapse
Affiliation(s)
- Huan-Yu Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Min Peng
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Yang
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Weng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Xi Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Di Zhan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Pediatric Genetic Metabolic and Endocrine Rare Diseases, Wuhan 430030, China
| | - Yong Chen
- Research Group of Endocrinology & Metabolism, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Homan EA, Gilani A, Rubio-Navarro A, Johnson MA, Schaepkens OM, Cortada E, de Lima RP, Stoll L, Lo JC. Complement 3a Receptor 1 on Macrophages and Kupffer cells is not required for the Pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.26.24309550. [PMID: 38978661 PMCID: PMC11230319 DOI: 10.1101/2024.06.26.24309550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3aR1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.
Collapse
Affiliation(s)
- Edwin A. Homan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Maya A. Johnson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Odin M. Schaepkens
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Eric Cortada
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Renan Pereira de Lima
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| | - James C. Lo
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, 10021
| |
Collapse
|
8
|
Zheng Y, Wang Y, Xiong X, Zhang L, Zhu J, Huang B, Liu X, Liu J, Zhu Z, Yang G, Qu H, Zheng H. CD9 Counteracts Liver Steatosis and Mediates GCGR Agonist Hepatic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400819. [PMID: 38837628 PMCID: PMC11304330 DOI: 10.1002/advs.202400819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Glucagon receptor (GCGR) agonism offers potentially greater effects on the mitigation of hepatic steatosis. However, its underlying mechanism is not fully understood. Here, it screened tetraspanin CD9 might medicate hepatic effects of GCGR agonist. CD9 is decreased in the fatty livers of patients and upregulated upon GCGR activation. Deficiency of CD9 in the liver exacerbated diet-induced hepatic steatosis via complement factor D (CFD) regulated fatty acid metabolism. Specifically, CD9 modulated hepatic fatty acid synthesis and oxidation genes through regulating CFD expression via the ubiquitination-proteasomal degradation of FLI1. In addition, CD9 influenced body weight by modulating lipogenesis and thermogenesis of adipose tissue through CFD. Moreover, CD9 reinforcement in the liver alleviated hepatic steatosis, and blockage of CD9 abolished the remission of hepatic steatosis induced by cotadutide treatment. Thus, CD9 medicates the hepatic beneficial effects of GCGR signaling, and may server as a promising therapeutic target for hepatic steatosis.
Collapse
Affiliation(s)
- Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Bangliang Huang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jinbo Liu
- Department of EndocrinologyQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinologythe Third Affiliated Hospital of Army Medical UniversityChongqing400042China
| | - Gangyi Yang
- Department of Endocrinologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
9
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
10
|
Ma L, Gilani A, Rubio-Navarro A, Cortada E, Li A, Reilly SM, Tang L, Lo JC. Adipsin and adipocyte-derived C3aR1 regulate thermogenic fat in a sex-dependent fashion. JCI Insight 2024; 9:e178925. [PMID: 38713526 PMCID: PMC11382875 DOI: 10.1172/jci.insight.178925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Thermogenesis in beige/brown adipose tissues can be leveraged to combat metabolic disorders such as type 2 diabetes and obesity. The complement system plays pleiotropic roles in metabolic homeostasis and organismal energy balance with canonical effects on immune cells and noncanonical effects on nonimmune cells. The adipsin/C3a/C3a receptor 1 (C3aR1) pathway stimulates insulin secretion and sustains pancreatic β cell mass. However, its role in adipose thermogenesis has not been defined. Here, we show that male Adipsin/Cfd-knockout mice exhibited increased energy expenditure and white adipose tissue (WAT) browning. In addition, male adipocyte-specific C3aR1-knockout mice exhibited enhanced WAT thermogenesis and increased respiration. In stark contrast, female adipocyte-specific C3aR1-knockout mice displayed decreased brown fat thermogenesis and were cold intolerant. Female mice expressed lower levels of Adipsin in thermogenic adipocytes and adipose tissues than males. C3aR1 was also lower in female subcutaneous adipose tissue than in males. Collectively, these results reveal sexual dimorphism in the adipsin/C3a/C3aR1 axis in regulating adipose thermogenesis and defense against cold stress. Our findings establish a potentially new role of the alternative complement pathway in adaptive thermogenesis and highlight sex-specific considerations in potential therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Eric Cortada
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ang Li
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Shannon M Reilly
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - James C Lo
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
11
|
Bode M, Herrnstadt GR, Dreher L, Ehnert N, Kirkerup P, Lindenmeyer MT, Meyer-Schwesinger CF, Ehmke H, Köhl J, Huber TB, Krebs CF, Steinmetz OM, Wiech T, Wenzel UO. Deficiency of Complement C3a and C5a receptors Does Not Prevent Angiotensin II-Induced Hypertension and Hypertensive End-Organ Damage. Hypertension 2024; 81:138-150. [PMID: 37909169 DOI: 10.1161/hypertensionaha.123.21599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Complement may drive the pathology of hypertension through effects on innate and adaptive immune responses. Recently an injurious role for the anaphylatoxin receptors C3aR (complement component 3a receptor) and C5aR1 (complement component 5a receptor) in the development of hypertension was shown through downregulation of Foxp3+ (forkhead box protein 3) regulatory T cells. Here, we deepen our understanding of the therapeutic potential of targeting both receptors in hypertension. METHODS Data from the European Renal cDNA Bank, single cell sequencing and immunohistochemistry were examined in hypertensive patients. The effect of C3aR or C3aR/C5aR1 double deficiency was assessed in two models of Ang II (angiotensin II)-induced hypertension in knockout mice. RESULTS We found increased expression of C3aR, C5aR1 and Foxp3 cells in kidney biopsies of patients with hypertensive nephropathy. Expression of both receptors was mainly found in myeloid cells. No differences in blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation) or cardiac injury (cardiac fibrosis, heart weight, gene expression) between control and mutant mice was discerned in C3aR-/- as well as C3aR/C5aR1-/- double knockout mice. The number of renal Tregs was not decreased in Ang II as well as in DOCA salt induced hypertension. CONCLUSIONS Hypertensive nephropathy in mice and men is characterized by an increase of renal regulatory T cells and enhanced expression of anaphylatoxin receptors. Our investigations do not corroborate a role for C3aR/C5aR1 axis in Ang II-induced hypertension hence challenging the concept of anaphylatoxin receptor targeting in the treatment of hypertensive disease.
Collapse
Affiliation(s)
- Marlies Bode
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Georg R Herrnstadt
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Leonie Dreher
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Nicolas Ehnert
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Pia Kirkerup
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
| | - Maja T Lindenmeyer
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Catherine F Meyer-Schwesinger
- Department of Cellular and Integrative Physiology (C.M.-S., H.E.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology (C.M.-S., H.E.), University Hospital Hamburg-Eppendorf
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, Lübeck, Germany (J.K.)
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, OH (J.K.)
| | - Tobias B Huber
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Christian F Krebs
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Oliver M Steinmetz
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Thorsten Wiech
- Department of Pathology, Section of Nephropathology (T.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| | - Ulrich O Wenzel
- III. Department of Medicine (M.B., G.R.H., L.D., N.E., P.K., M.T.L., T.B.H., C.F.K., O.M.S., U.O.W.), University Hospital Hamburg-Eppendorf
- Hamburg Center for Kidney Health (HCKH) (M.B., G.R.H., M.T.L., C.F.M.-S., T.B.H., C.F.K., O.M.S., T.W., U.O.W.)
| |
Collapse
|
12
|
Zhou Z, Zhang H, Tao Y, Zang J, Zhao J, Li H, Wang Y, Wang T, Zhao H, Wang F, Guo C, Zhu F, Mao H, Liu F, Zhang L, Wang Q. FGF21 alleviates adipose stem cell senescence via CD90 glycosylation-dependent glucose influx in remodeling healthy white adipose tissue. Redox Biol 2023; 67:102877. [PMID: 37690164 PMCID: PMC10497791 DOI: 10.1016/j.redox.2023.102877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
The senescence of adipose stem cells (ASCs) impairs healthy adipose tissue remodeling, causing metabolic maladaptation to energy surplus. The intrinsic molecular pathways and potential therapy targets for ASC senescence are largely unclear. Here, we showed that visceral ASCs were prone to senescence that was caused by reactive oxygen species (ROS) overload, especially mitochondrial ROS. These senescent ASCs failed to sustain efficient glucose influx, pentose phosphate pathway (PPP) and redox homeostasis. We showed that CD90 silence restricted the glucose uptake by ASCs and thus disrupted their PPP and anti-oxidant system, resulting in ASC senescence. Notably, fibroblast growth factor 21 (FGF21) treatment significantly reduced the senescent phenotypes of ASCs by augmenting CD90 protein via glycosylation, which promoted glucose influx via the AKT-GLUT4 axis and therefore mitigated ROS overload. For diet-induced obese mice, chronic administration of low-dose FGF21 relieved their visceral white adipose tissue (VAT) dysfunction and systemic metabolic disorders. In particular, VAT homeostasis was restored in FGF21-treated obese mice, where ASC repertoire was markedly recovered, accompanied by CD90 elevation and anti-senescent phenotypes in these ASCs. Collectively, we reveal a molecular mechanism of ASC senescence by which CD90 downregulation interferes glucose influx into PPP and redox homeostasis. And we propose a FGF21-based strategy for healthy VAT remodeling, which targets CD90 glycosylation to correct ASC senescence and therefore combat obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Zixin Zhou
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huiying Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yan Tao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jinhao Zang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jingyuan Zhao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huijie Li
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yalin Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Tianci Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fuwu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chun Guo
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Faliang Zhu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Fengming Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
13
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
14
|
Wang M, Huang Y, Xin M, Li T, Wang X, Fang Y, Liang S, Cai T, Xu X, Dong L, Wang C, Xu Z, Song X, Li J, Zheng Y, Sun W, Li L. The impact of microbially modified metabolites associated with obesity and bariatric surgery on antitumor immunity. Front Immunol 2023; 14:1156471. [PMID: 37266441 PMCID: PMC10230250 DOI: 10.3389/fimmu.2023.1156471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Yan M, Gu Y, Sun H, Ge Q. Neutrophil extracellular traps in tumor progression and immunotherapy. Front Immunol 2023; 14:1135086. [PMID: 36993957 PMCID: PMC10040667 DOI: 10.3389/fimmu.2023.1135086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Tumor immunity is a growing field of research that involves immune cells within the tumor microenvironment. Neutrophil extracellular traps (NETs) are neutrophil-derived extracellular web-like chromatin structures that are composed of histones and granule proteins. Initially discovered as the predominant host defense against pathogens, NETs have attracted increasing attention due to they have also been tightly associated with tumor. Excessive NET formation has been linked to increased tumor growth, metastasis, and drug resistance. Moreover, through direct and/or indirect effects on immune cells, an abnormal increase in NETs benefits immune exclusion and inhibits T-cell mediated antitumor immune responses. In this review, we summarize the recent but rapid progress in understanding the pivotal roles of NETs in tumor and anti-tumor immunity, highlighting the most relevant challenges in the field. We believe that NETs may be a promising therapeutic target for tumor immunotherapy.
Collapse
Affiliation(s)
- Meina Yan
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- *Correspondence: Meina Yan, ;
| | - Yifeng Gu
- Department of Laboratory Medicine, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Hongxia Sun
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qinghong Ge
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|