1
|
Röhlinger M, Albrecht C, Bellebaum C. The Role of the N170 in Linking Stimuli to Feedback-Effects of Stimulus Modality and Feedback Delay. Psychophysiology 2025; 62:e70050. [PMID: 40231805 PMCID: PMC11998638 DOI: 10.1111/psyp.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025]
Abstract
With increasing feedback delay, feedback processing appears to shift from the striatum to the hippocampus. In addition, higher-order sensory areas might be involved in bridging a temporal gap between stimulus and feedback by reactivating the representation of the feedback-predicting stimulus during feedback processing. We hypothesized that the feedback-locked N170, an occipito-temporal event-related potential (ERP) component linked to higher-order visual processing, is more pronounced when delayed feedback is provided for choices between visual compared to auditory stimuli. 35 subjects completed a probabilistic feedback learning task with immediate (1 s) and delayed (7 s) monetary feedback for choices between visual or auditory stimuli. Participants successfully learned to choose the more rewarding stimuli irrespective of stimulus modality. For the N170 amplitude over the right hemisphere, we found an interaction between feedback timing and the modality of the chosen stimulus. Only for delayed feedback, the N170 was more pronounced for choices between visual than auditory stimuli. Moreover, in this condition, the N170 amplitude particularly reflected the reward prediction error (PE), with larger amplitudes for positive PEs and lower amplitudes for negative PEs. This suggests that the N170 reflects feedback-locked reactivations in higher-order visual areas mediated by the reward PE. While these effects need to be studied further, we discuss the N170 as a counterpart to the feedback-related negativity (FRN) regarding interacting influences of feedback valence, feedback timing, and PE.
Collapse
Affiliation(s)
- Madita Röhlinger
- Institute for Experimental Psychology, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christine Albrecht
- Institute for Experimental Psychology, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Bellebaum
- Institute for Experimental Psychology, Faculty of Mathematics and Natural SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
2
|
Zhang Y, Shen C, Zhu J, Huang X, Wang X, Guo F, Li X, Wang C, Wu H, Yan Q, Wang P, Lv Q, Yan C, Yi Z. Disorganized Striatal Functional Connectivity as a Partially Shared Pathophysiological Mechanism in Both Schizophrenia and Major Depressive Disorder: A Transdiagnostic fMRI Study. Brain Topogr 2025; 38:38. [PMID: 40131502 DOI: 10.1007/s10548-025-01112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Negative symptoms represent pervasive symptoms in schizophrenia (SZ) and major depressive disorder (MDD). Empirical findings suggest that disrupted striatal function contributes significantly to negative symptoms. However, the changes in striatal functional connectivity in relation to these negative symptoms, in the transdiagnostic context, remain unclear. The present study aimed to capture the shared neural mechanisms underlying negative symptoms in SZ and MDD. Resting-state functional magnetic resonance imaging data were obtained from 60 patients with SZ and MDD (33 with SZ and 27 with MDD) exhibiting predominant negative symptoms, and 52 healthy controls (HC). Negative symptoms and hedonic capacity were assessed using the Scale for Assessment of Negative Symptoms (SANS) and the Temporal Experience of Pleasure Scale (TEPS), respectively. Signal extraction for time series from 12 subregions of the striatum was carried out to examine the group differences in resting-state functional connectivity (rsFC) between striatal subregions and the whole brain. We observed significantly decreased rsFC between the right dorsal rostral putamen (DRP) and the right pallidum, the bilateral rostral putamen and the contralateral putamen, as well as between the dorsal caudal putamen and the right middle frontal gyrus in both patients with SZ and MDD. The right DRP-right pallidum rsFC was positively correlated with the level of negative symptoms in SZ. However, patients with SZ showed increased rsFC between the dorsal striatum and the left precentral gyrus, the right middle temporal gyrus, and the right lingual gyrus compared with those with MDD. Our findings expand on the understanding that reduced putaminal rsFC contributes to negative symptoms in both SZ and MDD. Abnormal functional connectivity of the putamen may represent a partially common neural substrate for negative symptoms in SZ and MDD, supporting that the comparable clinical manifestations between the two disorders are underpinned by partly shared mechanisms, as proposed by the transdiagnostic Research Domain Criteria.
Collapse
Affiliation(s)
- Yao Zhang
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Chengjia Shen
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jiayu Zhu
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Xinxin Huang
- Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Xiaoxiao Wang
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Fang Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Xin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Chongze Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Haisu Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China
| | - Qi Yan
- Nantong Fourth People's Hospital, 37 Chenggang Road, Nantong, 226000, China
| | - Peijuan Wang
- Nantong Fourth People's Hospital, 37 Chenggang Road, Nantong, 226000, China
| | - Qinyu Lv
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China.
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Zhenghui Yi
- Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University, 600 South Wanping Road, Shanghai, 200030, China.
- Institute of Mental Health, Fudan University, 600 South Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
3
|
Ratna DD, Francis TC. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front Mol Neurosci 2025; 18:1528419. [PMID: 40018010 PMCID: PMC11865219 DOI: 10.3389/fnmol.2025.1528419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
The striatum is an integrated component of the basal ganglia responsible for associative learning and response. Besides the presence of the most abundant γ-aminobutyric acid (GABA-ergic) medium spiny neurons (MSNs), the striatum also contains distributed populations of cholinergic interneurons (ChIs), which bidirectionally communicate with many of these neuronal subtypes. Despite their sparse distribution, ChIs provide the largest source of acetylcholine (ACh) to striatal cells, have a prominent level of arborization and activity, and are potent modulators of striatal output and play prominent roles in plasticity underlying associative learning and reinforcement. Deviations from this tonic activity, including phasic bursts or pauses caused by region-selective excitatory input, neuromodulator, or neuropeptide release can exert strong influences on intrinsic activity and synaptic plasticity via diverse receptor signaling. Recent studies and new tools have allowed improved identification of factors driving or suppressing cholinergic activity, including peptides. This review aims to outline our current understanding of factors that control tonic and phasic ChI activity, specifically focusing on how neuromodulators and neuropeptides interact to facilitate or suppress phasic ChI responses underlying learning and plasticity.
Collapse
Affiliation(s)
| | - Tanner Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
4
|
Avila-Luna A, Verduzco-Mendoza A, Olmos-Hernández A, Cortes-Altamirano JL, Alfaro-Rodríguez A, Arias-Montaño JA, Bueno-Nava A. The Interaction of Histamine H 3 and Dopamine D 1 Receptors on Hyperkinetic Alterations in Animal Models of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:1726. [PMID: 39770568 PMCID: PMC11679969 DOI: 10.3390/ph17121726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease is associated with the loss of more than 40% of dopaminergic neurons in the substantia nigra pars compacta. One of the therapeutic options for restoring striatal dopamine levels is the administration of L-3,4-dihydroxyphenylalanine (L-Dopa). However, Parkinson's disease patients on long-term L-Dopa therapy often experience motor complications, such as dyskinesias. L-Dopa-induced dyskinesias (LIDs) manifest as abnormal involuntary movements and are produced by elevated striatal dopamine levels, which lead to increased activity of the basal ganglia direct striato-nigral pathway. Dopamine D1 receptors are more than 95% confined to neurons of the direct pathway, where they colocalize with histamine H3 receptors. There is evidence of functional interactions between D1 and H3 receptors, and here we review the consequences of these interactions on LIDs.
Collapse
Affiliation(s)
- Alberto Avila-Luna
- División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Bioterio y Cirugía Experimental, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
| | - Adriana Olmos-Hernández
- Bioterio y Cirugía Experimental, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
| | - José Luis Cortes-Altamirano
- División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
- Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| | - Alfonso Alfaro-Rodríguez
- División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, Ciudad de México 07360, Mexico
| | - Antonio Bueno-Nava
- División de Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico
| |
Collapse
|
5
|
Conrad WS, Oriol L, Kollman GJ, Faget L, Hnasko TS. Proportion and distribution of neurotransmitter-defined cell types in the ventral tegmental area and substantia nigra pars compacta. ADDICTION NEUROSCIENCE 2024; 13:100183. [PMID: 40406572 PMCID: PMC12097539 DOI: 10.1016/j.addicn.2024.100183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Most studies on the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) have focused on dopamine neurons and their role in processes such as motivation, learning, movement, and associated disorders such as addiction and Parkinson's disease. However there has been increasing attention on other VTA and SNc cell types that release GABA, glutamate, or a combination of neurotransmitters. Yet the relative distributions and proportions of neurotransmitter-defined cell types across VTA and SNc has remained unclear. Here, we used fluorescent in situ hybridization in male and female mice to label VTA and SNc neurons that expressed mRNA encoding the canonical vesicular transporters for dopamine, GABA, or glutamate: vesicular monoamine transporter (VMAT2), vesicular GABA transporter (VGAT), and vesicular glutamate transporter (VGLUT2). Within VTA, we found that no one type was particularly more abundant, instead we observed similar numbers of VMAT2+ (44 %), VGAT+ (37 %) and VGLUT2+ (41 %) neurons. In SNc we found that a slight majority of neurons expressed VMAT2 (54 %), fewer were VGAT+ (42 %), and VGLUT2+ neurons were least abundant (16 %). Moreover, 20 % of VTA neurons and 10 % of SNc neurons expressed more than one vesicular transporter, including 45 % of VGLUT2+ neurons. We also assessed within VTA and SNc subregions and found remarkable heterogeneity in cell-type composition. And by quantifying density across both anterior-posterior and medial-lateral axes we generated heatmaps to visualize the distribution of each cell type. Our data complement recent single-cell RNAseq studies and support a more diverse landscape of neurotransmitter-defined cell types in VTA and SNc than is typically appreciated.
Collapse
Affiliation(s)
- William S. Conrad
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lucie Oriol
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Grace J. Kollman
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lauren Faget
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Thomas S. Hnasko
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego CA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase MD 20815, USA
| |
Collapse
|
6
|
Ceballos CC, Ma L, Qin M, Zhong H. Widespread co-release of glutamate and GABA throughout the mouse brain. Commun Biol 2024; 7:1502. [PMID: 39537846 PMCID: PMC11560972 DOI: 10.1038/s42003-024-07198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Several brain neuronal populations transmit both the excitatory and inhibitory neurotransmitters, glutamate, and GABA. However, it remains largely unknown whether these opposing neurotransmitters are co-released simultaneously or are independently transmitted at different times and locations. By recording from acute mouse brain slices, we observed biphasic miniature postsynaptic currents, i.e., minis with time-locked excitatory and inhibitory currents, in striatal spiny projection neurons. This observation cannot be explained by accidental coincidence of monophasic excitatory and inhibitory minis. Interestingly, these biphasic minis could either be an excitatory current leading an inhibitory current or vice versa. Deletion of dopaminergic neurons did not eliminate biphasic minis, indicating that they originate from another source. Importantly, we found that both types of biphasic minis were present in multiple striatal neuronal types and in nine out of ten other brain regions. Overall, co-release of glutamate and GABA appears to be a widespread mode of neurotransmission in the brain.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Chen C, Zhang B, Qin X, Huang H, Rong B, Wang H, Zhang L, Yuan W. Altered resting-state brain activity of the superior parietal cortex and striatum in major depressive disorder and schizophrenia. Asian J Psychiatr 2024; 102:104303. [PMID: 39531911 DOI: 10.1016/j.ajp.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (fMRI) studies have shown altered brain activity in major depressive disorder (MDD) and schizophrenia (SZ). Despite differing diagnoses, SZ and MDD share similar features. However, functional brain activity similarities and differences between SZ and MDD remain unclear. METHODS Participants with MDD, SZ, and normal controls (n=36 each) underwent resting-state fMRI scans. Amplitude of low-frequency fluctuations (ALFF) was used to analyze the preprocessed rs-fMRI data. One-way ANOVAs and post hoc analyses compared ALFF values in different brain regions. Pearson correlation analysis examined associations with clinical symptoms. RESULTS Comparison among the three groups revealed significant differences in ALFF values within the left superior parietal cortex (L-SPC) and bilateral striatum. Through pairwise comparisons, patients with SZ but not patients with MDD were found to exhibit increased striatum ALFF values relative to NC individuals, but decreased in MDD. Meanwhile, L-SPC ALFF values were significantly increased in patients with SZ relative to both normal control individuals and patients with MDD, while no differences in these values were observed between the normal control and MDD groups. The Pearson correlation analyses showed significant positive correlations between ALFF in the striatum and PANSS positive score, but no significant correlation with other symptom severity in SZ and MDD. CONCLUSION These findings support the hypothesis of alterations in brain functional activity as a fundamental component of the pathogenesis of MDD and SZ. The observed differences in functional brain activity in the superior parietal cortex and striatum between MDD and SZ provide a neuroimaging basis that can contribute to the differential diagnosis of these debilitating conditions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Psychiatry,Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Baoli Zhang
- Department of Psychiatry,Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xucong Qin
- Department of Psychiatry,Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry,Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bei Rong
- Department of Psychiatry,Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry,Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liang Zhang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Yuan
- Department of Psychiatry,Yidu People' s Hospital, Yidu 443300, China.
| |
Collapse
|
8
|
Conrad WS, Oriol L, Kollman GJ, Faget L, Hnasko TS. Proportion and distribution of neurotransmitter-defined cell types in the ventral tegmental area and substantia nigra pars compacta. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582356. [PMID: 38464250 PMCID: PMC10925288 DOI: 10.1101/2024.02.28.582356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Most studies on the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) have focused on dopamine neurons and their role in processes such as motivation, learning, movement, and associated disorders such as addiction and Parkinson's disease. However there has been increasing attention on other VTA and SNc cell types that release GABA, glutamate, or a combination of neurotransmitters. Yet the relative distributions and proportions of neurotransmitter-defined cell types across VTA and SNc has remained unclear. Here, we used fluorescent in situ hybridization in male and female mice to label VTA and SNc neurons that expressed mRNA encoding the canonical vesicular transporters for dopamine, GABA, or glutamate: vesicular monoamine transporter (VMAT2), vesicular GABA transporter (VGAT), and vesicular glutamate transporter (VGLUT2). Within VTA, we found that no one type was particularly more abundant, instead we observed similar numbers of VMAT2+ (44%), VGAT+ (37%) and VGLUT2+ (41%) neurons. In SNc we found that a slight majority of neurons expressed VMAT2 (54%), fewer were VGAT+ (42%), and VGLUT2+ neurons were least abundant (16%). Moreover, 20% of VTA neurons and 10% of SNc neurons expressed more than one vesicular transporter, including 45% of VGLUT2+ neurons. We also assessed within VTA and SNc subregions and found remarkable heterogeneity in cell-type composition. And by quantifying density across both anterior-posterior and medial-lateral axes we generated heatmaps to visualize the distribution of each cell type. Our data complement recent single-cell RNAseq studies and support a more diverse landscape of neurotransmitter-defined cell types in VTA and SNc than is typically appreciated.
Collapse
Affiliation(s)
- William S Conrad
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lucie Oriol
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Grace J Kollman
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Lauren Faget
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
| | - Thomas S Hnasko
- University of California, San Diego, Department of Neurosciences, La Jolla CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase MD 20815, USA
| |
Collapse
|
9
|
Bačová Z, Jurkovičová-Tarabová B, Havránek T, Mihalj D, Borbélyová V, Pirnik Z, Mravec B, Ostatníková D, Bakoš J. Shank3 deficiency alters midbrain GABAergic neuron morphology, GABAergic markers and synaptic activity in primary striatal neurons. Mol Brain 2024; 17:71. [PMID: 39334399 PMCID: PMC11430545 DOI: 10.1186/s13041-024-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Abnormalities in gamma-aminobutyric acid (GABA)ergic neurotransmission play a role in the pathogenesis of autism, although the mechanisms responsible for alterations in specific brain regions remain unclear. Deficits in social motivation and interactions are core symptoms of autism, likely due to defects in dopaminergic neural pathways. Therefore, investigating the morphology and functional roles of GABAergic neurons within dopaminergic projection areas could elucidate the underlying etiology of autism. The aim of this study was to (1) compare the morphology and arborization of glutamate decarboxylase (GAD)-positive neurons from the midbrain tegmentum; (2) evaluate synaptic activity in primary neurons from the striatum; and (3) assess GABAergic postsynaptic puncta in the ventral striatum of wild-type (WT) and Shank3-deficient mice. We found a significant decrease in the number of short neurites in GAD positive primary neurons from the midbrain tegmentum in Shank3-deficient mice. The application of a specific blocker of GABAA receptors (GABAAR) revealed significantly increased frequency of spontaneous postsynaptic currents (sPSCs) in Shank3-deficient striatal neurons compared to their WT counterparts. The mean absolute amplitude of the events was significantly higher in striatal neurons from Shank3-deficient compared to WT mice. We also observed a significant reduction in gephyrin/GABAAR γ2 colocalization in the striatum of adult male Shank3-deficient mice. The gene expression of collybistin was significantly lower in the nucleus accumbens while gephyrin and GABAAR γ2 were lower in the ventral tegmental area (VTA) in male Shank3-deficient compared to WT mice. In conclusion, Shank3 deficiency leads to alterations in GABAergic neurons and impaired GABAergic function in dopaminergic brain areas. These changes may underlie autistic symptoms, and potential interventions modulating GABAergic activity in dopaminergic pathways may represent new treatment modality.
Collapse
Affiliation(s)
- Zuzana Bačová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Bohumila Jurkovičová-Tarabová
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biology, Faculty of Education, Trnava University, Trnava, Slovakia
| | - Tomáš Havránek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Zdenko Pirnik
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia
| | - Boris Mravec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia
| | - Ján Bakoš
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 813 72, Slovakia.
| |
Collapse
|
10
|
Chuhma N, Rayport S. Regional heterogeneity in the membrane properties of mouse striatal neurons. Front Cell Neurosci 2024; 18:1412897. [PMID: 39144155 PMCID: PMC11321984 DOI: 10.3389/fncel.2024.1412897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
The cytoarchitecture of the striatum is remarkably homogeneous, in contrast to the regional variation in striatal functions. Whether differences in the intrinsic membrane properties of striatal neurons contribute to regional heterogeneity has not been addressed systematically. We made recordings throughout the young adult mouse striatum under identical conditions, with synaptic input blocked, from four major striatal neuron types, namely, the two subtypes of spiny projection neurons (SPNs), cholinergic interneurons (ChIs), and fast-spiking GABAergic interneurons (FSIs), sampling at least 100 cells per cell type. Regional variation manifested across all cell types. All cell types in the nucleus accumbens (NAc) shell had higher input impedance and increased excitability. Cells in the NAc core were differentiated from the caudate-putamen (CPu) for both SPN subtypes by smaller action potentials and increased excitability. Similarity between the two SPN subtypes showed regional variation, differing more in the NAc than in the CPu. So, in the Str, both the intrinsic properties of interneurons and projection neurons are regionally heterogeneous, with the greatest difference between the NAc and CPu; greater excitability of NAc shell neurons may make the region more susceptible to activity-dependent plasticity.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
11
|
Ceballos CC, Ma L, Qin M, Zhong H. Prevalent co-release of glutamate and GABA throughout the mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587069. [PMID: 38585864 PMCID: PMC10996720 DOI: 10.1101/2024.03.27.587069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Several neuronal populations in the brain transmit both the excitatory and inhibitory neurotransmitters, glutamate, and GABA, to downstream neurons. However, it remains largely unknown whether these opposing neurotransmitters are co-released onto the same postsynaptic neuron simultaneously or are independently transmitted at different time and locations (called co-transmission). Here, using whole-cell patch-clamp recording on acute mouse brain slices, we observed biphasic miniature postsynaptic currents, i.e., minis with time-locked excitatory and inhibitory currents, in striatal spiny projection neurons (SPNs). This observation cannot be explained by accidental coincidence of monophasic miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively), arguing for the co-release of glutamate and GABA. Interestingly, these biphasic minis could either be an mEPSC leading an mIPSC or vice versa. Although dopaminergic axons release both glutamate and GABA in the striatum, deletion of dopamine neurons did not eliminate biphasic minis, indicating that the co-release originates from another neuronal type. Importantly, we found that both types of biphasic minis were detected in other neuronal subtypes in the striatum as well as in nine out of ten additionally tested brain regions. Our results suggest that co-release of glutamate and GABA is a prevalent mode of neurotransmission in the brain.
Collapse
Affiliation(s)
- Cesar C Ceballos
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lei Ma
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Hamati R, Ahrens J, Shvetz C, Holahan MR, Tuominen L. 65 years of research on dopamine's role in classical fear conditioning and extinction: A systematic review. Eur J Neurosci 2024; 59:1099-1140. [PMID: 37848184 DOI: 10.1111/ejn.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
Dopamine, a catecholamine neurotransmitter, has historically been associated with the encoding of reward, whereas its role in aversion has received less attention. Here, we systematically gathered the vast evidence of the role of dopamine in the simplest forms of aversive learning: classical fear conditioning and extinction. In the past, crude methods were used to augment or inhibit dopamine to study its relationship with fear conditioning and extinction. More advanced techniques such as conditional genetic, chemogenic and optogenetic approaches now provide causal evidence for dopamine's role in these learning processes. Dopamine neurons encode conditioned stimuli during fear conditioning and extinction and convey the signal via activation of D1-4 receptor sites particularly in the amygdala, prefrontal cortex and striatum. The coordinated activation of dopamine receptors allows for the continuous formation, consolidation, retrieval and updating of fear and extinction memory in a dynamic and reciprocal manner. Based on the reviewed literature, we conclude that dopamine is crucial for the encoding of classical fear conditioning and extinction and contributes in a way that is comparable to its role in encoding reward.
Collapse
Affiliation(s)
- Rami Hamati
- Neuroscience Graduate Program, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Ahrens
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Cecelia Shvetz
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Lauri Tuominen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Warlow SM, Singhal SM, Hollon NG, Faget L, Dowlat DS, Zell V, Hunker AC, Zweifel LS, Hnasko TS. Mesoaccumbal glutamate neurons drive reward via glutamate release but aversion via dopamine co-release. Neuron 2024; 112:488-499.e5. [PMID: 38086374 PMCID: PMC10922836 DOI: 10.1016/j.neuron.2023.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 02/10/2024]
Abstract
Ventral tegmental area (VTA) projections to the nucleus accumbens (NAc) drive reward-related motivation. Although dopamine neurons are predominant, a substantial glutamatergic projection is also present, and a subset of these co-release both dopamine and glutamate. Optogenetic stimulation of VTA glutamate neurons not only supports self-stimulation but can also induce avoidance behavior, even in the same assay. Here, we parsed the selective contribution of glutamate or dopamine co-release from VTA glutamate neurons to reinforcement and avoidance. We expressed channelrhodopsin-2 (ChR2) in mouse VTA glutamate neurons in combination with CRISPR-Cas9 to disrupt either the gene encoding vesicular glutamate transporter 2 (VGLUT2) or tyrosine hydroxylase (Th). Selective disruption of VGLUT2 abolished optogenetic self-stimulation but left real-time place avoidance intact, whereas CRISPR-Cas9 deletion of Th preserved self-stimulation but abolished place avoidance. Our results demonstrate that glutamate release from VTA glutamate neurons is positively reinforcing but that dopamine release from VTA glutamate neurons can induce avoidance behavior.
Collapse
Affiliation(s)
- Shelley M Warlow
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarthak M Singhal
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Nick G Hollon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Dina S Dowlat
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Avery C Hunker
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
14
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
15
|
Barcomb K, Ford CP. Alterations in neurotransmitter co-release in Parkinson's disease. Exp Neurol 2023; 370:114562. [PMID: 37802381 PMCID: PMC10842357 DOI: 10.1016/j.expneurol.2023.114562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Parkinson's disease is a neurological disorder characterized by degeneration of midbrain dopamine neurons, which results in numerous adaptations in basal ganglia circuits. Research over the past twenty-five years has identified that midbrain dopamine neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) co-release multiple other transmitters including glutamate and GABA, in addition to their canonical transmitter, dopamine. This review summarizes previous work characterizing neurotransmitter co-release from dopamine neurons, work examining potential changes in co-release dynamics that result in animal models of Parkinson's disease, and future opportunities for determining how dysfunction in co-release may contribute to circuit dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Blaess S, Krabbe S. Cell type specificity for circuit output in the midbrain dopaminergic system. Curr Opin Neurobiol 2023; 83:102811. [PMID: 37972537 DOI: 10.1016/j.conb.2023.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Midbrain dopaminergic neurons are a relatively small group of neurons in the mammalian brain controlling a wide range of behaviors. In recent years, increasingly sophisticated tracing, imaging, transcriptomic, and machine learning approaches have provided substantial insights into the anatomical, molecular, and functional heterogeneity of dopaminergic neurons. Despite this wealth of new knowledge, it remains unclear whether and how the diverse features defining dopaminergic subclasses converge to delineate functional ensembles within the dopaminergic system. Here, we review recent studies investigating various aspects of dopaminergic heterogeneity and discuss how development, behavior, and disease influence subtype characteristics. We then outline what further approaches could be pursued to gain a more inclusive picture of dopaminergic diversity, which could be crucial to understanding the functional architecture of this system.
Collapse
Affiliation(s)
- Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| | - Sabine Krabbe
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| |
Collapse
|
17
|
Wallace ML, Sabatini BL. Synaptic and circuit functions of multitransmitter neurons in the mammalian brain. Neuron 2023; 111:2969-2983. [PMID: 37463580 PMCID: PMC10592565 DOI: 10.1016/j.neuron.2023.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
Neurons in the mammalian brain are not limited to releasing a single neurotransmitter but often release multiple neurotransmitters onto postsynaptic cells. Here, we review recent findings of multitransmitter neurons found throughout the mammalian central nervous system. We highlight recent technological innovations that have made the identification of new multitransmitter neurons and the study of their synaptic properties possible. We also focus on mechanisms and molecular constituents required for neurotransmitter corelease at the axon terminal and synaptic vesicle, as well as some possible functions of multitransmitter neurons in diverse brain circuits. We expect that these approaches will lead to new insights into the mechanism and function of multitransmitter neurons, their role in circuits, and their contribution to normal and pathological brain function.
Collapse
Affiliation(s)
- Michael L Wallace
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|