1
|
Zheng G, Lu M, Ouyang Y, Sun G. RNA methylation: A new perspective in osteoarthritis research. Gene 2025; 959:149518. [PMID: 40254081 DOI: 10.1016/j.gene.2025.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage degradation, osteophyte formation, and joint dysfunction, significantly impairing the quality of life in the elderly population. Recently, RNA modifications, as a dynamic and reversible epigenetic modification, have emerged as critical players in the onset and progression of OA. This review systematically summarizes the major types of RNA modifications involved in OA, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and 7-methylguanosine (m7G), and explores their roles in regulating chondrocyte autophagy, inflammatory responses, and key signaling pathways. with a primary focus on RNA methylation. Special emphasis is placed on the dynamic regulatory functions of key methyltransferases (e.g., METTL3, FTO, WTAP) and their potential contributions to OA pathogenesis. Furthermore, we address current research hotspots and controversies in the field, proposing future research directions, such as leveraging single-cell sequencing to decipher dynamic RNA modification changes during OA progression and uncovering the cooperative networks among various RNA modifications. Advancing our understanding of the biological roles and mechanisms of RNA modifications holds promise for innovative strategies in the early diagnosis, disease stratification, and targeted therapy of OA.
Collapse
Affiliation(s)
- Guihao Zheng
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Graduate School of Jiangxi Medical College, Nanchang University, China.
| | - Meifeng Lu
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China; Graduate School of Jiangxi Medical College, Nanchang University, China.
| | - Yulong Ouyang
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| | - Guicai Sun
- Department of Sports Medicine, Orthopaedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
2
|
Chen Y, Ren H. ZC3H13 Promotes NSUN4-Mediated Chondrocyte Mitochondrial Dysfunction and Pyroptosis in Temporomandibular Joint Osteoarthritis. Cartilage 2025:19476035251339410. [PMID: 40433805 PMCID: PMC12119525 DOI: 10.1177/19476035251339410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/27/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
ObjectiveTemporomandibular joint osteoarthritis (TMJOA) seriously influences the quality of life of patients. Chondrocyte mitochondrial dysfunction and pyroptosis play an important role in the development of osteoarthritis, but their role in TMJOA pathogenesis is elusive. We aimed to probe into the role and mechanism of mitochondrial dysfunction and pyroptosis in TMJOA.DesignTMJOA rat models were established by unilateral anterior crossbite operation. Pathological changes in cartilage tissues were observed by hematoxylin-eosin staining, and mitochondrial dysfunction and pyroptosis were evaluated by immunohistochemistry. The biological function and mechanism of ZC3H13 in mitochondrial dysfunction and pyroptosis were determined by cell experiments.ResultsWe discovered that mitochondrial dysfunction and pyroptosis occurred in cartilage tissues of TMJOA rats. The expression of ZC3H13 was observably upregulated in TMJOA rats. Further cell experiments showed that interference of ZC3H13 restrained mitochondrial dysfunction and pyroptosis of chondrocytes. RNA sequencing revealed that NSUN4 expression was significantly increased in chondrocytes after ZC3H13 knockdown. Silencing of ZC3H13 remarkably diminished the level of NSUN4 N6-methyladenosine (m6A) modification. Moreover, mitochondrial dysfunction and pyroptosis of chondrocytes were notably increased after NSUN4 knockdown.ConclusionOur study revealed that ZC3H13-mediated NSUN4 repressed TMJOA progression by modulating chondrocyte mitochondrial dysfunction and pyroptosis in an m6A-dependent manner, which may offer a potential strategy for TMJOA treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haotian Ren
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Wen J, Liu J, Wan L, Sun Y, Wang F. Crosstalk between N6-methyladenosine modification and ncRNAs in rheumatic diseases: therapeutic and diagnostic implications. Inflamm Res 2025; 74:79. [PMID: 40402257 DOI: 10.1007/s00011-025-02034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND In eukaryotic cells, N6-methyladenosine (m6A) is the most prevalent RNA methylation modification and plays a fundamental role in regulating diverse biological processes through the modulation of non-coding RNA (ncRNA) expression and activity. The role of m6A modification in developing rheumatic diseases is crucial but remains inadequately studied. METHODS Characterized by pain and inflammation, rheumatic diseases like rheumatoid arthritis (RA), osteoarthritis (OA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE) are autoimmune disorders. Recent findings emphasize the importance of m6A modifications and non-coding RNAs in the biological processes underlying rheumatic diseases. RESULTS This review elucidates the fundamental concept of m6A modification and the associated research methodologies. Subsequently, it systematically consolidates modern knowledge on the influence of m6A regulators and m6A modification-related ncRNAs on rheumatic diseases, incorporating perspectives on traditional Chinese medicine interventions. CONCLUSIONS Offering a comprehensive overview of m6A-related ncRNAs in the context of rheumatic diseases, this review proposes new therapeutic avenues by targeting m6A modification pathways.
Collapse
Affiliation(s)
- Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China.
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China.
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China.
| | - Lei Wan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| | - Yue Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| | - Fanfan Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui Province, China
- Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui Province, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230031, Anhui, China
| |
Collapse
|
4
|
Radbakhsh S, Najar M, Merimi M, Benderdour M, Fernandes JC, Martel-Pelletier J, Pelletier JP, Fahmi H. RNA Modifications in Osteoarthritis: Epitranscriptomic Insights into Pathogenesis and Therapeutic Targets. Int J Mol Sci 2025; 26:4955. [PMID: 40430096 PMCID: PMC12112650 DOI: 10.3390/ijms26104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/16/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Osteoarthritis (OA) is a chronic joint disorder characterized by progressive degeneration of articular cartilage, pain, synovial inflammation, and bone remodeling. Post-transcriptional RNA modifications, known as epitranscriptome, are a group of biochemical alterations in the primary RNA transcript that might influence RNA structure, stability, and function. Different kinds of RNA modifications have been recognized, such as methylation, acetylation, pseudouridylation, and phosphorylation. N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), 2'-O-ribose methylation (2'-O-Me), and pseudouridylation (Ψ) are the most prevalent RNA modifications. Recent studies have shown that disruption in these modifications can interfere with gene expression and protein function. Here, we will review all types of RNA modifications and how they contribute to the onset and progression of OA. To the best of our knowledge, this is the first review comprehensively addressing all epitranscriptomic modifications in OA.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Makram Merimi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Mohamed Benderdour
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Julio C Fernandes
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
5
|
Li P, Zhang C, Yin W, Tao M, Niu Z, Cui Y, Wu D, Gao F. From bone marrow mesenchymal stem cells to diseases: the crucial role of m 6A methylation in orthopedics. Stem Cell Res Ther 2025; 16:228. [PMID: 40329380 PMCID: PMC12057228 DOI: 10.1186/s13287-025-04364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Elucidating the molecular mechanisms underlying orthopedic diseases is crucial for guiding therapeutic strategies and developing innovative interventions. N6-methyladenosine (m6A)-an epitranscriptomic modification-has emerged as a key regulator of cellular fate and tissue homeostasis. Specifically, m6A plays a pivotal role in several RNA biological processes such as precursor RNA splicing, 3'-end processing, nuclear export, translation, and stability. Recent advancements indicate that m6A methylation regulates stem cell proliferation and osteogenic differentiation by modulating various signaling pathways. Extensive research has shown that abnormalities in m6A methylation contribute significantly to the onset and progression of various orthopedic diseases such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors. This review aims to summarize the key proteases involved in m6A methylation and their functions. The detailed mechanisms by which m6A methylation regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through direct and indirect ways are also discussed, with a focus on specific molecular pathways. Finally, this review analyzes the roles and mechanisms of m6A modification in the development and progression of multiple orthopedic diseases, offering a comprehensive understanding of the pathophysiology of these conditions and proposing new directions and molecular targets for innovative treatment strategies.
Collapse
Affiliation(s)
- Peng Li
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Chu Zhang
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Wen Yin
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Mijia Tao
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Zhipeng Niu
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Yutao Cui
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China.
| | - Dankai Wu
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China.
| | - Feng Gao
- Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China.
| |
Collapse
|
6
|
Hao W, Chang M, Shi D, Yun C, Li J, Guo H, Lin X. Therapeutic targets in aging-related osteoarthritis: A focus on the extracellular matrix homeostasis. Life Sci 2025; 368:123487. [PMID: 39978589 DOI: 10.1016/j.lfs.2025.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Osteoarthritis (OA) represents a globally prevalent degenerative bone diseases and is the primary contributors to pain and disability among middle-aged and elderly people, thereby imposing significant social and economic burdens. When articular cartilage is in the aging environment, epigenetic modifications, DNA damage and mitochondrial dysfunction lead to cell senescence. Chondrocyte senescence has been identified as a pivotal event in this metabolic dysregulation of the extracellular matrix (ECM). It can affect the composition and structure of ECM, and the mechanical and biological signals transmitted by ECM to senescent chondrocytes affect their physiology and pathology. Over the past few decades, the role of ECM in aging-related OA has received increasing attention. In this review, we summarize the changes of cartilage's major ECM (type II collagen and aggrecan) and the interaction between aging and ECM in OA, and explore therapeutic strategies targeting cartilagae ECM, such as noncoding RNAs, small-molecule drugs, and mesenchymal stem cell (MSC)-derived extracellular vesicles for OA. The aim of this study was to elucidate the potential benefits of ECM-based therapies as novel strategies for the management of OA diseases.
Collapse
Affiliation(s)
- Wan Hao
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Minnan Chang
- Department of Clinical Medicine, Xin Jiang Medical University, Xin Jiang 830011, China
| | - Di Shi
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenxi Yun
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jun Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haitao Guo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xiao Lin
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City 518063, China.
| |
Collapse
|
7
|
Ahi EP. Regulation of Skeletogenic Pathways by m6A RNA Modification: A Comprehensive Review. Calcif Tissue Int 2025; 116:58. [PMID: 40180675 PMCID: PMC11968561 DOI: 10.1007/s00223-025-01367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
In the complex process of skeletal development, the significance of m6A RNA methylation-a predominant form of RNA modification-has not been fully explored. This review discuss how m6A RNA methylation plays an important, though not yet fully understood, role in regulating skeletal formation. It examines how m6A influences key signaling pathways essential for skeletal development and homeostasis, suggesting various possible interactions between m6A methylation and these critical pathways. While the exact mechanisms for many of these interactions remain to be elucidated, m6A RNA methylation is anticipated to be a key emerging regulator in skeletal structure development across vertebrates. Highlighting the need for further research, this overview provides an in-depth look at the potential regulatory interactions of m6A RNA methylation within skeletal system. Uniquely, this review is the most comprehensive compilation of evidence linking components of m6A RNA methylation to signaling pathways involved in skeletogenesis.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
8
|
Chen H, Xuan A, Shi X, Fan T, Xue S, Ruan J, Wang X, Tang S, Qi W, Sun H, Liu C, He S, Ding C, Zhu Z. RNA N6-methyladenosine modification in arthritis: New insights into pathogenesis. Mod Rheumatol 2025; 35:203-214. [PMID: 39235765 DOI: 10.1093/mr/roae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
The commonest type of eukaryotic RNA modification, N6-methyladenosine (m6A), has drawn increased scrutiny in the context of pathological functioning as well as relevance in determination of RNA stability, splicing, transportation, localization, and translation efficiency. The m6A modification plays an important role in several types of arthritis, especially osteoarthritis and rheumatoid arthritis. Recent studies have reported that m6A modification regulates arthritis pathology in cells, such as chondrocytes and synoviocytes via immune responses and inflammatory responses through functional proteins classified as writers, erasers, and readers. The aim of this review was to highlight recent advances relevant to m6A modification in the context of arthritis pathogenesis and detail underlying molecular mechanisms, regulatory functions, clinical applications, and future perspectives of m6A in arthritis with the aim of providing a foundation for future research directions.
Collapse
Affiliation(s)
- Haowei Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anran Xuan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaorui Shi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Yan L, Guo L. The role and mechanism of m6A methylation in diabetic nephropathy. Life Sci 2025; 363:123355. [PMID: 39778764 DOI: 10.1016/j.lfs.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus, characterized by progressive deterioration of renal structure and function, which may eventually lead to end-stage kidney disease (ESKD). The N6-methyladenosine (m6A) methylation, an important modality of RNA modification, involves three classes of key regulators, writers (e.g., METTL3), erasers (e.g., FTO, ALKBH5) and readers (e.g., YTHDF2), which play important roles in DN. Writers are responsible for introducing m6A modifications on RNAs, erasers remove m6A modifications and readers recognize and bind m6A-modified RNAs to regulate RNAs functions, such as mRNA stability, translation and localization. In DN, abnormal m6A modification may promote kidney injury and proteinuria by regulating key pathways involved in multiple processes, including lipid metabolism and inflammatory response, in kidney cells such as podocytes. Therefore, an in-depth study of the role and mechanism of m6A methylation that are regulated by "writers", "erasers" and "readers" in DN is expected to provide new targets and strategies for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
10
|
Bao T, Liao T, Cai X, Lu B, Dai G, Pei S, Zhang Y, Li Y, Xu B. METTL3 mediated ferroptosis in chondrocytes and promoted pain in KOA via HMGB1 m6A modification. Cell Biol Int 2024; 48:1755-1765. [PMID: 39129231 DOI: 10.1002/cbin.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Methyltransferase-like 3 (METTL3) plays a role in the development of knee osteoarthritis (KOA). However, the mechanism underlying the role of METTL3 in KOA is unclear. This work investigated the effects of MELLT3 on ferroptosis and pain relief in in vitro and in vivo KOA models. Chondrocytes were treated with 10 ng/mL interleukin-1β (IL-1β) or 5 μM Erastin (ferroptosis inducer). IL-1β or Erastin treatment inhibited cell viability and glutathione levels; increased Fe2+, lipid reactive oxygen species and malondialdehyde production; and decreased glutathione peroxidase 4, ferritin light chain and solute carrier family 7 member 11 levels. The overexpression of METTL3 facilitated the N6-methyladenosine methylation of high mobility group box 1 (HMGB1). HMGB1 overexpression reversed the effect of sh-METTL3 on IL-1β-treated chondrocytes. A KOA rat model was established by the injection of monosodium iodoacetate into the joints and successful model establishment was confirmed by haematoxylin and eosin staining and Safranin O/Fast Green staining. METTL3 depletion alleviated cartilage damage, the inflammatory response, ferroptosis and knee pain in KOA model rats, and these effects were reversed by the addition of HMGB1. In conclusion, METTL3 depletion inhibited ferroptosis and the inflammatory response, and ameliorated cartilage damage and knee pain during KOA progression by regulating HMGB1.
Collapse
Affiliation(s)
- Tianchi Bao
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Taiyang Liao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuefeng Cai
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Binjie Lu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Gaole Dai
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Shuai Pei
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yunqing Zhang
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yuwei Li
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Bo Xu
- Department of Orthopedics and Traumatology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
11
|
Zhang Z, Mao H, Li F, Wang D, Liu Y. METTL14-mediated lncRNA-FAS-AS1 promotes osteoarthritis progression by up-regulating ADAM8. Int J Rheum Dis 2024; 27:e15323. [PMID: 39221886 DOI: 10.1111/1756-185x.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative disease. We explored the role and regulatory mechanisms of lncRNA-FAS-AS1 in OA progression. METHODS We exposed human immortalized chondrocytes to IL-1β for 24 h to induce an OA cell model. The target molecule levels were assessed using western blot and quantitative real-time PCR (RT-qPCR). Cell viability and apoptosis were measured using CCK-8 and flow cytometry. The m6A modification of FAS-AS1 was determined using MeRIP. We examined the binding relationships between FAS-AS1, Fragile X mental retardation 1 (FMR1), and A disintegrin and metalloproteinase 8 (ADAM8) using RIP and RNA pull-down. The OA animal model was established by separating the medial collateral ligament and medial meniscus. Safranin-O staining and Mankin's scale were employed to evaluate pathological changes within the cartilage. RESULTS FAS-AS1, METTL14, and ADAM8 were upregulated, and the JAK/STAT3 signaling pathway was activated in OA mice and IL-1β-induced chondrocytes. FAS-AS1 knockdown inhibited extracellular matrix degradation in IL-1β-induced chondrocytes; however, ADAM8 overexpression reversed this effect. FAS-AS1 maintained the stability of ADAM8 mRNA by recruiting FMR1. METTL14 knockdown repressed FAS-AS1 expression in an m6A-dependent manner. FAS-AS1 overexpression reversed the inhibitory effects of METTL14 knockdown on JAK/STAT3 signaling and cartilage damage in the OA model both in vitro and in vivo. CONCLUSION METTL14-mediated FAS-AS1 promotes OA progression through the FMR1/ADAM8/JAK/STAT3 axis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- ADAM Proteins/metabolism
- ADAM Proteins/genetics
- Adenosine/analogs & derivatives
- Apoptosis
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cell Line
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Disease Models, Animal
- Disease Progression
- Interleukin-1beta/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Mice, Inbred C57BL
- Osteoarthritis/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/pathology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Zhehua Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Honggang Mao
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Fang Li
- Department of Experimental Center, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Dahai Wang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Yan Liu
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
12
|
Sheng R, Meng W, Zhang Z, Yin Q, Jiang S, Li Q, Gan X, Zhang D, Zhou Z, Lin S, Lyu M, Yang X, Yuan Q. METTL3 regulates cartilage development and homeostasis by affecting Lats1 mRNA stability in an m 6A-YTHDF2-dependent manner. Cell Rep 2024; 43:114535. [PMID: 39088322 DOI: 10.1016/j.celrep.2024.114535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024] Open
Abstract
Cartilage maintains the structure and function of joints, with disturbances leading to potential osteoarthritis. N6-methyladenosine (m6A), the most widespread post-transcriptional modification in eukaryotes, plays a crucial role in regulating biological processes. While current research has indicated that m6A affects the progression of osteoarthritis, its function in the development and homeostasis of articular cartilage remains unclear. Here we report that Mettl3 deficiency in chondrocytes leads to mandibular condylar cartilage morphological alterations, early temporomandibular joint osteoarthritis, and diminished adaptive response to abnormal mechanical stimuli. Mechanistically, METTL3 modulates Lats1 mRNA methylation and facilitates its degradation in an m6A-YTHDF2-dependent manner, which subsequently influences the degradation and nuclear translocation of YAP1. Intervention with the Hippo pathway inhibitor XMU-MP-1 alleviates condylar abnormality caused by Mettl3 knockout. Our findings demonstrate the role of METTL3 in cartilage development and homeostasis, offering insights into potential treatment strategies for osteoarthritis.
Collapse
Affiliation(s)
- Rui Sheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weikun Meng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhong Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zongke Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mingyue Lyu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xingmei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Meng M, Zhong Z, Song L, Zhang Z, Yin X, Xie X, Tian L, Wu W, Yang Y, Deng Y, Peng H, Wu S, Ran G, Lin Y, Lai Q, Bi Q, Yan F, Ji Y, Wang Y, Li X, Yi P, Yu J, Deng Y. mTOR Signaling Promotes Rapid m6A mRNA Methylation to Regulate NK-Cell Activation and Effector Functions. Cancer Immunol Res 2024; 12:1039-1057. [PMID: 38640466 DOI: 10.1158/2326-6066.cir-23-0339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/13/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
NK cells can be rapidly activated in response to cytokines during host defense against malignant cells or viral infection. However, it remains unclear what mechanisms precisely and rapidly regulate the expression of a large number of genes involved in activating NK cells. In this study, we discovered that NK-cell N6-methyladenosine (m6A) methylation levels were rapidly upregulated upon short-term NK-cell activation and were repressed in the tumor microenvironment (TME). Deficiency of methyltransferase-like 3 (METTL3) or METTL14 moderately influenced NK-cell homeostasis, while double-knockout of METTL3/14 more significantly impacted NK-cell homeostasis, maturation, and antitumor immunity. This suggests a cooperative role of METTL3 and METTL14 in regulating NK-cell development and effector functions. Using methylated RNA immunoprecipitation sequencing, we demonstrated that genes involved in NK-cell effector functions, such as Prf1 and Gzmb, were directly modified by m6A methylation. Furthermore, inhibiting mTOR complex 1 activation prevented m6A methylation levels from increasing when NK cells were activated, and this could be restored by S-adenosylmethionine supplementation. Collectively, we have unraveled crucial roles for rapid m6A mRNA methylation downstream of the mTOR complex 1-S-adenosylmethionine signal axis in regulating NK-cell activation and effector functions.
Collapse
Affiliation(s)
- Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhaoyang Zhong
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhaohui Zhang
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Xiaofeng Yin
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Xiqiang Xie
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Yao Yang
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Guanghe Ran
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yuqing Lin
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Qiangqiang Lai
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Qinghua Bi
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Fulin Yan
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yan Ji
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Li
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhao Z, Dong S, Yang Y, Yin H, Xiong G, Ma J. IGF2BP1 Bolsters the Chondrocytes Ferroptosis of Osteoarthritis by Targeting m 6A/MMP3 Axis. Int J Gen Med 2024; 17:2433-2443. [PMID: 38826510 PMCID: PMC11141773 DOI: 10.2147/ijgm.s463734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Chondrocyte degeneration and senescence are characteristics of osteoarthritis (OA) and other joint degenerative diseases, and ferroptosis has been observed to regulate the development of OA. However, the role of the N6-methyladenosine (m6A) modification in OA ferroptosis remains unclear. Methods This study performed series of assays to investigate the function of the m6A reader IGF2BP1 in OA ferroptosis, including m6A quantitative analysis, Iron (Fe2+) release analysis, Malondialdehyde (MDA) measurement, lipid peroxidation (ROS) detection and Glutathione (GSH) measurement. The molecular interaction and mechanism analysis was performed by Luciferase reporter assay, mRNA stability analysis and RNA immunoprecipitation (RIP) assay. Results These results indicate that IGF2BP1 is upregulated in IL-1β-induced chondrocytes. Functionally, IGF2BP1 silencing represses ferroptosis, including iron (Fe2+) accumulation, malondialdehyde, and reactive oxygen species (ROS). Mechanistically, among the potential downstream targets, matrix metalloproteinase-3 (MMP3) was observed to harbor a significant m6A modified site in the 3'-UTR. IGF2BP1 combines with MMP3 through the binding of m6A sites, thereby enhancing MMP3 mRNA stability. Discussion In conclusion, our findings revealed the functions and mechanisms of m6A regulator IGF2BP1 in OA chondrocyte's ferroptosis, providing a novel target for OA treatment.
Collapse
Affiliation(s)
- Ziqin Zhao
- Department of Pathology, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
| | - Shuhui Dong
- Department of Pathology, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
| | - Yong Yang
- Department of Pathology, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
| | - Haibo Yin
- Department of Pathology, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
| | - Guangyi Xiong
- Department of Pathology, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
| | - Jianxiong Ma
- Institute of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
15
|
Han J, Wang C, Yang H, Luo J, Zhang X, Zhang XA. Novel Insights into the Links between N6-Methyladenosine and Regulated Cell Death in Musculoskeletal Diseases. Biomolecules 2024; 14:514. [PMID: 38785921 PMCID: PMC11117795 DOI: 10.3390/biom14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal diseases (MSDs), including osteoarthritis (OA), osteosarcoma (OS), multiple myeloma (MM), intervertebral disc degeneration (IDD), osteoporosis (OP), and rheumatoid arthritis (RA), present noteworthy obstacles associated with pain, disability, and impaired quality of life on a global scale. In recent years, it has become increasingly apparent that N6-methyladenosine (m6A) is a key regulator in the expression of genes in a multitude of biological processes. m6A is composed of 0.1-0.4% adenylate residues, especially at the beginning of 3'-UTR near the translation stop codon. The m6A regulator can be classified into three types, namely the "writer", "reader", and "eraser". Studies have shown that the epigenetic modulation of m6A influences mRNA processing, nuclear export, translation, and splicing. Regulated cell death (RCD) is the autonomous and orderly death of cells under genetic control to maintain the stability of the internal environment. Moreover, distorted RCDs are widely used to influence the course of various diseases and receiving increasing attention from researchers. In the past few years, increasing evidence has indicated that m6A can regulate gene expression and thus influence different RCD processes, which has a central role in the etiology and evolution of MSDs. The RCDs currently confirmed to be associated with m6A are autophagy-dependent cell death, apoptosis, necroptosis, pyroptosis, ferroptosis, immunogenic cell death, NETotic cell death and oxeiptosis. The m6A-RCD axis can regulate the inflammatory response in chondrocytes and the invasive and migratory of MM cells to bone remodeling capacity, thereby influencing the development of MSDs. This review gives a complete overview of the regulatory functions on the m6A-RCD axis across muscle, bone, and cartilage. In addition, we also discuss recent advances in the control of RCD by m6A-targeted factors and explore the clinical application prospects of therapies targeting the m6A-RCD in MSD prevention and treatment. These may provide new ideas and directions for understanding the pathophysiological mechanism of MSDs and the clinical prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Haolin Yang
- College of Pharmacy, Jilin University, Changchun 132000, China;
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang 110100, China;
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China; (J.H.); (C.W.)
| |
Collapse
|
16
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|