1
|
Armbruster EG, Rani P, Lee J, Klusch N, Hutchings J, Hoffman LY, Buschkaemper H, Enustun E, Adler BA, Inlow K, VanderWal AR, Hoffman MY, Daksh D, Aindow A, Deep A, Rodriguez ZK, Morgan CJ, Ghassemian M, Laughlin TG, Charles E, Cress BF, Savage DF, Doudna JA, Pogliano K, Corbett KD, Villa E, Pogliano J. Sequential membrane- and protein-bound organelles compartmentalize genomes during phage infection. Cell Host Microbe 2025; 33:484-497.e6. [PMID: 40168997 DOI: 10.1016/j.chom.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses. Bacteriophages of the Chimalliviridae family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA. We show that inhibiting phage nucleus formation arrests infections at an early stage in which the injected phage genome is enclosed within a membrane-bound early phage infection (EPI) vesicle. Early phage genes are expressed from the EPI vesicle, demonstrating its functionality as a prokaryotic, transcriptionally active, membrane-bound organelle. We also show that the phage nucleus is essential, with genome replication beginning after the injected DNA is transferred from the EPI vesicle to the phage nucleus. Our results show that Chimalliviridae require two sophisticated subcellular compartments of distinct compositions and functions that facilitate successive stages of the viral life cycle.
Collapse
Affiliation(s)
- Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Phoolwanti Rani
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Niklas Klusch
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Lizbeth Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Hannah Buschkaemper
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Koe Inlow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Arica R VanderWal
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Madelynn Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Daksh Daksh
- National Institute of Science, Education and Research (NISER), Bhubaneshwar 752050, Orissa, India
| | - Ann Aindow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Zaida K Rodriguez
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Chase J Morgan
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Thomas G Laughlin
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Emeric Charles
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Kevin D Corbett
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
2
|
Alsharif G, Pham TK, Connolly AN, Pyrzanowska KI, Smith EM, Alrafaie A, Smythe C, Stafford GP. Isolation of an E. coli flagellotrophic Jumbophage SHEFM2K that replicates in cytoplasmic putative assembly areas. Microbiol Res 2025; 293:128082. [PMID: 39908945 DOI: 10.1016/j.micres.2025.128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
The bacteriophage SHEFM2K was isolated from unpasteurised dairy farm milk using a newly isolated E. coli ExPEC strain EcM2K (O23:H8, ST446). SHEFM2K is large contractile-tailed jumbophage with a genome of 348 kb sharing homology with jumbophage from E. coli of the Asteriusvirus genus. SHEF-M2K host range testing indicated that it only makes clear plaques with EcM2K and a sepsis strain from our collection (G34590). Host-ranging assays indicated that it is able to suppress the growth of a range of E. coli strains in liquid culture assays: including EHEC O157:H7, K-12 (MC1000, MG1655) and E.coli B (BL21). TEM images of infection of EcM2K indicated association with flagella-like structures. An E. coli MC1000 mutant lacking the flagellin (fliC) gene was less sensitive to SHEFM2K infection, a phenotype restored by providing fliC in trans. These data illustrate M2K is a flagellotrophic phage that attaches to flagella as part of its infection cycle. We also present cross-sectional TEM images of the SHEFM2K infection cycle showing that it forms putative 'assembly areas' in the host cytoplasm cleared of ribosomes and other material with heads appearing within the periphery before tails appear and lysis occurs. We also present the proteome of mature SHEFM2K phage, highlighting proteins expressed and notable those no detected which might have a role in replication given their predicted function. Overall, we present a preliminary characterisation of a newly isolated jumbophage that interacts with the E. coli flagellum and uncover novel aspects of their biology by identifying an internal assembly area.
Collapse
Affiliation(s)
- Ghadah Alsharif
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Trong Khoa Pham
- School of Biosciences, Biological Mass Spectrometry Facility, The University of Sheffield, Sheffield S10 2TN, UK
| | | | | | - Elspeth M Smith
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Alhassan Alrafaie
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Carl Smythe
- School of Biosciences, Biological Mass Spectrometry Facility, The University of Sheffield, Sheffield S10 2TN, UK
| | - Graham P Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; Florey Institute for Host-pathogen Interactions, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
3
|
Supina BSI, McCutcheon JG, Peskett SR, Stothard P, Dennis JJ. A flagella-dependent Burkholderia jumbo phage controls rice seedling rot and steers Burkholderia glumae toward reduced virulence in rice seedlings. mBio 2025; 16:e0281424. [PMID: 39868782 PMCID: PMC11898562 DOI: 10.1128/mbio.02814-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Bacteriophages (phages) are being investigated as potential biocontrol agents for the suppression of bacterial diseases in cultivated crops. Jumbo bacteriophages, which possess genomic DNA larger than 200 kbp, generally have a broader host range than other phages and therefore would be useful as biocontrol agents against a wide range of bacterial strains. Thus, the characterization of novel jumbo phages specific for agricultural pathogens would be of importance for the development of phage biocontrol strategies. Herein, we demonstrate that phage S13 requires Burkholderia glumae flagella for its attachment and infection and that loss of B. glumae flagella prevents S13 cellular lysis. As flagella is a known virulence factor, loss of flagella results in a surviving population of B. glumae with reduced virulence. Further experimentation demonstrates that phage S13 can protect rice plants from B. glumae-sponsored destruction in a rice seedling model of infection.IMPORTANCEBacterial plant pathogens threaten many major food crops and inflict large agricultural losses worldwide. B. glumae is a bacterial plant pathogen that causes diseases such as rot, wilt, and blight in several food major crops including rice, tomato, hot pepper, and eggplant. B. glumae infects rice during all developmental stages, causing diseases such as rice seedling rot and bacterial panicle blight (BPB). The B. glumae incidence of rice plant infection is predicted to increase with warming global temperatures, and several different control strategies targeting B. glumae are being explored. These include chemical and antibiotic soil amendment, microbiome manipulation, and the use of partially resistant rice cultivars. However, despite rice growth amelioration, the treatment options for B. glumae plant infections remain limited to cultural practices. Alternatively, phage biocontrol represents a promising new method for eliminating B. glumae from crop soils and improving rice yields.
Collapse
Affiliation(s)
- Brittany S. I. Supina
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jaclyn G. McCutcheon
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sydney R. Peskett
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Stothard
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Ranta K, Skurnik M, Kiljunen S. Isolation and characterization of fMGyn-Pae01, a phiKZ-like jumbo phage infecting Pseudomonas aeruginosa. Virol J 2025; 22:55. [PMID: 40033410 PMCID: PMC11877940 DOI: 10.1186/s12985-025-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide variety of infections, and belongs to the group of ESKAPE pathogens that are the leading cause of healthcare-associated infections and have high level of antibiotic resistance. The treatment of infections caused by antibiotic-resistant P. aeruginosa is challenging, which makes it a common target for phage therapy. The successful utilization of phage therapy requires a collection of well characterized phages. METHODS Phage fMGyn-Pae01 was isolated from a commercial phage therapy cocktail. The phage morphology was studied by transmission electron microscopy and the host range was analyzed with a liquid culture method. The phage genome was sequenced and characterized, and the genome was compared to closest phage genomes. Phage resistant bacterial mutants were isolated and whole genome sequencing and motility, phage adsorption and biofilm formation assays were performed to the mutants and host bacterium. RESULTS The genomic analysis revealed that fMGyn-Pae01 is a lytic, phiKZ-like jumbo phage with genome size of 277.8 kb. No genes associated with lysogeny, bacterial virulence, or antibiotic resistance were identified. Phage fMGyn-Pae01 did not reduce biofilm formation of P. aeruginosa, suggesting that it may not be an optimal phage to be used in monophage therapy in conditions where biofilm formation is expected. Host range screening revealed that fMGyn-Pae01 has a wide host range among P. aeruginosa strains and its infection was not dependent on O-serotype. Whole genome sequencing of the host bacterium and phage resistant mutants revealed that the mutations had inactivated either a flagellar or rpoN gene, thereby preventing the biosynthesis of a functional flagellum. The lack of functional flagella was confirmed in motility assays. Additionally, fMGyn-Pae01 failed to adsorb on non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSION fMGyn-Pae01 is a phiKZ-like jumbo phage infecting P. aeruginosa. fMGyn-Pae01 uses the flagellum as its phage-binding receptor, supporting earlier suggestions that flagellum might be utilized by phiKZ but differs from some other previous findings showing that phiKZ-like phages use the type-IV pili as the phage-binding receptor.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Adler BA, Al-Shimary MJ, Patel JR, Armbruster EG, Colognori D, Charles EJ, Miller KV, Lahiri A, Cui ML, Oromí-Bosch A, Voelker A, Trinidad M, Lee J, Beurnier S, Boger R, Nomburg J, Barrangou R, Mutalik VK, Schoeniger JS, Pogliano JA, Savage DF, Doudna JA, Cress BF. CRISPRi-ART enables functional genomics of diverse bacteriophages using RNA-binding dCas13d. Nat Microbiol 2025; 10:694-709. [PMID: 40011704 PMCID: PMC11879866 DOI: 10.1038/s41564-025-01935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bacteriophages constitute one of the largest reservoirs of genes of unknown function in the biosphere. Even in well-characterized phages, the functions of most genes remain unknown. Experimental approaches to study phage gene fitness and function at genome scale are lacking, partly because phages subvert many modern functional genomics tools. Here we leverage RNA-targeting dCas13d to selectively interfere with protein translation and to measure phage gene fitness at a transcriptome-wide scale. We find CRISPR Interference through Antisense RNA-Targeting (CRISPRi-ART) to be effective across phage phylogeny, from model ssRNA, ssDNA and dsDNA phages to nucleus-forming jumbo phages. Using CRISPRi-ART, we determine a conserved role of diverse rII homologues in subverting phage Lambda RexAB-mediated immunity to superinfection and identify genes critical for phage fitness. CRISPRi-ART establishes a broad-spectrum phage functional genomics platform, revealing more than 90 previously unknown genes important for phage fitness.
Collapse
Affiliation(s)
- Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Muntathar J Al-Shimary
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jaymin R Patel
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David Colognori
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Emeric J Charles
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kate V Miller
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael L Cui
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Agnès Oromí-Bosch
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Angela Voelker
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Marena Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sebastien Beurnier
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ron Boger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, CA, USA
| | - Jason Nomburg
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joseph S Schoeniger
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA
| | - Joseph A Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Systems Biology Department, Sandia National Laboratories, Livermore, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
6
|
Kokontis C, Klein TA, Silas S, Bondy-Denomy J. Multi-interface licensing of protein import into a phage nucleus. Nature 2025; 639:456-462. [PMID: 39910297 DOI: 10.1038/s41586-024-08547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025]
Abstract
Bacteriophages use diverse mechanisms to evade antiphage defence systems. ΦKZ-like jumbo phages assemble a proteinaceous, nucleus-like compartment that excludes antagonistic host nucleases and also internalizes DNA replication and transcription machinery1-4. The phage factors required for protein import and the mechanisms of selectivity remain unknown, however. Here we uncover an import system comprising proteins highly conserved across nucleus-forming phages, together with additional cargo-specific contributors. Using a genetic selection that forces the phage to decrease or abolish the import of specific proteins, we determine that the importation of five different phage nuclear-localized proteins requires distinct interfaces of the same factor, Imp1 (gp69). Imp1 localizes early to the nascent phage nucleus and forms discrete puncta in the mature phage nuclear periphery, probably in complex with direct interactor Imp6 (gp67), a conserved protein encoded in the same locus. The import of certain proteins, including a host topoisomerase, additionally requires Imp3 (gp59), a conserved factor necessary for proper Imp1 function. Three additional non-conserved phage proteins (Imp2 and Imp4/Imp5) are required for the import of two queried nuclear cargos (nuclear-localized protein 1 and host topoisomerase, respectively), perhaps acting as specific adaptors. We therefore propose a core import system that includes Imp1, Imp3 and Imp6, with multiple interfaces of Imp1 licensing transport through a protein lattice.
Collapse
Affiliation(s)
- Claire Kokontis
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Timothy A Klein
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Sukrit Silas
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Wannasrichan W, Krobthong S, Morgan CJ, Armbruster EG, Gerovac M, Yingchutrakul Y, Wongtrakoongate P, Vogel J, Aonbangkhen C, Nonejuie P, Pogliano J, Chaikeeratisak V. A ribosome-interacting jumbophage protein associates with the phage nucleus to facilitate efficient propagation. PLoS Pathog 2025; 21:e1012936. [PMID: 39992933 PMCID: PMC11849849 DOI: 10.1371/journal.ppat.1012936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Bacteriophages must hijack the gene expression machinery of their bacterial host to efficiently replicate. Recently, we have shown that the early-expressed protein gp014 of Pseudomonas nucleus-forming phage phiKZ forms a stable complex with the host ribosomes and modulates the overall protein expression profile during phage infection. Here, we discover a nucleus-forming phage, designated Churi, that is closely related to phiKZ. Churi encodes gp335, a homolog of gp014-phiKZ, which is expressed during the early stages of infection, and its overexpression in bacterial cells interferes with bacterial growth, suggesting its role in phage-host interplay. We predict experimentally that gp335 also interacts with host ribosomal proteins, similar to its homolog gp014-phiKZ, thereby strengthening its involvement in protein translation during phage infection. We further show that GFP-tagged gp335 specifically localizes by clustering around the phage nucleus and remains associated with it throughout the infection cycle. The CRISPR-Cas13-mediated deletion of gp335 reveals that the mutant phage fails to replicate efficiently, resulting in an extended latent period. Altogether, our study demonstrates that gp335 is an early-expressed protein of the Chimallivirus Churi that localizes in proximity to the phage nucleus, likely serving a role in localized translation to ensure efficient phage propagation.
Collapse
Affiliation(s)
- Wichanan Wannasrichan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chase J. Morgan
- School of Biological Sciences, University of California San Diego, La Jolla, California, United States
| | - Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, California, United States
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand
| | | | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, California, United States
| | | |
Collapse
|
8
|
Dougherty PE, Pedersen MS, Forero-Junco LM, Carstens AB, Raaijmakers JM, Riber L, Hansen LH. Novel bacteriophages targeting wheat phyllosphere bacteria carry DNA modifications and single-strand breaks. Virus Res 2025; 352:199524. [PMID: 39742975 PMCID: PMC11780129 DOI: 10.1016/j.virusres.2024.199524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The phyllosphere microbiome can positively or negatively impact plant health and growth, but we currently lack the tools to control microbiome composition. Contributing to a growing collection of bacteriophages (phages) targeting bacteria living in the wheat phyllosphere, we here isolate and sequence eight novel phages targeting common phyllosphere Erwinia and Pseudomonas strains, including two jumbo phages. We characterize genomic, phylogenetic, and morphological traits from these phages and argue for establishing four novel viral genera. We also search the genomes for anti-defense systems and investigate DNA modifications using Nanopore sequencing. In Pseudomonas phage Rembedalsseter we find evidence of 13 motif-associated single-stranded DNA breaks. A bioinformatics search revealed that 60 related Pseudomonas phages are enriched in the same motif, suggesting these single-stranded nicks may be widely distributed in this family of phages. Finally, we also search the Sequence Read Archive for similar phages in public metagenomes. We find close hits to the Erwinia jumbo-phage Kaldavass in a wide variety of plant, food, and wastewater metagenomes including a near-perfect hit from a Spanish spinach sample, illustrating how interconnected geographically distant phages can be.
Collapse
Affiliation(s)
- Peter Erdmann Dougherty
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Maja Schmidt Pedersen
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Alexander Byth Carstens
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Leise Riber
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark.
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
9
|
Weinheimer AR, Ha AD, Aylward FO. Towards a unifying phylogenomic framework for tailed phages. PLoS Genet 2025; 21:e1011595. [PMID: 39908317 PMCID: PMC11835377 DOI: 10.1371/journal.pgen.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/18/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Classifying viruses systematically has remained a key challenge of virology due to the absence of universal genes and vast genetic diversity of viruses. In particular, the most dominant and diverse group of viruses, the tailed double-stranded DNA viruses of prokaryotes belonging to the class Caudoviricetes, lack sufficient similarity in the genetic machinery that unifies them to reconstruct an inclusive, stable phylogeny of these genes. While previous approaches to organize tailed phage diversity have managed to distinguish various taxonomic levels, these methods are limited in scalability, reproducibility, and the inclusion of modes of evolution, like gene gains and losses, remain key challenges. Here, we present a novel, comprehensive, and reproducible framework for examining evolutionary relationships of tailed phages. In this framework, we compare phage genomes based on the presence and absence of a fixed set of gene families which are used as binary trait data that is input into maximum likelihood models. Our resulting phylogeny stably recovers known taxonomic families of tailed phages, with and without the inclusion of metagenome-derived phages. We also quantify the mosaicism of replication and structural genes among known families, and our results suggest that these exchanges likely underpin the emergence of new families. Additionally, we apply this framework to large phages (>100 kilobases) to map emergences of traits associated with genome expansion. Taken together, this evolutionary framework for charting and organizing tailed phage diversity improves the systemization of phage taxonomy, which can unify phage studies and advance our understanding of their evolution.
Collapse
Affiliation(s)
- Alaina R. Weinheimer
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, United States of America
| | - Anh D. Ha
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech; Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech; Blacksburg, Virginia, United States of America
| |
Collapse
|
10
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Erwinia phage Asesino is a nucleus-forming phage that lacks PhuZ. Sci Rep 2025; 15:1692. [PMID: 39799172 PMCID: PMC11724907 DOI: 10.1038/s41598-024-64095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/05/2024] [Indexed: 01/15/2025] Open
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Antonova D, Nichiporenko A, Sobinina M, Wang Y, Vishnyakov IE, Moiseenko A, Kurdyumova I, Chesnokov YM, Stepanchikova E, Bourkaltseva M, Samygina VR, Khodorkovskii M, Sokolova OS, Yakunina MV. Genomic transfer via membrane vesicle: a strategy of giant phage phiKZ for early infection. J Virol 2024; 98:e0020524. [PMID: 39258909 PMCID: PMC11494934 DOI: 10.1128/jvi.00205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
During infection, the giant phiKZ phage forms a specialized structure at the center of the host cell called the phage nucleus. This structure is crucial for safeguarding viral DNA against bacterial nucleases and for segregating the transcriptional activities of late genes. Here, we describe a morphological entity, the early phage infection (EPI) vesicle, which appears to be responsible for earlier gene segregation at the beginning of the infection process. Using cryo-electron microscopy, electron tomography (ET), and fluorescence microscopy with membrane-specific dyes, we demonstrated that the EPI vesicle is enclosed in a lipid bilayer originating, apparently, from the inner membrane of the bacterial cell. Our investigations further disclose that the phiKZ EPI vesicle contains both viral DNA and viral RNA polymerase (vRNAP). We have observed that the EPI vesicle migrates from the cell pole to the center of the bacterial cell together with ChmA, the primary protein of the phage nucleus. The phage DNA is transported into the phage nucleus after phage maturation, but the EPI vesicle remains outside. We hypothesized that the EPI vesicle acts as a membrane transport agent, efficiently delivering phage DNA to the phage nucleus while protecting it from the nucleases of the bacterium. IMPORTANCE Our study shed light on the processes of phage phiKZ early infection stage, expanding our understanding of possible strategies for the development of phage infection. We show that phiKZ virion content during injection is packed inside special membrane structures called early phage infection (EPI) membrane vesicles originating from the bacterial inner cell membrane. We demonstrated the EPI vesicle fulfilled the role of the safety transport unit for the phage genome to the phage nucleus, where the phage DNA would be replicated and protected from bacterial immune systems.
Collapse
Affiliation(s)
- Daria Antonova
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Anna Nichiporenko
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mariia Sobinina
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yueqi Wang
- Faculty of Biology, Shenzhen MSU-BIT University, Dayun New Town, Longgang District, Shenzhen, China
| | - Innokentii E. Vishnyakov
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia
| | - Andrey Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Inna Kurdyumova
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yuri M. Chesnokov
- Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| | | | | | - Valeriya R. Samygina
- Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Mikhail Khodorkovskii
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Olga S. Sokolova
- Faculty of Biology, Shenzhen MSU-BIT University, Dayun New Town, Longgang District, Shenzhen, China
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria V. Yakunina
- Laboratory of Molecular Microbiology, Research and Innovation Complex “Nanobiotechnologies”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Dayun New Town, Longgang District, Shenzhen, China
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Armbruster EG, Rani P, Lee J, Klusch N, Hutchings J, Hoffman LY, Buschkaemper H, Enustun E, Adler BA, Inlow K, VanderWal AR, Hoffman MY, Daksh D, Aindow A, Deep A, Rodriguez ZK, Morgan CJ, Ghassemian M, Laughlin TG, Charles E, Cress BF, Savage DF, Doudna JA, Pogliano K, Corbett KD, Villa E, Pogliano J. A transcriptionally active lipid vesicle encloses the injected Chimalliviridae genome in early infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.558163. [PMID: 37781618 PMCID: PMC10541120 DOI: 10.1101/2023.09.20.558163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses1-3. Bacteriophages of the Chimalliviridae family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA4-10. Previously, we observed lipid membrane-bound vesicles in cells infected by Chimalliviridae, but due to the paucity of genetics tools for these viruses it was unknown if these vesicles represented unproductive, abortive infections or a bona fide stage in the phage life cycle. Using the recently-developed dRfxCas13d-based knockdown system CRISPRi-ART11 in combination with fluorescence microscopy and cryo-electron tomography, we show that inhibiting phage nucleus formation arrests infections at an early stage in which the injected phage genome is enclosed within a membrane-bound early phage infection (EPI) vesicle. We demonstrate that early phage genes are transcribed by the virion-associated RNA polymerase from the genome within the compartment, making the EPI vesicle the first known example of a lipid membrane-bound organelle that separates transcription from translation in prokaryotes. Further, we show that the phage nucleus is essential for the phage life cycle, with genome replication only beginning after the injected DNA is transferred from the EPI vesicle to the newly assembled phage nucleus. Our results show that Chimalliviridae require two sophisticated subcellular compartments of distinct compositions and functions that facilitate successive stages of the viral life cycle.
Collapse
Affiliation(s)
- Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally: Emily G. Armbruster and Phoolwanti Rani
| | - Phoolwanti Rani
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally: Emily G. Armbruster and Phoolwanti Rani
| | - Jina Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Niklas Klusch
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Lizbeth Y. Hoffman
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Buschkaemper
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Koe Inlow
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Arica R. VanderWal
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Madelynn Y. Hoffman
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Daksh Daksh
- National Institute of Science, Education and Research (NISER) Bhubaneshwar, Orissa 752050, India
| | - Ann Aindow
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zaida K. Rodriguez
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chase J. Morgan
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas G. Laughlin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emeric Charles
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - David F. Savage
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Magar S, Kolte V, Sharma G, Govindarajan S. Exploring pangenomic diversity and CRISPR-Cas evasion potential in jumbo phages: a comparative genomics study. Microbiol Spectr 2024; 12:e0420023. [PMID: 39264185 PMCID: PMC11448039 DOI: 10.1128/spectrum.04200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
Jumbo phages are characterized by their remarkably large-sized genome and unique life cycles. Jumbo phages belonging to Chimalliviridae family protect the replicating phage DNA from host immune systems like CRISPR-Cas and restriction-modification system through a phage nucleus structure. Several recent studies have provided new insights into jumbo phage infection biology, but the pan-genome diversity of jumbo phages and their relationship with CRISPR-Cas targeting beyond Chimalliviridae are not well understood. In this study, we used pan-genome analysis to identify orthologous gene families shared among 331 jumbo phages with complete genomes. We show that jumbo phages lack a universally conserved set of core genes but identified seven "soft-core genes" conserved in over 50% of these phages. These genes primarily govern DNA-related activities, such as replication, repair, or nucleotide synthesis. Jumbo phages exhibit a wide array of accessory and unique genes, underscoring their genetic diversity. Phylogenetic analyses of the soft-core genes revealed frequent horizontal gene transfer events between jumbo phages, non-jumbo phages, and occasionally even giant eukaryotic viruses, indicating a polyphyletic evolutionary nature. We categorized jumbo phages into 11 major viral clusters (VCs) spanning 130 sub-clusters, with the majority being multi-genus jumbo phage clusters. Moreover, through the analysis of hallmark genes related to CRISPR-Cas targeting, we predict that many jumbo phages can evade host immune systems using both known and yet-to-be-identified mechanisms. In summary, our study enhances our understanding of jumbo phages, shedding light on their pan-genome diversity and remarkable genome protection capabilities. IMPORTANCE Jumbo phages are large bacterial viruses known for more than 50 years. However, only in recent years, a significant number of complete genome sequences of jumbo phages have become available. In this study, we employed comparative genomic approaches to investigate the genomic diversity and genome protection capabilities of the 331 jumbo phages. Our findings revealed that jumbo phages exhibit high genetic diversity, with only a few genes being relatively conserved across jumbo phages. Interestingly, our data suggest that jumbo phages employ yet-to-be-identified strategies to protect their DNA from the host immune system, such as CRISPR-Cas.
Collapse
Affiliation(s)
- Sharayu Magar
- Department of Biological Sciences, SRM University AP, Amaravati, Andhra Pradesh, India
| | - Vaishnavi Kolte
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, India
| | | |
Collapse
|
14
|
de Martín Garrido N, Chen CS, Ramlaul K, Aylett CHS, Yakunina M. Structure of the Bacteriophage PhiKZ Non-virion RNA Polymerase Transcribing from its Promoter p119L. J Mol Biol 2024; 436:168713. [PMID: 39029888 DOI: 10.1016/j.jmb.2024.168713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Bacteriophage ΦKZ (PhiKZ) is the founding member of a family of giant bacterial viruses. It has potential as a therapeutic as its host, Pseudomonas aeruginosa, kills tens of thousands of people worldwide each year. ΦKZ infection is independent of the host transcriptional apparatus; the virus forms a "nucleus", producing a proteinaceous barrier around the ΦKZ genome that excludes the host immune systems. It expresses its own non-canonical multi-subunit non-virion RNA polymerase (nvRNAP), which is imported into its "nucleus" to transcribe viral genes. The ΦKZ nvRNAP is formed by four polypeptides representing homologues of the eubacterial β/β' subunits, and a fifth that is likely to have evolved from an ancestral homologue to σ-factor. We have resolved the structure of the ΦKZ nvRNAP initiating transcription from its cognate promoter, p119L, including previously disordered regions. Our results shed light on the similarities and differences between ΦKZ nvRNAP mechanisms of transcription and those of canonical eubacterial RNAPs and the related non-canonical nvRNAP of bacteriophage AR9.
Collapse
Affiliation(s)
- Natàlia de Martín Garrido
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Chao-Sheng Chen
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Christopher H S Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Maria Yakunina
- Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province 518172, People's Republic of China.
| |
Collapse
|
15
|
Mozumdar D, Fossati A, Stevenson E, Guan J, Nieweglowska E, Rao S, Agard D, Swaney DL, Bondy-Denomy J. Characterization of a lipid-based jumbo phage compartment as a hub for early phage infection. Cell Host Microbe 2024; 32:1050-1058.e7. [PMID: 38870941 PMCID: PMC11239273 DOI: 10.1016/j.chom.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea Fossati
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jingwen Guan
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Eliza Nieweglowska
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sanjana Rao
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Imaging Institute, Redwood City, CA 94065, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Bondy-Denomy
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster E, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. An intron endonuclease facilitates interference competition between coinfecting viruses. Science 2024; 385:105-112. [PMID: 38963841 PMCID: PMC11620839 DOI: 10.1126/science.adl1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.
Collapse
Affiliation(s)
- Erica A. Birkholz
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Chase J. Morgan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Thomas G. Laughlin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Rebecca K. Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Amy Prichard
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sahana Rangarajan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Gabrielle N. Meza
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Jina Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Emily Armbruster
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sergey Suslov
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kit Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA
| | - Kevin D. Corbett
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Joe Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
17
|
Wannasrichan W, Krobthong S, Morgan CJ, Armbruster EG, Gerovac M, Yingchutrakul Y, Wongtrakoongate P, Vogel J, Aonbangkhen C, Nonejuie P, Pogliano J, Chaikeeratisak V. A phage nucleus-associated protein from the jumbophage Churi inhibits bacterial growth through protein translation interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599175. [PMID: 38915640 PMCID: PMC11195228 DOI: 10.1101/2024.06.15.599175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Antibacterial proteins inhibiting Pseudomonas aeruginosa have been identified in various phages and explored as antibiotic alternatives. Here, we isolated a phiKZ-like phage, Churi, which encodes 364 open reading frames. We examined 15 early-expressed phage proteins for their ability to inhibit bacterial growth, and found that gp335, closely related to phiKZ-gp14, exhibits antibacterial activity. Similar to phiKZ-gp14, recently shown to form a complex with the P. aeruginosa ribosome, we predict experimentally that gp335 interacts with ribosomal proteins, suggesting its involvement in protein translation. GFP-tagged gp335 clusters around the phage nucleus as early as 15 minutes post-infection and remains associated with it throughout the infection, suggesting its role in protein expression in the cell cytoplasm. CRISPR-Cas13-mediated deletion of gp355 reveals that the mutant phage has a prolonged latent period. Altogether, we demonstrate that gp335 is an antibacterial protein of nucleus-forming phages that associates with the ribosomes at the phage nucleus.
Collapse
|
18
|
Prichard A, Pogliano J. The intricate organizational strategy of nucleus-forming phages. Curr Opin Microbiol 2024; 79:102457. [PMID: 38581914 DOI: 10.1016/j.mib.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Naknaen A, Samernate T, Saeju P, Nonejuie P, Chaikeeratisak V. Nucleus-forming jumbophage PhiKZ therapeutically outcompetes non-nucleus-forming jumbophage Callisto. iScience 2024; 27:109790. [PMID: 38726363 PMCID: PMC11079468 DOI: 10.1016/j.isci.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
With the recent resurgence of phage therapy in modern medicine, jumbophages are currently under the spotlight due to their numerous advantages as anti-infective agents. However, most significant discoveries to date have primarily focused on nucleus-forming jumbophages, not their non-nucleus-forming counterparts. In this study, we compare the biological characteristics exhibited by two genetically diverse jumbophages: 1) the well-studied nucleus-forming jumbophage, PhiKZ; and 2) the newly discovered non-nucleus-forming jumbophage, Callisto. Single-cell infection studies further show that Callisto possesses different replication machinery, resulting in a delay in phage maturation compared to that of PhiKZ. The therapeutic potency of both phages was examined in vitro and in vivo, demonstrating that PhiKZ holds certain superior characteristics over Callisto. This research sheds light on the importance of the subcellular infection machinery and the organized progeny maturation process, which could potentially provide valuable insight in the future development of jumbophage-based therapeutics.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panida Saeju
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
20
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Asesino: a nucleus-forming phage that lacks PhuZ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593592. [PMID: 38766163 PMCID: PMC11100802 DOI: 10.1101/2024.05.10.593592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the proposed Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Enustun E, Armbruster EG, Lee J, Zhang S, Yee BA, Malukhina K, Gu Y, Deep A, Naritomi J, Liang Q, Aigner S, Adler B, Cress B, Doudna J, Chaikeeratisak V, Cleveland D, Ghassemian M, Bintu B, Yeo G, Pogliano J, Corbett K. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection. Nucleic Acids Res 2024; 52:4440-4455. [PMID: 38554115 PMCID: PMC11077065 DOI: 10.1093/nar/gkae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.
Collapse
Affiliation(s)
- Eray Enustun
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily G Armbruster
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sitao Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kseniya Malukhina
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack T Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - Bogdan Bintu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. Proc Natl Acad Sci U S A 2024; 121:e2321190121. [PMID: 38687783 PMCID: PMC11087766 DOI: 10.1073/pnas.2321190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.
Collapse
Affiliation(s)
- Chase J. Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Eray Enustun
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Emily G. Armbruster
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Erica A. Birkholz
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Amy Prichard
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Taylor Forman
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Ann Aindow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Wichanan Wannasrichan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Sela Peters
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Koe Inlow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Isabelle L. Shepherd
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Alma Razavilar
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Kit Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Elizabeth Villa
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California San Diego, La Jolla, CA92093
| | - Kevin D. Corbett
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Joe Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
23
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.585822. [PMID: 38562762 PMCID: PMC10983916 DOI: 10.1101/2024.03.21.585822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here we identify two components of this novel protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA, that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together our results allow us to propose a multistep model for the Protein Import Chimallivirus (PIC) pathway, where proteins are targeted to PicA by amino acids on their surface, and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely-related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts. Significance Statement The phage nucleus is an enclosed replication compartment built by Chimalliviridae phages that, similar to the eukaryotic nucleus, separates transcription from translation and selectively imports certain proteins. This allows the phage to concentrate proteins required for DNA replication and transcription while excluding DNA-targeting host defense proteins. However, the mechanism of selective trafficking into the phage nucleus is currently unknown. Here we determine the region of a phage nuclear protein that targets it for nuclear import and identify a conserved, essential nuclear shell-associated protein that plays a key role in this process. This work provides the first mechanistic model of selective import into the phage nucleus.
Collapse
|
24
|
Gerovac M, Chihara K, Wicke L, Böttcher B, Lavigne R, Vogel J. Phage proteins target and co-opt host ribosomes immediately upon infection. Nat Microbiol 2024; 9:787-800. [PMID: 38443577 PMCID: PMC10914614 DOI: 10.1038/s41564-024-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Bacteriophages must seize control of the host gene expression machinery to replicate. To bypass bacterial anti-phage defence systems, this host takeover occurs immediately upon infection. A general understanding of phage mechanisms for immediate targeting of host transcription and translation processes is lacking. Here we introduce an integrative high-throughput approach to uncover phage-encoded proteins that target the gene expression machinery of Pseudomonas aeruginosa immediately upon infection with the jumbo phage ΦKZ. By integrating biochemical, genetic and structural analyses, we identify an abundant and conserved phage factor ΦKZ014 that targets the large ribosomal subunit by binding the 5S ribosomal RNA, and rapidly promotes replication in several clinical isolates. ΦKZ014 is among the earliest ΦKZ proteins expressed after infection and remains bound to ribosomes during the entire translation cycle. Our study provides a strategy to decipher molecular components of phage-mediated host takeover and argues that phage genomes represent an untapped discovery space for proteins that modulate the host gene expression machinery.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Laura Wicke
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
25
|
Cobián Güemes AG, Ghatbale P, Blanc AN, Morgan CJ, Garcia A, Leonard J, Huang L, Kovalick G, Proost M, Chiu M, Kuo P, Oh J, Karthikeyan S, Knight R, Pogliano J, Schooley RT, Pride DT. Jumbo phages are active against extensively drug-resistant eyedrop-associated Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2023; 67:e0065423. [PMID: 37931230 PMCID: PMC10720484 DOI: 10.1128/aac.00654-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/08/2023] [Indexed: 11/08/2023] Open
Abstract
Antibiotic-resistant bacteria present an emerging challenge to human health. Their prevalence has been increasing across the globe due in part to the liberal use of antibiotics that has pressured them to develop resistance. Those bacteria that acquire mobile genetic elements are especially concerning because those plasmids may be shared readily with other microbes that can then also become antibiotic resistant. Serious infections have recently been related to the contamination of preservative-free eyedrops with extensively drug-resistant (XDR) isolates of Pseudomonas aeruginosa, already resulting in three deaths. These drug-resistant isolates cannot be managed with most conventional antibiotics. We sought to identify alternatives to conventional antibiotics for the lysis of these XDR isolates and identified multiple bacteriophages (viruses that attack bacteria) that killed them efficiently. We found both jumbo phages (>200 kb in genome size) and non-jumbo phages that were active against these isolates, the former killing more efficiently. Jumbo phages effectively killed the three separate XDR P. aeruginosa isolates both on solid and liquid medium. Given the ongoing nature of the XDR P. aeruginosa eyedrop outbreak, the identification of phages active against them provides physicians with several novel potential alternatives for treatment.
Collapse
Affiliation(s)
| | - Pooja Ghatbale
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Alisha N. Blanc
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Chase J. Morgan
- Department of Biology, University of California San Diego, La Jolla, California, USA
| | - Andrew Garcia
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Jesse Leonard
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Lina Huang
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Grace Kovalick
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Marissa Proost
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Megan Chiu
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph Oh
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Smruthi Karthikeyan
- Department of Environmental Science and Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Computer Sciences & Engineering, University of California San Diego, La Jolla, California, USA
| | - Joe Pogliano
- Department of Biology, University of California San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, USA
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Thammatinna K, Sinprasertporn A, Naknaen A, Samernate T, Nuanpirom J, Chanwong P, Somboonwiwat K, Pogliano J, Sathapondecha P, Thawonsuwan J, Nonejuie P, Chaikeeratisak V. Nucleus-forming vibriophage cocktail reduces shrimp mortality in the presence of pathogenic bacteria. Sci Rep 2023; 13:17844. [PMID: 37857653 PMCID: PMC10587174 DOI: 10.1038/s41598-023-44840-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
The global aquaculture industry has suffered significant losses due to the outbreak of Acute Hepatopancreatic Necrosis Disease (AHPND) caused by Vibrio parahaemolyticus. Since the use of antibiotics as control agents has not been shown to be effective, an alternative anti-infective regimen, such as phage therapy, has been proposed. Here, we employed high-throughput screening for potential phages from 98 seawater samples and obtained 14 phages exhibiting diverse host specificity patterns against pathogenic VPAHPND strains. Among others, two Chimallinviridae phages, designated Eric and Ariel, exhibited the widest host spectrum against vibrios. In vitro and in vivo studies revealed that a cocktail derived from these two nucleus-forming vibriophages prolonged the bacterial regrowth of various pathogenic VPAHPND strains and reduced shrimp mortality from VPAHPND infection. This research highlights the use of high-throughput phage screening that leads to the formulation of a nucleus-forming phage cocktail applicable for bacterial infection treatment in aquaculture.
Collapse
Affiliation(s)
- Khrongkhwan Thammatinna
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ammara Sinprasertporn
- Songkhla Aquatic Animal Health Research and Development Center (SAAHRDC), Department of Fisheries, Songkhla, Thailand
| | - Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Nuanpirom
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Parinda Chanwong
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jumroensri Thawonsuwan
- Songkhla Aquatic Animal Health Research and Development Center (SAAHRDC), Department of Fisheries, Songkhla, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster EG, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. A mobile intron facilitates interference competition between co-infecting viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560319. [PMID: 37808663 PMCID: PMC10557746 DOI: 10.1101/2023.09.30.560319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.
Collapse
|