1
|
Narayana MSSV, Rajesh N, Dastagiri C, Mobeen SA, Khadri H, Chandrasekhar T, Prasanna VA, Riazunnisa K. Pleurotus ostreatus Copper Nanoparticles: In Vitro and In Silico Evaluation of the Antioxidant, Antibacterial, and Antidiabetic Activities. Chem Biodivers 2025; 22:e202402361. [PMID: 39714388 DOI: 10.1002/cbdv.202402361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The rapid growth of nanotechnology has opened new frontiers in biomedical applications, particularly through the use of metal nanoparticles. This study explores the green synthesis of copper nanoparticles (CuNPs) using an aqueous extract of Pleurotus ostreatus (PO-CuNPs) and their characterization through UV-visible spectroscopy, FTIR, SEM, and EDAX. The synthesized PO-CuNPs demonstrated exceptional antioxidant activity, evident in hydrogen peroxide scavenging and phosphomolybdenum assays. Their antibacterial efficacy was significant against Bacillus subtilis (18 ± 0.11 mm inhibition zone) and moderate against other bacterial strains. The antidiabetic potential of PO-CuNPs was confirmed by α-amylase (82%) and β-glucosidase (86%) inhibition assays. Molecular docking studies revealed kaempferol (-9.0 kcal) and quercetin (-9.2 kcal) as potent α-amylase inhibitors, while myricetin (-8.4 kcal) was most effective against β-glucosidase due to its favorable interactions. Despite high scores, rutin was excluded due to poor drug-likeliness, highlighting kaempferol and myricetin as promising antidiabetic agents. This research highlights the promising biomedical applications of P. ostreatus-based CuNPs, particularly in managing oxidative stress, microbial infections, and diabetes, showcasing their potential as eco-friendly therapeutic agents.
Collapse
Affiliation(s)
- M S Sandeep Veda Narayana
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - N Rajesh
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - C Dastagiri
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - S Anjum Mobeen
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Habeeb Khadri
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim, Kingdom of Saudi Arabia
| | - T Chandrasekhar
- Department of Environmental Science, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - V Anu Prasanna
- Department of Zoology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - K Riazunnisa
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
2
|
Rimle L, Phillips BP, Codo Costa Barra IM, Arnold N, Hennebert C, Meier T, von Ballmoos C. A splendid molecular factory: De- and reconstruction of the mammalian respiratory chain. Proc Natl Acad Sci U S A 2025; 122:e2416162122. [PMID: 40100632 PMCID: PMC11962478 DOI: 10.1073/pnas.2416162122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/26/2025] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial respiratory complexes I to IV and the F1Fo-ATP synthase (complex V) are large protein assemblies producing the universal cellular energy currency adenosine triphosphate (ATP). Individual complexes have been extensively studied in vitro, but functional co-reconstitution of several mammalian complexes into proteoliposomes, in particular, the combination of a primary pump with the ATP synthase, is less well understood. Here, we present a generic and scalable strategy to purify mammalian respiratory complexes I, III and the ATP synthase from enriched mitochondria in enzymatically fully active form, and procedures to reassemble the complexes into liposomes. A robust functionality can be shown by in situ monitoring of ATP synthesis rates and by using selected inhibitors of the respiratory chain complexes. By inclusion of cytochrome c oxidase, our procedures allowed us to reconstruct the entire mitochondrial respiratory chain (complexes I, III, IV, and V) in ubiquinone Q10 containing liposomes, demonstrating oxidative phosphorylation by nicotinamide adenine dinucleotide hydrogen driven ATP synthesis. The system was fully coupled at all levels and was used to probe cardiolipin as an essential component to activate the mammalian respiratory chain. Structural characterization using electron cryomicroscopy allowed us to resolve apo-state complex III and complex V at high and medium resolution, respectively, using in silico particle sorting, confirming the presence of all protein subunits and cofactors in native stoichiometry and conformation. The reported findings will facilitate future endeavors to characterize or modulate these key bioenergetic processes.
Collapse
Affiliation(s)
- Lukas Rimle
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| | - Ben P. Phillips
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Isabela M. Codo Costa Barra
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
| | - Noëlle Arnold
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| | - Charlie Hennebert
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
- Institute of Biochemistry, ETH Zürich, Zürich8093, Switzerland
| | - Thomas Meier
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, LondonSW7 2AZ, United Kingdom
- Liechtenstein-Institute, Gamprin-Bendern9487, Liechtenstein
| | - Christoph von Ballmoos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern3012, Switzerland
| |
Collapse
|
3
|
Han X, Zhang Z, Su CC, Lyu M, Miyagi M, Yu E, Nieman MT. Elucidating the dynamics of Integrin αIIbβ3 from native platelet membranes by cryo-EM with build and retrieve method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.27.625729. [PMID: 39651215 PMCID: PMC11623648 DOI: 10.1101/2024.11.27.625729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Platelets fulfill their essential physiological roles sensing the extracellular environment through their membrane proteins. The native membrane environment provides essential regulatory cues that impact the protein structure and mechanism of action. Single-particle cryogenic electron microscopy (cryo-EM) has transformed structural biology by allowing high-resolution structures of membrane proteins to be solved from homogeneous samples. Our recent breakthroughs in data processing now make it feasible to obtain atomic-level-resolution protein structures from crude preparations in their native environments by integrating cryo-EM with the "Build-and-Retrieve" (BaR) data processing methodology. We applied this iterative bottom-up methodology on resting human platelet membranes for an in-depth systems biology approach to uncover how lipids, metal binding, post-translational modifications, and co-factor associations in the native environment regulate platelet function at the molecular level. Here, we report using cryo-EM followed by the BaR method to solve the unmodified integrin αIIbβ3 structure directly from resting human platelet membranes in its inactivated and intermediate states at 2.75Å and 2.67Å, respectively. Further, we also solved a novel dimer conformation of αIIbβ3 at 2.85Å formed by two intermediate-states of αIIbβ3. This may indicate a previously unknown self-regulatory mechanism of αIIbβ3 in its native environment. In conclusion, our data show the power of using cryo-EM with the BaR method to determine three distinct structures including a novel dimer directly from natural sources. This approach allows us to identify unrecognized regulation mechanisms for proteins without artifacts due to purification processes. These data have the potential to enrich our understanding of platelet signaling circuitry.
Collapse
Affiliation(s)
- Xu Han
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Zhemin Zhang
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Chih-Chia Su
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Meinan Lyu
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Masaru Miyagi
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Edward Yu
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| | - Marvin T Nieman
- Case Western Reserve University, School of Medicine, Cleveland, OH 44106
| |
Collapse
|
4
|
Warmack RA, Maggiolo AO, Shen Y, Zhang T. CryoEM-enabled visual proteomics reveals de novo structures of oligomeric protein complexes from Azotobacter vinelandii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636493. [PMID: 39975257 PMCID: PMC11838545 DOI: 10.1101/2025.02.04.636493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Single particle cryoelectron microscopy (cryoEM) and cryoelectron tomography (cryoET) are powerful methods for unveiling unique and functionally relevant structural states. Aided by mass spectrometry and machine learning, they promise to facilitate the visual exploration of proteomes. Leveraging visual proteomics, we interrogate structures isolated from a complex cellular milieu by cryoEM to identify and classify molecular structures and complexes de novo . That approach determines the identity of six distinct oligomeric protein complexes from partially purified extracts of Azotobacter vinelandii using both anaerobic and aerobic cryoEM. Identification of the first unknown species, phosphoglucoisomerase (Pgi1), is achieved by comparing three automated model building programs: CryoID, DeepTracer, and ModelAngelo with or without a priori proteomics data. All three programs identify the Pgi1 protein, revealed to be in a new decameric state, as well as additional globular structures identified as glutamine synthetase (GlnA) and bacterioferritin (Bfr). Large filamentous assemblies are observed in tomograms reconstructed from cryoFIB milled lamellae of nitrogen-fixing A. vinelandii . Enrichment of these species from the cells by centrifugation allows for structure determination of three distinct filament types by helical reconstruction methods: the Type 6 Secretion System non-contractile sheath tube (TssC), a novel filamentous form of the soluble pyridine transhydrogenase (SthA), and the flagellar filament (FliC). The multimeric states of Pgi1 and SthA stand out in contrast to known crystallographic structures and offer a new structural framework from which to evaluate their activities. Overall, by allowing the study of near-native oligomeric protein states, cryoEM-enabled visual proteomics reveals novel structures that correspond to relevant species observed in situ . Abstract Figure
Collapse
|
5
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
6
|
Mycroft-West CJ, Leanca MA, Wu L. Structural glycobiology - from enzymes to organelles. Biochem Soc Trans 2025; 53:BST20241119. [PMID: 39889286 DOI: 10.1042/bst20241119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Biological carbohydrate polymers represent some of the most complex molecules in life, enabling their participation in a huge range of physiological functions. The complexity of biological carbohydrates arises from an extensive enzymatic repertoire involved in their construction, deconstruction and modification. Over the past decades, structural studies of carbohydrate processing enzymes have driven major insights into their mechanisms, supporting associated applications across medicine and biotechnology. Despite these successes, our understanding of how multienzyme networks function to create complex polysaccharides is still limited. Emerging techniques such as super-resolution microscopy and cryo-electron tomography are now enabling the investigation of native biological systems at near molecular resolutions. Here, we review insights from classical in vitro studies of carbohydrate processing, alongside recent in situ studies of glycosylation-related processes. While considerable technical challenges remain, the integration of molecular mechanisms with true biological context promises to transform our understanding of carbohydrate regulation, shining light upon the processes driving functional complexity in these essential biomolecules.
Collapse
Affiliation(s)
| | - Miron A Leanca
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
| | - Liang Wu
- The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, OX3 7BN, Oxford, UK
| |
Collapse
|
7
|
Hanau S, Helliwell JR. Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy. Acta Crystallogr F Struct Biol Commun 2024; 80:236-251. [PMID: 39259139 PMCID: PMC11448927 DOI: 10.1107/s2053230x24008112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - John R Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
Kyrilis FL, Low JKK, Mackay JP, Kastritis PL. Structural biology in cellulo: Minding the gap between conceptualization and realization. Curr Opin Struct Biol 2024; 87:102843. [PMID: 38788606 DOI: 10.1016/j.sbi.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Recent technological advances have deepened our perception of cellular structure. However, most structural data doesn't originate from intact cells, limiting our understanding of cellular processes. Here, we discuss current and future developments that will bring us towards a structural picture of the cell. Electron cryotomography is the standard bearer, with its ability to provide in cellulo snapshots. Single-particle electron microscopy (of purified biomolecules and of complex mixtures) and covalent crosslinking combined with mass spectrometry also have significant roles to play, as do artificial intelligence algorithms in their many guises. To integrate these multiple approaches, data curation and standardisation will be critical - as is the need to expand efforts beyond our current protein-centric view to the other (macro)molecules that sustain life.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece. https://twitter.com/Fotansky_16
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Panagiotis L Kastritis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale, Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale, Germany; Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany.
| |
Collapse
|
9
|
Bidooki SH, Navarro MA, Fernandes SCM, Osada J. Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe? Curr Issues Mol Biol 2024; 46:3134-3163. [PMID: 38666927 PMCID: PMC11049379 DOI: 10.3390/cimb46040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target.
Collapse
Affiliation(s)
- Seyed Hesamoddin Bidooki
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - María A. Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Susana C. M. Fernandes
- Centre National de la Recherche Scientifique (CNRS), Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 000 Pau, France;
- MANTA—Marine Materials Research Group, Universite de Pau et des Pays de l’Adour, E2S UPPA, 64 600 Anglet, France
| | - Jesus Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, E-50013 Zaragoza, Spain; (S.H.B.); (M.A.N.)
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
10
|
Zhang Z, Tringides ML, Morgan CE, Miyagi M, Mears JA, Hoppel CL, Yu EW. High-Resolution Structural Proteomics of Mitochondria Using the 'Build and Retrieve' Methodology. Mol Cell Proteomics 2023; 22:100666. [PMID: 37839702 PMCID: PMC10709515 DOI: 10.1016/j.mcpro.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
The application of integrated systems biology to the field of structural biology is a promising new direction, although it is still in the infant stages of development. Here we report the use of single particle cryo-EM to identify multiple proteins from three enriched heterogeneous fractions prepared from human liver mitochondrial lysate. We simultaneously identify and solve high-resolution structures of nine essential mitochondrial enzymes with key metabolic functions, including fatty acid catabolism, reactive oxidative species clearance, and amino acid metabolism. Our methodology also identified multiple distinct members of the acyl-CoA dehydrogenase family. This work highlights the potential of cryo-EM to explore tissue proteomics at the atomic level.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Marios L Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Christopher E Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
11
|
Taylor DW. Structural biology of an organ. Cell Rep 2023; 42:112622. [PMID: 37289587 PMCID: PMC11104778 DOI: 10.1016/j.celrep.2023.112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Su et al.1 use a build-and-retrieve approach to both identify and determine structures of ten macromolecular machines in the human liver. The authors' method will launch researchers forward in understanding the structural biology of the cell (or organ).
Collapse
Affiliation(s)
- David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institute, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|