1
|
Fan X, Okada K, Lin H, Ori-McKenney KM, McKenney RJ. A pathological phosphorylation pattern enhances tau cooperativity on microtubules and facilitates tau filament assembly. RESEARCH SQUARE 2025:rs.3.rs-6247226. [PMID: 40297677 PMCID: PMC12036459 DOI: 10.21203/rs.3.rs-6247226/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Phosphorylation plays a crucial role in both normal and disease processes involving the microtubule-associated protein tau. Physiologically, phosphorylation regulates tau's subcellular localization within neurons and is involved in fetal development and animal hibernation. However, abnormal phosphorylation of tau is linked to the formation of neurofibrillary tangles (NFTs) in various human tauopathies. Interestingly, the patterns of tau phosphorylation are similar in both normal and abnormal processes, leaving unclear whether phosphorylated tau retains its functional role in normal processes. The relationship between tau phosphorylation and NFT assembly in tauopathies is also still debated. To address these questions, we investigated the effects of tau phosphorylation on microtubule binding, cooperative protein envelope formation, and NFT filament assembly relevant to tauopathies. Consistent with previous results, our findings show that tau phosphorylation decreases tau's overall affinity for microtubules, but we reveal that phosphorylation more dramatically impacts the cooperativity between tau molecules during tau envelope formation along microtubules. Additionally, we observed that the specific pattern of phosphorylation, rather than overall phosphorylation level, strongly impacts the assembly of tau filaments in vitro. Our results reveal new insights into how tau phosphorylation impacts tau's physiological roles on microtubules and its pathoconversion into NFTs.
Collapse
Affiliation(s)
- Xiangyu Fan
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Henry Lin
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Kassandra M. Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA, United States, 95616
| |
Collapse
|
2
|
Sánchez-Aced É, Moya-Llamas B, Aumatell Escabias J, Torres S, Colom-Cadena M, Pegueroles J, de Quintana-Schmidt C, Bayés À, Molina-Porcel L, Aldecoa I, Belbin O, Fortea J, Spires-Jones T, Pujals S, Sirisi S, Lleó A. Enhancing Lateral Resolution Using Two-Colour Direct Stochastic Optical Reconstruction Microscopy to Unravel Synaptic Tau Pathology in Alzheimer's Disease. Neuropathol Appl Neurobiol 2025; 51:e70010. [PMID: 40025904 DOI: 10.1111/nan.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
AIMS In Alzheimer's disease (AD), the pathological accumulation of tau in synapses contributes to synapse dysfunction and loss. However, the small and complex structure of synapses limits the investigation when using conventional techniques. In this work, we describe the combination of array tomography (AT) with two-colour direct stochastic optical reconstruction microscopy (dSTORM) to enhance lateral resolution for resolving synaptic terminals in human postmortem brain. METHODS We applied this combination to study synapses in brain samples (from biopsy and postmortem) from healthy subjects and pathological synaptic tau (aggregates and oligomers) in samples from AD patients. RESULTS AT combined with dSTORM allowed the characterisation of the orientation and shape of the synaptic terminals and the synaptic cleft. In addition, this combination confirmed the presence of oligomeric tau in synaptic terminals in AD. CONCLUSIONS Overall, we found that the combination of AT and two-colour dSTORM provides optimal resolution to detect pathological synaptic tau and its spatial relationship with presynaptic and postsynaptic terminals.
Collapse
Affiliation(s)
- Érika Sánchez-Aced
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Borja Moya-Llamas
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Aumatell Escabias
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soraya Torres
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martí Colom-Cadena
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristian de Quintana-Schmidt
- Department of Neurosurgery Institut de Recerca Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-FRCB-IDIBAPS, Barcelona, Spain
| | - Iban Aldecoa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Fundació Recerca Clínic Barcelona - Institut d'Investigacions Biomèdiques August pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Pathology, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sílvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Sònia Sirisi
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut de Recerca Sant Pau (IR Sant Pau) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
3
|
Böken D, Wu Y, Zhang Z, Klenerman D. Detecting the Undetectable: Advances in Methods for Identifying Small Tau Aggregates in Neurodegenerative Diseases. Chembiochem 2025; 26:e202400877. [PMID: 39688878 PMCID: PMC12002113 DOI: 10.1002/cbic.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Tau, a microtubule-associated protein, plays a critical role in maintaining neuronal structure and function. However, in neurodegenerative diseases such as Alzheimer's disease and other tauopathies, tau misfolds and aggregates into oligomers and fibrils, leading to neuronal damage. Tau oligomers are increasingly recognised as the most neurotoxic species, inducing synaptic dysfunction and contributing to disease progression. Detecting these early-stage aggregates is challenging due to their low concentration and high heterogeneity in biological samples. Traditional methods such as immunostaining and enzyme-linked immunosorbent assay (ELISA) lack the sensitivity and specificity to reliably detect small tau aggregates. Advanced single-molecule approaches, including single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule pull-down (SiMPull), offer improved sensitivity for studying tau aggregation at the molecular level. These emerging tools provide critical insights into tau pathology, enabling earlier detection and characterisation of disease-relevant aggregates, thereby offering potential for the development of targeted therapies and diagnostic approaches for tauopathies.
Collapse
Affiliation(s)
- Dorothea Böken
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - Yunzhao Wu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - Ziwei Zhang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| |
Collapse
|
4
|
Chinnathambi S, Malik S, Chandrashekar M. Tau PET probes for Alzheimer's disease detection and their structural characterization. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 145:255-285. [PMID: 40324849 DOI: 10.1016/bs.apcsb.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
There are two hallmarks for the Alzheimer's disease that are currently used to identify the disease- the presence of the proteins Amyloid-β and Tau. Amyloid PET has been studied for a long time and many effective probes have been introduced, some approved by the FDA, including [18F]-florbetaben (Neuraceq), [18F]-florbetapir (Amyvid), [18F]-flutemetamol (Vizamyl). However, it was found that imaging of NFTs could give more accurate results as the accumulation of Tau could directly be correlated with neurodegeneration, which isn't the case for Amyloid-β. Amyloid PET is thereby a diagnostic tool, which can rather be used for confirming the absence of Alzheimer's Disease. Tau PET, which was found to be a potentially useful diagnostic tool was explored further as it can directly be associated with the extent of spread of the disease. This led to the discovery of many probes for Tau PET. The initial ones were non-selective for Tau over Aβ. Further exploration suggested two generations of Tau probes, both with higher selectivity for Tau over Aβ. A second generation was introduced to overcome the shortcomings of the first generation which are examined in this review. Much research on effective Tau PET probes has led to an FDA-approved Tau probe, 18F-flortaucipir. This systematic review discusses the characteristics and effectiveness of the first-generation probes, second-generation probes and other newer probes. It discusses the structural changes made in the probes over time that led to the enhancement of their properties as a Tau probe, that is, increased affinity and selectivity for Tau. It also discusses the shortcomings of probes developed so far and the ideal characteristics for Tau probes.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, Karnataka, India.
| | - Sneha Malik
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, Karnataka, India
| | - Madhura Chandrashekar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Fan X, Okada K, Lin H, Ori-McKenney KM, McKenney RJ. A pathological phosphorylation pattern enhances tau cooperativity on microtubules and facilitates tau filament assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635117. [PMID: 39974960 PMCID: PMC11838361 DOI: 10.1101/2025.01.29.635117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Phosphorylation plays a crucial role in both normal and disease processes involving the microtubule-associated protein tau. Physiologically, phosphorylation regulates tau's subcellular localization within neurons and is involved in fetal development and animal hibernation. However, abnormal phosphorylation of tau is linked to the formation of neurofibrillary tangles (NFTs) in various human tauopathies. Interestingly, the patterns of tau phosphorylation are similar in both normal and abnormal processes, leaving unclear whether phosphorylated tau retains its functional role in normal processes. The relationship between tau phosphorylation and NFT assembly in tauopathies is also still debated. To address these questions, we investigated the effects of tau phosphorylation on microtubule binding, cooperative protein envelope formation, and NFT filament assembly relevant to tauopathies. Consistent with previous results, our findings show that tau phosphorylation decreases tau's overall affinity for microtubules, but we reveal that phosphorylation more dramatically impacts the cooperativity between tau molecules during tau envelope formation along microtubules. Additionally, we observed that the specific pattern of phosphorylation, rather than overall phosphorylation level, strongly impacts the assembly of tau filaments in vitro . Our results reveal new insights into how tau phosphorylation impacts tau's physiological roles on microtubules and its pathoconversion into NFTs.
Collapse
|
6
|
Miller LVC, Papa G, Vaysburd M, Cheng S, Sweeney PW, Smith A, Franco C, Katsinelos T, Huang M, Sanford SAI, Benn J, Farnsworth J, Higginson K, Joyner H, McEwan WA, James LC. Co-opting templated aggregation to degrade pathogenic tau assemblies and improve motor function. Cell 2024; 187:5967-5980.e17. [PMID: 39276772 PMCID: PMC7616835 DOI: 10.1016/j.cell.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We exemplify this concept by demonstrating the specific degradation of tau aggregates while sparing soluble tau. Unlike immunotherapy, RING-Bait is effective against both seeded and cell-autonomous aggregation. RING-Bait removed tau aggregates seeded from Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) brain extracts and was also effective in primary neurons. We used a brain-penetrant adeno-associated virus (AAV) to treat P301S tau transgenic mice, reducing tau pathology and improving motor function. A RING-Bait strategy could be applied to other neurodegenerative proteinopathies by replacing the Bait sequence to match the target aggregate.
Collapse
Affiliation(s)
- Lauren V C Miller
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Shi Cheng
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate, Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Paul W Sweeney
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Annabel Smith
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Catarina Franco
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Melissa Huang
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Sophie A I Sanford
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Jonathan Benn
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Jasmine Farnsworth
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Katie Higginson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Holly Joyner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
7
|
Soeda Y, Yoshimura H, Bannai H, Koike R, Shiiba I, Takashima A. Intracellular tau fragment droplets serve as seeds for tau fibrils. Structure 2024; 32:1793-1807.e6. [PMID: 39032487 DOI: 10.1016/j.str.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer's disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. These intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Bannai
- School of Advanced Science and Engineering, Department of Electrical Engineering and Biosciences, Waseda University, 2-2 Wakamatsucho, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
8
|
Benn J, Cheng S, Keeling S, Smith AE, Vaysburd MJ, Böken D, Miller LVC, Katsinelos T, Franco C, Dupré E, Danis C, Landrieu I, Buée L, Klenerman D, James LC, McEwan WA. Aggregate-selective removal of pathological tau by clustering-activated degraders. Science 2024; 385:1009-1016. [PMID: 39208111 PMCID: PMC7616837 DOI: 10.1126/science.adp5186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Selective degradation of pathological protein aggregates while sparing monomeric forms is of major therapeutic interest. The E3 ligase tripartite motif-containing protein 21 (TRIM21) degrades antibody-bound proteins in an assembly state-specific manner due to the requirement of TRIM21 RING domain clustering for activation, yet effective targeting of intracellular assemblies remains challenging. Here, we fused the RING domain of TRIM21 to a target-specific nanobody to create intracellularly expressed constructs capable of selectively degrading assembled proteins. We evaluated this approach against green fluorescent protein-tagged histone 2B (H2B-GFP) and tau, a protein that undergoes pathological aggregation in Alzheimer's and other neurodegenerative diseases. RING-nanobody degraders prevented or reversed tau aggregation in culture and in vivo, with minimal impact on monomeric tau. This approach may have therapeutic potential for the many disorders driven by intracellular protein aggregation.
Collapse
Affiliation(s)
- Jonathan Benn
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
| | - Shi Cheng
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
| | - Annabel E Smith
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
| | | | - Dorothea Böken
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
| | | | - Taxiarchis Katsinelos
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, UK
| | | | - Elian Dupré
- CNRS EMR9002 – BSI - Integrative Structural Biology, LabEx DISTALZ, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000Lille, France
| | - Clément Danis
- CNRS EMR9002 – BSI - Integrative Structural Biology, LabEx DISTALZ, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000Lille, France
- Université Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000Lille, France
| | - Isabelle Landrieu
- CNRS EMR9002 – BSI - Integrative Structural Biology, LabEx DISTALZ, F-59000 Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000Lille, France
| | - Luc Buée
- Université Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000Lille, France
| | - David Klenerman
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
| | - Leo C James
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Hills Road, Cambridge, CB2 0AH, UK
| |
Collapse
|
9
|
Campbell KR, Hallada LP, Huang YS, Solecki DJ. From Blur to Brilliance: The Ascendance of Advanced Microscopy in Neuronal Cell Biology. Annu Rev Neurosci 2024; 47:235-253. [PMID: 38608643 DOI: 10.1146/annurev-neuro-111020-090208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The intricate network of the brain's neurons and synapses poses unparalleled challenges for research, distinct from other biological studies. This is particularly true when dissecting how neurons and their functional units work at a cell biological level. While traditional microscopy has been foundational, it was unable to reveal the deeper complexities of neural interactions. However, an imaging renaissance has transformed our capabilities. Advancements in light and electron microscopy, combined with correlative imaging, now achieve unprecedented resolutions, uncovering the most nuanced neural structures. Maximizing these tools requires more than just technical proficiency. It is crucial to align research aims, allocate resources wisely, and analyze data effectively. At the heart of this evolution is interdisciplinary collaboration, where various experts come together to translate detailed imagery into significant biological insights. This review navigates the latest developments in microscopy, underscoring both the promise of and prerequisites for bending this powerful tool set to understanding neuronal cell biology.
Collapse
Affiliation(s)
- Kirby R Campbell
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Liam P Hallada
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Yu-Shan Huang
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - David J Solecki
- Neuronal Cell Biology Division, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
10
|
Chang HT, Chan PC, Chiu PY. Non-linear relationship between serum cholesterol levels and cognitive change among older people in the preclinical and prodromal stages of dementia: a retrospective longitudinal study in Taiwan. BMC Geriatr 2024; 24:474. [PMID: 38816835 PMCID: PMC11138028 DOI: 10.1186/s12877-024-05030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Adverse effects of rigorously lowering low-density lipoprotein cholesterol on cognition have been reported; therefore, we aimed to study the contribution of serum cholesterol in cognitive decline in older people with or without dementia. METHODS Cognitive function was assessed by the Cognitive Abilities Screening Instrument (CASI). We investigated associations between serum cholesterol with cognitive decline using multiple regressions controlling for the effects of demographics, vascular risk factors, and treatments. RESULTS Most associations between cholesterol and CASI scores could be explained by non-linear and inverted U-shaped relationships (R2 = 0.003-0.006, p < 0.016, Šidákcorrection). The relationships were most evident between changes in cholesterol and CASI scores in older people at the preclinical or prodromal stages of dementia (R2 = 0.02-0.064, p values < 0.016). There were no differences in level of changes in CASI scores between individuals in 1st decile and 10th decile groups of changes in cholesterol (p = 0.266-0.972). However, individuals in the 1st decile of triglyceride changes and with stable and normal cognitive functions showed significant improvement in CASI scores compared to those in the 10th decile (t(202) = 2.275, p values < 0.05). CONCLUSION These findings could implicate that rigorously lowering cholesterol may not be suitable for the prevention of cognitive decline among older people, especially among individuals in preclinical or prodromal stages of dementia.
Collapse
Affiliation(s)
- Hsin-Te Chang
- Department of Psychology, College of Science, Chung Yuan Christian University, Taoyuan, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua City, Changhua, Taiwan
| | - Po-Chi Chan
- Department of Neurology, Show Chwan Memorial Hospital, Changhua City, Changhua, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua City, Changhua, Taiwan.
- Department of Applied Mathematics, College of Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
11
|
Böken D, Cox D, Burke M, Lam JYL, Katsinelos T, Danial JSH, Fertan E, McEwan WA, Rowe JB, Klenerman D. Single-Molecule Characterization and Super-Resolution Imaging of Alzheimer's Disease-Relevant Tau Aggregates in Human Samples. Angew Chem Int Ed Engl 2024; 63:e202317756. [PMID: 38523073 PMCID: PMC11497306 DOI: 10.1002/anie.202317756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.
Collapse
Affiliation(s)
- Dorothea Böken
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - Dezerae Cox
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - Melanie Burke
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - Jeff Y. L. Lam
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - Taxiarchis Katsinelos
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
- MRC Laboratory of Molecular BiologyCambridgeCB2 0QHUK
| | - John S. H. Danial
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - Emre Fertan
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - William A. McEwan
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| | - James B. Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS TrustUniversity of CambridgeCambridgeCB2 0SZUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0AHUK
| |
Collapse
|
12
|
Longhini AP, DuBose A, Lobo S, Vijayan V, Bai Y, Rivera EK, Sala-Jarque J, Nikitina A, Carrettiero DC, Unger MT, Sclafani OR, Fu V, Beckett ER, Vigers M, Buée L, Landrieu I, Shell S, Shea JE, Han S, Kosik KS. Precision proteoform design for 4R tau isoform selective templated aggregation. Proc Natl Acad Sci U S A 2024; 121:e2320456121. [PMID: 38568974 PMCID: PMC11009657 DOI: 10.1073/pnas.2320456121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting β-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.
Collapse
Affiliation(s)
- Andrew P. Longhini
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Austin DuBose
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Samuel Lobo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Vishnu Vijayan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Yeran Bai
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
- Photothermal Spectroscopy Corp., Santa Barbara, CA93101
| | - Erica Keane Rivera
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Julia Sala-Jarque
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Arina Nikitina
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Daniel C. Carrettiero
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, São Paulo09600-000, Brazil
| | - Matthew T. Unger
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Olivia R. Sclafani
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Valerie Fu
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Emily R. Beckett
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Michael Vigers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & CognitionLilleF-59000, France
- Laboratoire d'Excellence Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease, Alzheimer & Tauopathies Team, LilleF-59000, France
| | - Isabelle Landrieu
- Center National de la Recherche Scientifique Équipe de Recherche 9002–Integrative Structural Biology, LilleF-59000, France
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1167–Risk Factors and Molecular Determinants of Aging-Related DiseasesLilleF-59000, France
| | - Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Joan E. Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| |
Collapse
|
13
|
Mate de Gerando A, Quittot N, Frosch MP, Hyman BT. Reply: Soluble oligomers or insoluble fibrils? Acta Neuropathol 2023; 146:863-866. [PMID: 37733036 PMCID: PMC10628010 DOI: 10.1007/s00401-023-02634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Affiliation(s)
- Anastasie Mate de Gerando
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Noe Quittot
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
14
|
Longhini AP, DuBose A, Lobo S, Vijayan V, Bai Y, Rivera EK, Sala-Jarque J, Nikitina A, Carrettiero DC, Unger M, Sclafani O, Fu V, Vigers M, Buee L, Landrieu I, Shell S, Shea JE, Han S, Kosik KS. Precision Proteoform Design for 4R Tau Isoform Selective Templated Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555649. [PMID: 37693456 PMCID: PMC10491155 DOI: 10.1101/2023.08.31.555649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau, folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting β-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naïve 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.
Collapse
Affiliation(s)
- Andrew P. Longhini
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Austin DuBose
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Samuel Lobo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Vishnu Vijayan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Yeran Bai
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Photothermal Spectroscopy Corp., Santa Barbara, CA 93101, USA
| | - Erica Keane Rivera
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Julia Sala-Jarque
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Arina Nikitina
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Daniel C. Carrettiero
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Matthew Unger
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Olivia Sclafani
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Valerie Fu
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Michael Vigers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Luc Buee
- Univ. Lille, Inserm, CHU Lille, LilNCog – Lille Neuroscience & Cognition, F-59000 Lille, France
- LabEx DISTALZ, Alzheimer & Tauopathies Team, F-59000 Lille, France
| | - Isabelle Landrieu
- CNRS EMR9002 – BSI - Integrative Structural Biology F-59000 Lille, France
| | - Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Joan E. Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France. Department of Physics, University of California, Santa Barbara, Santa Barbara, CA
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Lead Contacts
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Lead Contacts
| |
Collapse
|