1
|
Torelli F, Butterworth S, Lockyer E, Matias AN, Hildebrandt F, Song OR, Pearson-Farr J, Treeck M. GRA12 is a common virulence factor across Toxoplasma gondii strains and mouse subspecies. Nat Commun 2025; 16:3570. [PMID: 40240328 PMCID: PMC12003902 DOI: 10.1038/s41467-025-58876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Toxoplasma gondii parasites exhibit extraordinary host promiscuity owing to over 250 putative secreted proteins that disrupt host cell functions, enabling parasite persistence. However, most of the known effector proteins are specific to Toxoplasma genotypes or hosts. To identify virulence factors that function across different parasite isolates and mouse strains that differ in susceptibility to infection, we performed systematic pooled in vivo CRISPR-Cas9 screens targeting the Toxoplasma secretome. We identified several proteins required for infection across parasite strains and mouse species, of which the dense granule protein 12 (GRA12) emerged as the most important effector protein during acute infection. GRA12 deletion in IFNγ-activated macrophages results in collapsed parasitophorous vacuoles and increased host cell necrosis, which is partially rescued by inhibiting early parasite egress. GRA12 orthologues from related coccidian parasites, including Neospora caninum and Hammondia hammondi, complement TgΔGRA12 in vitro, suggesting a common mechanism of protection from immune clearance by their hosts.
Collapse
Affiliation(s)
- Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Simon Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eloise Lockyer
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Ana N Matias
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Franziska Hildebrandt
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Ok-Ryul Song
- High-Throughput Screening Technology Platform, The Francis Crick Institute, London, UK
| | - Jennifer Pearson-Farr
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
2
|
Tachibana Y, Yamamoto M. Recent advances in identifying and characterizing secretory proteins of Toxoplasma gondii by CRISPR-based screening. Parasitol Int 2025; 105:102997. [PMID: 39586398 DOI: 10.1016/j.parint.2024.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
The apicomplexan parasite, Toxoplasma gondii, develops unique secretory organelles, such as micronemes, rhoptries, and dense granules, which do not exist in other well-studied eukaryotic organisms. These secretory organelles are key features of apicomplexan parasites and discharge various proteins that are essential for invasion, replication, egress, host-parasite interactions, and virulence. Many studies have therefore focused on identifying and characterizing the proteins secreted by T. gondii that play essential roles in pathology and that can be targeted for therapeutics and vaccine development. The recent development of functional genetic screens based on CRISPR/Cas9 technology has revolutionized this field and has enabled the identification of genes that contribute to parasite fitness in vitro and in vivo. Consequently, characterization of genes identified by unbiased CRISPR screens has revealed novel aspects of apicomplexan biology. In this review, we describe the development of CRIPSR-based screening technology for T. gondii, and recent advances in our understanding of secretory proteins identified and characterized by CRISPR-based screening.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Center for Advanced Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Nakayama Y, Ihara F, Okuzaki D, Nishikawa Y, Sasai M, Yamamoto M. Toxoplasma GRA15 expression on dendritic cells inhibits B cell differentiation and antibody production. Parasitol Int 2025; 105:102995. [PMID: 39557359 DOI: 10.1016/j.parint.2024.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
One of the dense granule proteins named GRA15 in Toxoplasma gondii (T. gondii), is known to support an innate immune response in host through activation of NF-κB. However, little is known about advantages of GRA15 for parasites. By examining the role of GRA15 in the host-parasite interactions, it was clarified that GRA15 in T. gondii suppressed acquired immune responses in host. Wild-type parasite infection to C57BL/6 mice resulted in lower titers of T. gondii antibody and lower plasma cell counts compared to Δgra15 T. gondii. To identify host cells in which GRA15 acts to suppress antibody production, we generated conditional knock-in mice that express GRA15 in specific cell lineages. Anti-T. gondii antibodies were not reduced in macrophages of conditional knock-in mice after infection with Δgra15 T. gondii, while the production of T. gondii antibody was suppressed in dendritic cells of the conditional knock-in mice (CD11c-Cre/GRA15cKI). In the CD11c-Cre/GRA15cKI immunized with ovalbumin (OVA), the titers of anti-OVA antibody were reduced compared to control mice. Furthermore, the number of OVA antigen-specific T cells was also decreased in CD11c-Cre/GRA15cKI. These data showed that GRA15 in dendritic cells suppressed T cell-mediated humoral immunity. These findings might implicate the pathological significance of GRA15 and facilitate Toxoplasma vaccines production.
Collapse
Affiliation(s)
- Yuki Nakayama
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumiaki Ihara
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
de-la-Torre A, Mejía-Salgado G, Schares G. The importance of translational research in the study of ocular toxoplasmosis: insights from the 17th International Congress on Toxoplasmosis 2024. FEMS MICROBES 2025; 6:xtaf003. [PMID: 40160412 PMCID: PMC11951098 DOI: 10.1093/femsmc/xtaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Toxoplasmosis is a parasitic infection with significant implications for human health, particularly in its ocular form, which can lead to severe visual impairment. While both basic and clinical research have made considerable strides in understanding the biology and treatment of this parasite, challenges remain. Recent advancements in diagnostics, mainly through multimodal imaging, have improved the identification of active disease and predicting outcomes. Experimental therapies are also emerging, offering new hope for more effective treatments. However, the most critical insight from recent research, particularly emphasized at the 17th International Congress on Toxoplasmosis, is the necessity of a collaborative approach. Integrating basic and clinical research is essential for translating molecular and pathophysiological findings into effective clinical practices. This synergy is crucial for advancing treatment strategies and improving patient outcomes in ocular toxoplasmosis.
Collapse
Affiliation(s)
- Alejandra de-la-Torre
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110321, Colombia
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota 110321, Colombia
| | - Germán Mejía-Salgado
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110321, Colombia
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota 110321, Colombia
- Health Sciences Faculty, Universidad Autónoma de Bucaramanga UNAB, Bucaramanga 680003, Colombia
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, National Reference Laboratory for Toxoplasmosis, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Hildebrandt F, N Matias A, Treeck M. A CRISPR view on genetic screens in Toxoplasma gondii. Curr Opin Microbiol 2025; 83:102577. [PMID: 39778479 DOI: 10.1016/j.mib.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Genome editing technologies, such as CRISPR-Cas9, have revolutionised the study of genes in a variety of organisms, including unicellular parasites. Today, the CRISPR-Cas9 technology is vastly applied in high-throughput screens to investigate interactions between the Apicomplexan parasite Toxoplasma gondii and its hosts. In vitro and in vivo T. gondii screens performed in naive and restrictive conditions have led to the discovery of essential and fitness-conferring T. gondii genes, as well as factors important for virulence and dissemination. Recent studies have adapted the CRISPR-Cas9 screening technology to study T. gondii genes based on phenotypes unrelated to parasite survival. These advances were achieved by using conditional systems coupled with imaging, as well as single-cell RNA sequencing and phenotypic selection. Here, we review the state-of-the-art of CRISPR-Cas9 screening technologies with a focus on T. gondii, highlighting strengths, current limitations and future avenues for its development, including its application to other Apicomplexan species.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ana N Matias
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Moritz Treeck
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal.
| |
Collapse
|
6
|
Torelli F, da Fonseca DM, Butterworth SW, Young JC, Treeck M. Paracrine rescue of MYR1-deficient Toxoplasma gondii mutants reveals limitations of pooled in vivo CRISPR screens. eLife 2024; 13:RP102592. [PMID: 39654402 PMCID: PMC11630813 DOI: 10.7554/elife.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Toxoplasma gondii is an intracellular parasite that subverts host cell functions via secreted virulence factors. Up to 70% of parasite-controlled changes in the host transcriptome rely on the MYR1 protein, which is required for the translocation of secreted proteins into the host cell. Mice infected with MYR1 knock-out (KO) strains survive infection, supporting a paramount function of MYR1-dependent secreted proteins in Toxoplasma virulence and proliferation. However, we have previously shown that MYR1 mutants have no growth defect in pooled in vivo CRISPR-Cas9 screens in mice, suggesting that the presence of parasites that are wild-type at the myr1 locus in pooled screens can rescue the phenotype. Here, we demonstrate that MYR1 is not required for the survival in IFN-γ-activated murine macrophages, and that parasites lacking MYR1 are able to expand during the onset of infection. While ΔMYR1 parasites have restricted growth in single-strain murine infections, we show that the phenotype is rescued by co-infection with wild-type (WT) parasites in vivo, independent of host functional adaptive immunity or key pro-inflammatory cytokines. These data show that the major function of MYR1-dependent secreted proteins is not to protect the parasite from clearance within infected cells. Instead, MYR-dependent proteins generate a permissive niche in a paracrine manner, which rescues ΔMYR1 parasites within a pool of CRISPR mutants in mice. Our results highlight an important limitation of otherwise powerful in vivo CRISPR screens and point towards key functions for MYR1-dependent Toxoplasma-host interactions beyond the infected cell.
Collapse
Affiliation(s)
- Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Host-Pathogen Interactions Laboratory, Gulbenkian Institute for Molecular MedicineOeirasPortugal
| | - Diogo M da Fonseca
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Host-Pathogen Interactions Laboratory, Gulbenkian Institute for Molecular MedicineOeirasPortugal
| | - Simon W Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Whitehead Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Host-Pathogen Interactions Laboratory, Gulbenkian Institute for Molecular MedicineOeirasPortugal
| |
Collapse
|
7
|
Alvarez JA, Gas-Pascual E, Malhi S, Sánchez-Arcila JC, Njume FN, van der Wel H, Zhao Y, García-López L, Ceron G, Posada J, Souza SP, Yap GS, West CM, Jensen KDC. The GPI sidechain of Toxoplasma gondii inhibits parasite pathogenesis. mBio 2024; 15:e0052724. [PMID: 39302131 PMCID: PMC11481522 DOI: 10.1128/mbio.00527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, Toxoplasma gondii, is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core. The functional significance of the Glcα1,4GalNAcβ1- sidechain reported in Toxoplasma gondii has remained largely unknown without understanding its biosynthesis. Here we identify and disrupt two glycosyltransferase genes and confirm their respective roles by serology and mass spectrometry. Parasites lacking the sidechain on account of deletion of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and secondary infections, suggesting it is an important pathogenesis factor. Cytokine responses, antibody recognition of GPI-anchored SAGs, and complement binding to PIGJ mutants are intact. By contrast, the scavenger receptor CD36 shows enhanced binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages detected early in infection. Galectin-3, which binds GIPLs, exhibits an enhancement of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality suggests that Δpigj parasite virulence in this context is sidechain dependent. Parasite numbers are not affected by Δpigj early in the infection in wild-type mice, suggesting a breakdown of tolerance. However, increased tissue cysts in the brains of mice infected with Δpigj parasites indicate an advantage over wild-type strains. Thus, the GPI sidechain of T. gondii plays a crucial and diverse role in regulating disease outcomes in the infected host.IMPORTANCEThe functional significance of sidechain modifications to the glycosylphosphatidylinositol (GPI) anchor in parasites has yet to be determined because the glycosyltransferases responsible for these modifications have not been identified. Here we present identification and characterization of both Toxoplasmsa gondii GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that adds the first GalNAc to the sidechain results in parasites without a sidechain on the GPI, and increased host susceptibility to infection. Loss of the second glycosyltransferase results in a sidechain with GalNAc alone, and no glucose added, and has negligible effect on disease outcomes. This indicates GPI sidechains are fundamental to host-parasite interactions.
Collapse
Affiliation(s)
- Julia A. Alvarez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Sahil Malhi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Ferdinand Ngale Njume
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Laura García-López
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Gabriella Ceron
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jasmine Posada
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Scott P. Souza
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| |
Collapse
|
8
|
ten Hoeve AL, Rodriguez ME, Säflund M, Michel V, Magimel L, Ripoll A, Yu T, Hakimi MA, Saeij JPJ, Ozata DM, Barragan A. Hypermigration of macrophages through the concerted action of GRA effectors on NF-κB/p38 signaling and host chromatin accessibility potentiates Toxoplasma dissemination. mBio 2024; 15:e0214024. [PMID: 39207098 PMCID: PMC11481493 DOI: 10.1128/mbio.02140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 mitogen-activated protein kinase signaling pathways, respectively, with contributions by GRA16/18 and counter-regulation by effector TEEGR. Furthermore, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors. IMPORTANCE Intracellular pathogens can hijack the cellular functions of infected host cells to their advantage, for example, for intracellular survival and dissemination. However, how microbes orchestrate the hijacking of complex cellular processes, such as host cell migration, remains poorly understood. As such, the common parasite Toxoplasma gondii actively invades the immune cells of humans and other vertebrates and modifies their migratory properties. Here, we show that the concerted action of a number of secreted effector proteins from the parasite, principally GRA15 and GRA24, acts on host cell signaling pathways to activate chemotaxis. Furthermore, the protein effector GRA28 selectively acted on chromatin accessibility in the host cell nucleus to selectively boost host gene expression. The joint activities of GRA effectors culminated in pro-migratory signaling within the infected phagocyte. We provide a molecular framework delineating how T. gondii can orchestrate a complex biological phenotype, such as the migratory activation of phagocytes to boost dissemination.
Collapse
Affiliation(s)
- Arne L. ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Matias E. Rodriguez
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Valentine Michel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lucas Magimel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albert Ripoll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology, and Immunology, University of California Davis, Davis, California, USA
| | - Deniz M. Ozata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Tachibana Y, Sasai M, Yamamoto M. CRISPR screens identify genes essential for in vivo virulence among proteins of hyperLOPIT-unassigned subcellular localization in Toxoplasma. mBio 2024; 15:e0172824. [PMID: 39082802 PMCID: PMC11389413 DOI: 10.1128/mbio.01728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 09/12/2024] Open
Abstract
The research field to identify and characterize genes essential for in vivo virulence in Toxoplasma gondii has been dramatically advanced by a series of in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screens. Although subcellular localizations of thousands of proteins were predicted by the spatial proteomic method called hyperLOPIT, those of more than 1,000 proteins remained unassigned, and their essentiality in virulence was also unknown. In this study, we generated two small-scale gRNA libraries targeting approximately 600 hyperLOPIT-unassigned proteins and performed in vivo CRISPR screens. As a result, we identified several genes essential for in vivo virulence that were previously unreported. We further characterized two candidates, TgGTPase and TgRimM, which are localized in the cytoplasm and the apicoplast, respectively. Both genes are essential for parasite virulence and widely conserved in the phylum Apicomplexa. Collectively, our current study provides a resource for estimating the in vivo essentiality of Toxoplasma proteins with previously unknown localizations.IMPORTANCEToxoplasma gondii is a protozoan parasite that causes severe infection in immunocompromised patients or newborns. Toxoplasma possesses more than 8,000 genes; however, the genes essential for in vivo virulence were not fully identified. The apicomplexan parasites, including Toxoplasma, developed unique organelles that do not exist in other model organisms; thus, determining the subcellular location of parasite proteins is important for understanding their functions. Here, we used in vivo genetic screens that enabled us to investigate hundreds of genes in Toxoplasma during mouse infection. We screened approximately 600 parasite proteins with previously unknown subcellular localizations. We identified many novel genes that confer parasite virulence in mice. Among the top hits, we characterized two genes essential for in vivo virulence, TgGTPase and TgRimM, which are widely conserved in the phylum Apicomplexa. Our findings will contribute to understanding how apicomplexans adapt to the host environment and cause disease.
Collapse
Affiliation(s)
- Yuta Tachibana
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka, Japan
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Li J, Kang Y, Wu ZX, Yang SF, Tian YY, Zhu XQ, Zheng XN. Live-attenuated PruΔgra72 strain of Toxoplasma gondii induces strong protective immunity against acute and chronic toxoplasmosis in mice. Parasit Vectors 2024; 17:377. [PMID: 39237959 PMCID: PMC11378421 DOI: 10.1186/s13071-024-06461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an intracellular opportunistic pathogenic protozoan that poses serious threats, particularly in immunocompromised individuals. In the absence of a robust prophylactic measure, the mitigation and management of toxoplasmosis present formidable challenges to public health. We recently found that GRA72 plays an important role in parasitophorous vacuole (PV) morphology, growth and virulence of T. gondii. However, whether gra72-deficient strain can be used as a vaccine remains unknown. METHODS We first examined the attenuated virulence of gra72 gene knockout strain (PruΔgra72) and the parasite load in organs of the infected mice. Subsequently, we evaluated the immune-protective effects of the PruΔgra72 vaccination against challenge with various types of T. gondii tachyzoites and Pru cysts. Furthermore, levels of antibodies and cytokines induced by PruΔgra72 vaccination were examined. Statistical analysis was conducted by Student's t-test or Mantel-Cox log-rank test based on data obtained from three independent experiments with GraphPad Prism 8.0. RESULTS We found that PruΔgra72 strain exhibited a significantly attenuated virulence even at the highest dose of 5 × 107 tachyzoites in Kunming mice model. The significant decrease of brain cyst burden and parasite load in the organs of the PruΔgra72-infected mice suggested its potentiality as a live-attenuated vaccine. Hence, we explored the protective immunity of PruΔgra72 vaccination against toxoplasmosis. Results showed that vaccination with 5 × 106 PruΔgra72 tachyzoites triggered a strong and sustained Th1-biased immune response, marked by significantly increased levels of anti-T. gondii IgG antibodies, and significantly higher levels of Th1 type cytokines (IL-2, IL-12 and IFN-γ) compared to that of Th2 type (IL-4 and IL-10). Vaccination with 5 × 106 PruΔgra72 tachyzoites in mice conferred long-term protection against T. gondii infection by less virulent tachyzoites (ToxoDB#9 PYS and Pru strains) and Pru cysts, provided partial protection against acute infection by high virulent Type I RH tachyzoites and significantly decreased brain cyst burden of chronically infected mice. CONCLUSIONS The avirulent PruΔgra72 induced strong protective immunity against acute and chronic T. gondii infection and is a promising candidate for developing a safe and effective live-attenuated vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu Kang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Ze-Xuan Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Shu-Feng Yang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu-Yang Tian
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| |
Collapse
|
11
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. CRISPR-based functional profiling of the Toxoplasma gondii genome during acute murine infection. Nat Microbiol 2024; 9:2323-2343. [PMID: 38977907 PMCID: PMC11811839 DOI: 10.1038/s41564-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Examining host-pathogen interactions in animals can capture aspects of infection that are obscured in cell culture. Using CRISPR-based screens, we functionally profile the entire genome of the apicomplexan parasite Toxoplasma gondii during murine infection. Barcoded gRNAs enabled bottleneck detection and mapping of population structures within parasite lineages. Over 300 genes with previously unknown roles in infection were found to modulate parasite fitness in mice. Candidates span multiple axes of host-parasite interaction. Rhoptry Apical Surface Protein 1 was characterized as a mediator of host-cell tropism that facilitates repeated invasion attempts. GTP cyclohydrolase I was also required for fitness in mice and druggable through a repurposed compound, 2,4-diamino-6-hydroxypyrimidine. This compound synergized with pyrimethamine against T. gondii and malaria-causing Plasmodium falciparum parasites. This work represents a complete survey of an apicomplexan genome during infection of an animal host and points to novel interfaces of host-parasite interaction.
Collapse
Affiliation(s)
| | - Kenneth J Wei
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Benjamin S Waldman
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Madeline A Farringer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Raina W Thomas
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA, USA.
- Biology Department, MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Zheng XN, Li TT, Elsheikha HM, Wang M, Sun LX, Wu XJ, Fu BQ, Zhu XQ, Wang JL. GRA47 is important for the morphology and permeability of the parasitophorous vacuole in Toxoplasma gondii. Int J Parasitol 2024; 54:583-596. [PMID: 38936501 DOI: 10.1016/j.ijpara.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.
Collapse
Affiliation(s)
- Xiao-Nan Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xiao-Jing Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China.
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, Sichuan Province 610213, People's Republic of China.
| |
Collapse
|
13
|
Nakanishi M, Takezaki R, Takeguchi M, Hino M, Nomoto H. Synthetic arrest of Man 5GlcNAc 2-PP-Dol increases procyclin mRNA level and induces cell death in the bloodstream form Trypanosoma brucei brucei. Parasitol Int 2024; 99:102831. [PMID: 38048903 DOI: 10.1016/j.parint.2023.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
The biosynthesis of N-linked glycan precursors in the endoplasmic reticulum is important for many eukaryotes. In particular, the synthesis of Man5GlcNAc2-PP-dolichol (M5-DLO) at the cytoplasmic face of the endoplasmic reticulum is essential for maintaining cellular functions. In Trypanosoma brucei, the unicellular organism that causes African trypanosomiasis, homologs of the mannosyltransferases ALG2 and ALG11, which are involved in the biosynthesis of M5-DLO, are found, but the effects of their deletion on cells remain unknown. In this study, we generated conditional gene knockout strains of TbALG2 and TbALG11 in the bloodstream form T. brucei. Decreased N-linked glycosylation and cell death were observed in both strains under non-permissive conditions, with TbALG2 having a greater effect than TbALG11. Transcriptomic analysis of cells losing expression of TbALG11 showed decrease in mRNAs for enzymes involved in glucose metabolism and increase in mRNAs for procyclins and variant surface glycoproteins. These results indicate that the M5-DLO biosynthetic pathway is essential for the proliferation of the bloodstream form T. brucei. They also suggest that the failure of this pathway induces the transcriptomic change.
Collapse
Affiliation(s)
- Masayuki Nakanishi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| | - Reo Takezaki
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Masaki Takeguchi
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Mami Hino
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Hiroshi Nomoto
- Laboratory of Biochemistry, School of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
14
|
Bitew MA, Gaete PS, Swale C, Maru P, Contreras JE, Saeij JPJ. Two Toxoplasma gondii putative pore-forming proteins, GRA47 and GRA72, influence small molecule permeability of the parasitophorous vacuole. mBio 2024; 15:e0308123. [PMID: 38380952 PMCID: PMC10936148 DOI: 10.1128/mbio.03081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins secreted from dense granule organelles to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions, we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant "bubble vacuole" morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections. IMPORTANCE Toxoplasma gondii is a parasite that poses significant health risks to those with impaired immunity. It replicates inside host cells shielded by the PVM, which controls nutrient and waste exchange with the host. GRA72, previously identified as essential in the absence of the GRA17 nutrient channel, is implicated in forming an alternative nutrient channel. Here we found that GRA47 associates with GRA72 and is also important for the PVM's permeability to small molecules. Removal of GRA47 leads to distorted vacuoles and impairs small molecule transport across the PVM, resembling the effects of GRA17 and GRA72 deletions. Structural models suggest GRA47 and GRA72 form distinct pore structures, with a pore-lining histidine critical to their function. Toxoplasma strains lacking GRA47 or those with a histidine mutation have impaired growth and reduced virulence in mice, highlighting these proteins as potential targets for new treatments against toxoplasmosis.
Collapse
Affiliation(s)
- Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California, Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, University of California, Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
15
|
Zhang HS, Cao H, Li CX, Zhang ZW, Wang M, Zhu XQ, Zheng XN. Immunization with Live-Attenuated RHΔ had2a Strain Confers Partial Protective Immunity against Acute and Chronic Infection of Toxoplasma gondii in Mice. Pathogens 2024; 13:121. [PMID: 38392859 PMCID: PMC10892008 DOI: 10.3390/pathogens13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Toxoplasmosis caused by Toxoplasma gondii is an important zoonosis of human and animal health significance. Current chemical therapeutics have side effects, and no commercially available vaccine is licensed for the prevention of toxoplasmosis in humans and most animals. Developing a safe and effective vaccine with long-term protection against T. gondii infection is necessary to control toxoplasmosis. HAD2a is a key member of the haloacid dehalogenase (HAD) phosphatase family, which is essential for T. gondii daughter budding. However, the role of HAD2a in T. gondii virulence remains unknown. In this study, we successfully constructed the had2a gene knockout strain in the T. gondii-type I RH strain (RHΔhad2a) and determined its role in virulence and vaccination. These results demonstrate that HAD2a played an important role in parasite daughter budding and in vitro replication. Knockout of the had2a gene attenuated the virulence of the T. gondii-type I RH strain. Vaccination with RHΔhad2a tachyzoites induced a Th1-biased immune response, provided partial protection against acute T. gondii infection in mice by highly virulent tachyzoites of RH and PYS (ToxoDB#9, Chinese I) strains, and conferred strong protection against challenge infection by cysts and oocysts of the less virulent type II Pru strain. These results demonstrate that T. gondii had2a is important for its in vitro proliferation and virulence in mice and that RHΔhad2a may be used as a candidate strain to generate a multiple gene knockout live-attenuated strain or be collaboratively applied with other live-attenuated strains to confer more effective protection against T. gondii infection.
Collapse
Affiliation(s)
- Hai-Sheng Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (H.-S.Z.); (H.C.); (C.-X.L.)
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.-W.Z.); (M.W.)
| | - Hui Cao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (H.-S.Z.); (H.C.); (C.-X.L.)
| | - Chen-Xu Li
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (H.-S.Z.); (H.C.); (C.-X.L.)
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.-W.Z.); (M.W.)
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Z.-W.Z.); (M.W.)
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (H.-S.Z.); (H.C.); (C.-X.L.)
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (H.-S.Z.); (H.C.); (C.-X.L.)
| |
Collapse
|
16
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
17
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
18
|
Bitew MA, Gaete PS, Swale C, Maru P, Contreras JE, Saeij JPJ. GRA47 and GRA72 are Toxoplasma gondii pore-forming proteins that influence small molecule permeability of the parasitophorous vacuole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567216. [PMID: 38014337 PMCID: PMC10680723 DOI: 10.1101/2023.11.15.567216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins, secreted from dense granule organelles, to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant 'bubble vacuole' morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections.
Collapse
Affiliation(s)
- Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| | - Pablo S. Gaete
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, California, USA
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, California, USA
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis. Davis, California, USA
| |
Collapse
|